Skip to main content
Top
Published in: Inflammation 2/2020

01-04-2020 | Original Article

Intra-subunit Disulfide Determines the Conversion and Structural Stability of CRP Isoforms

Authors: Chun-Miao Zhang, Yu-Bo Tan, Hai-Hong Zhou, Zhong-Bo Ge, Jun-Rui Feng, Guang-Bo Lv, Zhi-Yuan Sun, Yu Fu, Ming-Yu Wang

Published in: Inflammation | Issue 2/2020

Login to get access

Abstract

C-reactive protein (CRP) is a major human acute-phase reactant that is composed of five identical subunits. CRP dissociates into subunits at inflammatory loci forming monomeric CRP (mCRP) with substantially enhanced activities, which can be further activated by reducing the intra-subunit disulfide bond. However, conformational changes underlying the activation process of CRP are less well understood. Conformational changes accompanying the conversion of CRP to mCRP with or without reduction were examined with circular dichroism spectroscopy, fluorescence spectroscopy, electron microscopy, size-exclusion chromatography, and neoepitope expression. The conversion of CRP to mCRP follows a two-stage process. In the first stage, CRP dissociates into molten globular subunits characterized by intact secondary structure elements with greatly impaired tertiary packing. In the second stage, these intermediates completely lose their native subunit conformation and assemble into high-order aggregates. The inclusion of reductant accelerates the formation of molten globular subunits in the first step and promotes the formation of more compact aggregates in the second stage. We further show a significant contribution of electrostatic interactions to the stabilization of native CRP. The conformational features of dissociated subunits and the aggregation of mCRP may have a key impact on their activities.
Literature
1.
go back to reference Pepys, M.B., and G.M. Hirschfield. 2003. C-reactive protein: A critical update. The Journal of Clinical Investigation 111: 1805–1812.PubMedPubMedCentral Pepys, M.B., and G.M. Hirschfield. 2003. C-reactive protein: A critical update. The Journal of Clinical Investigation 111: 1805–1812.PubMedPubMedCentral
2.
go back to reference Singh, S.K., M.V. Suresh, B. Voleti, and A. Agrawal. 2008. The connection between C-reactive protein and atherosclerosis. Annals of Medicine 40: 110–120.PubMedPubMedCentral Singh, S.K., M.V. Suresh, B. Voleti, and A. Agrawal. 2008. The connection between C-reactive protein and atherosclerosis. Annals of Medicine 40: 110–120.PubMedPubMedCentral
3.
go back to reference Khreiss, T., L. Jớzsef, L.A. Potempa, and J.G. Filep. 2004. Conformational rearrangement in C-reactive protein is required for proinflammatory actions on human endothelial cells. Circulation 109: 2016–2022.PubMed Khreiss, T., L. Jớzsef, L.A. Potempa, and J.G. Filep. 2004. Conformational rearrangement in C-reactive protein is required for proinflammatory actions on human endothelial cells. Circulation 109: 2016–2022.PubMed
4.
go back to reference Khreiss, T., L. Jozsef, L.A. Potempa, and J.G. Filep. 2005. Loss of pentameric symmetry in C-reactive protein induces interleukin-8 secretion through peroxynitrite signaling in human neutrophils. Circulation Research 97: 690–697.PubMed Khreiss, T., L. Jozsef, L.A. Potempa, and J.G. Filep. 2005. Loss of pentameric symmetry in C-reactive protein induces interleukin-8 secretion through peroxynitrite signaling in human neutrophils. Circulation Research 97: 690–697.PubMed
5.
go back to reference Ji, S.R., Y. Wu, L.A. Potempa, Q. Qiu, and J. Zhao. 2006. Interactions of C-reactive protein with low density lipoproteins: Implications for an active role of modified C-reactive protein in atherosclerosis. The International Journal of Biochemistry & Cell Biology 38: 648–661. Ji, S.R., Y. Wu, L.A. Potempa, Q. Qiu, and J. Zhao. 2006. Interactions of C-reactive protein with low density lipoproteins: Implications for an active role of modified C-reactive protein in atherosclerosis. The International Journal of Biochemistry & Cell Biology 38: 648–661.
6.
go back to reference Ji, S.R., Y. Wu, L.A. Potempa, Y.H. Liang, and J. Zhao. 2006. Effect of Modified C-reactive protein on complement activation. A possible complement regulatory role of modified or monomeric C-reactive protein in atherosclerotic lesions. Arterioscler Thrombosis, and Vascular Biology 26: 935–941. Ji, S.R., Y. Wu, L.A. Potempa, Y.H. Liang, and J. Zhao. 2006. Effect of Modified C-reactive protein on complement activation. A possible complement regulatory role of modified or monomeric C-reactive protein in atherosclerotic lesions. Arterioscler Thrombosis, and Vascular Biology 26: 935–941.
7.
go back to reference McFadyen, J.D., J. Kiefer, D. Braig, J. Loseff-Silver, L.A. Potempa, S.U. Eisenhardt, and K. Peter. 2018. Dissociation of C-reactive protein localizes and amplifies inflammation: Evidence for a direct biological role of C-reactive protein and its conformational changes. Frontiers in Immunology 9: 1351.PubMedPubMedCentral McFadyen, J.D., J. Kiefer, D. Braig, J. Loseff-Silver, L.A. Potempa, S.U. Eisenhardt, and K. Peter. 2018. Dissociation of C-reactive protein localizes and amplifies inflammation: Evidence for a direct biological role of C-reactive protein and its conformational changes. Frontiers in Immunology 9: 1351.PubMedPubMedCentral
8.
go back to reference Jia, Z.K., H.Y. Li, Y.L. Liang, L.A. Potempa, S.R. Ji, and Y. Wu. 2018. Monomeric C-reactive protein binds and neutralizes receptor activator of NF-kappaB ligand-induced osteoclast differentiation. Frontiers in Immunology 9: 234.PubMedPubMedCentral Jia, Z.K., H.Y. Li, Y.L. Liang, L.A. Potempa, S.R. Ji, and Y. Wu. 2018. Monomeric C-reactive protein binds and neutralizes receptor activator of NF-kappaB ligand-induced osteoclast differentiation. Frontiers in Immunology 9: 234.PubMedPubMedCentral
9.
go back to reference Li, Q.Y., H.Y. Li, G. Fu, F. Yu, Y. Wu, and M.H. Zhao. 2017. Autoantibodies against C-reactive protein influence complement activation and clinical course in lupus nephritis. Journal of American Society of Nephrology 28: 3044–3054. Li, Q.Y., H.Y. Li, G. Fu, F. Yu, Y. Wu, and M.H. Zhao. 2017. Autoantibodies against C-reactive protein influence complement activation and clinical course in lupus nephritis. Journal of American Society of Nephrology 28: 3044–3054.
10.
go back to reference Li, H.Y., J. Wang, F. Meng, Z.K. Jia, Y. Su, Q.F. Bai, L.L. Lv, F.R. Ma, L.A. Potempa, Y.B. Yan, S.R. Ji, and Y. Wu. 2016. An intrinsically disordered motif mediates diverse actions of monomeric C-reactive protein. The Journal of Biological Chemistry 291: 8795–8804.PubMedPubMedCentral Li, H.Y., J. Wang, F. Meng, Z.K. Jia, Y. Su, Q.F. Bai, L.L. Lv, F.R. Ma, L.A. Potempa, Y.B. Yan, S.R. Ji, and Y. Wu. 2016. An intrinsically disordered motif mediates diverse actions of monomeric C-reactive protein. The Journal of Biological Chemistry 291: 8795–8804.PubMedPubMedCentral
11.
go back to reference Wang, M.Y., S.R. Ji, C.J. Bai, D. El Kebir, H.Y. Li, J.M. Shi, W. Zhu, S. Costantino, H.H. Zhou, L.A. Potempa, J. Zhao, J.G. Filep, and Y. Wu. 2011. A redox switch in C-reactive protein modulates activation of endothelial cells. The FASEB Journal 25: 3186–3196.PubMed Wang, M.Y., S.R. Ji, C.J. Bai, D. El Kebir, H.Y. Li, J.M. Shi, W. Zhu, S. Costantino, H.H. Zhou, L.A. Potempa, J. Zhao, J.G. Filep, and Y. Wu. 2011. A redox switch in C-reactive protein modulates activation of endothelial cells. The FASEB Journal 25: 3186–3196.PubMed
12.
go back to reference Li, S.L., J.R. Feng, H.H. Zhou, C.M. Zhang, G.B. Lv, Y.B. Tan, Z.B. Ge, and M.Y. Wang. 2018. Acidic pH promotes oxidation-induced dissociation of C-reactive protein. Molecular Immunology 104: 47–53.PubMed Li, S.L., J.R. Feng, H.H. Zhou, C.M. Zhang, G.B. Lv, Y.B. Tan, Z.B. Ge, and M.Y. Wang. 2018. Acidic pH promotes oxidation-induced dissociation of C-reactive protein. Molecular Immunology 104: 47–53.PubMed
13.
go back to reference Singh, S.K., A. Thirumalai, A. Pathak, D.N. Ngwa, and A. Agrawal. 2017. Functional Transformation of C-reactive protein by hydrogen peroxide. The Journal of Biological Chemistry 292: 3129–3136.PubMedPubMedCentral Singh, S.K., A. Thirumalai, A. Pathak, D.N. Ngwa, and A. Agrawal. 2017. Functional Transformation of C-reactive protein by hydrogen peroxide. The Journal of Biological Chemistry 292: 3129–3136.PubMedPubMedCentral
14.
go back to reference Hammond, D.J., Jr., S.K. Singh, J.A. Thompson, B.W. Beeler, A.E. Rusinol, M.K. Pangburn, L.A. Potempa, and A. Agrawal. 2010. Identification of acidic pH-dependent ligands of pentameric C-reactive protein. The Journal of Biological Chemistry 285: 36235–36244.PubMedPubMedCentral Hammond, D.J., Jr., S.K. Singh, J.A. Thompson, B.W. Beeler, A.E. Rusinol, M.K. Pangburn, L.A. Potempa, and A. Agrawal. 2010. Identification of acidic pH-dependent ligands of pentameric C-reactive protein. The Journal of Biological Chemistry 285: 36235–36244.PubMedPubMedCentral
15.
go back to reference Eisenhardt, S.U., J. Habersberger, A. Murphy, Y.C. Chen, K.J. Woollard, N. Bassler, H. Qian, C. von Zur Muhlen, C.E. Hagemeyer, I. Ahrens, J. Chin-Dusting, A. Bobik, and K. Peter. 2009. Dissociation of pentameric to monomeric C-reactive protein on activated platelets localizes inflammation to atherosclerotic plaques. Circulation Research 105: 128–137.PubMed Eisenhardt, S.U., J. Habersberger, A. Murphy, Y.C. Chen, K.J. Woollard, N. Bassler, H. Qian, C. von Zur Muhlen, C.E. Hagemeyer, I. Ahrens, J. Chin-Dusting, A. Bobik, and K. Peter. 2009. Dissociation of pentameric to monomeric C-reactive protein on activated platelets localizes inflammation to atherosclerotic plaques. Circulation Research 105: 128–137.PubMed
16.
go back to reference Thiele, J.R., J. Habersberger, D. Braig, Y. Schmidt, K. Goerendt, V. Maurer, H. Bannasch, A. Scheichl, K.J. Woollard, E. von Dobschutz, F. Kolodgie, R. Virmani, G.B. Stark, K. Peter, and S.U. Eisenhardt. 2014. Dissociation of pentameric to monomeric C-reactive protein localizes and aggravates inflammation: In vivo proof of a powerful proinflammatory mechanism and a new anti-inflammatory strategy. Circulation 130: 35–50.PubMed Thiele, J.R., J. Habersberger, D. Braig, Y. Schmidt, K. Goerendt, V. Maurer, H. Bannasch, A. Scheichl, K.J. Woollard, E. von Dobschutz, F. Kolodgie, R. Virmani, G.B. Stark, K. Peter, and S.U. Eisenhardt. 2014. Dissociation of pentameric to monomeric C-reactive protein localizes and aggravates inflammation: In vivo proof of a powerful proinflammatory mechanism and a new anti-inflammatory strategy. Circulation 130: 35–50.PubMed
17.
go back to reference Ji, S.R., Y. Wu, L. Zhu, L.A. Potempa, F.L. Sheng, W. Lu, and J. Zhao. 2007. Cell membranes and liposomes dissociate C-reactive protein (CRP) to form a new, biologically active structural intermediate: mCRP(m). The FASEB Journal 21: 284–294.PubMed Ji, S.R., Y. Wu, L. Zhu, L.A. Potempa, F.L. Sheng, W. Lu, and J. Zhao. 2007. Cell membranes and liposomes dissociate C-reactive protein (CRP) to form a new, biologically active structural intermediate: mCRP(m). The FASEB Journal 21: 284–294.PubMed
18.
go back to reference Habersberger, J., F. Strang, A. Scheichl, N. Htun, N. Bassler, R.M. Merivirta, P. Diehl, G. Krippner, P. Meikle, S.U. Eisenhardt, I. Meredith, and K. Peter. 2012. Circulating microparticles generate and transport monomeric C-reactive protein in patients with myocardial infarction. Cardiovascular Research 96: 64–72.PubMed Habersberger, J., F. Strang, A. Scheichl, N. Htun, N. Bassler, R.M. Merivirta, P. Diehl, G. Krippner, P. Meikle, S.U. Eisenhardt, I. Meredith, and K. Peter. 2012. Circulating microparticles generate and transport monomeric C-reactive protein in patients with myocardial infarction. Cardiovascular Research 96: 64–72.PubMed
19.
go back to reference Lv, J.M., S.Q. Lu, Z.P. Liu, J. Zhang, B.X. Gao, Z.Y. Yao, Y.X. Wu, L.A. Potempa, S.R. Ji, M. Long, and Y. Wu. 2018. Conformational folding and disulfide bonding drive distinct stages of protein structure formation. Scientific Reports 8: 1494.PubMedPubMedCentral Lv, J.M., S.Q. Lu, Z.P. Liu, J. Zhang, B.X. Gao, Z.Y. Yao, Y.X. Wu, L.A. Potempa, S.R. Ji, M. Long, and Y. Wu. 2018. Conformational folding and disulfide bonding drive distinct stages of protein structure formation. Scientific Reports 8: 1494.PubMedPubMedCentral
20.
go back to reference Potempa, L.A., B.A. Maldonado, P. Laurent, E.S. Zemel, and H. Gewurz. 1983. Antigenic, electrophoretic and binding alterations of human C-reactive protein modified selectively in the absence of calcium. Molecular Immunology 20: 1165–1175.PubMed Potempa, L.A., B.A. Maldonado, P. Laurent, E.S. Zemel, and H. Gewurz. 1983. Antigenic, electrophoretic and binding alterations of human C-reactive protein modified selectively in the absence of calcium. Molecular Immunology 20: 1165–1175.PubMed
21.
go back to reference Khreiss, T., L. Jozsef, S. Hossain, J.S. Chan, L.A. Potempa, and J.G. Filep. 2002. Loss of pentameric symmetry of C-reactive protein is associated with delayed apoptosis of human neutrophils. The Journal of Biological Chemistry 277: 40775–40781.PubMed Khreiss, T., L. Jozsef, S. Hossain, J.S. Chan, L.A. Potempa, and J.G. Filep. 2002. Loss of pentameric symmetry of C-reactive protein is associated with delayed apoptosis of human neutrophils. The Journal of Biological Chemistry 277: 40775–40781.PubMed
22.
go back to reference Ying, S.C., E. Shephard, F.C. de Beer, J.N. Siegel, D. Harris, B.E. Gewurz, M. Fridkin, and H. Gewurz. 1992. Localization of sequence-determined neoepitopes and neutrophil digestion fragments of C-reactive protein utilizing monoclonal antibodies and synthetic peptides. Molecular Immunology 29: 677–687.PubMed Ying, S.C., E. Shephard, F.C. de Beer, J.N. Siegel, D. Harris, B.E. Gewurz, M. Fridkin, and H. Gewurz. 1992. Localization of sequence-determined neoepitopes and neutrophil digestion fragments of C-reactive protein utilizing monoclonal antibodies and synthetic peptides. Molecular Immunology 29: 677–687.PubMed
23.
go back to reference Taylor, K.E., and C.W. van den Berg. 2007. Structural and functional comparison of native pentameric, denatured monomeric and biotinylated C-reactive protein. Immunology 120: 404–411.PubMedPubMedCentral Taylor, K.E., and C.W. van den Berg. 2007. Structural and functional comparison of native pentameric, denatured monomeric and biotinylated C-reactive protein. Immunology 120: 404–411.PubMedPubMedCentral
24.
go back to reference Lu, S., Y. Cao, S.B. Fan, Z.L. Chen, R.Q. Fang, S.M. He, and M.Q. Dong. 2018. Mapping disulfide bonds from sub-micrograms of purified proteins or micrograms of complex protein mixtures. Biophysics Reports 4: 68–81.PubMedPubMedCentral Lu, S., Y. Cao, S.B. Fan, Z.L. Chen, R.Q. Fang, S.M. He, and M.Q. Dong. 2018. Mapping disulfide bonds from sub-micrograms of purified proteins or micrograms of complex protein mixtures. Biophysics Reports 4: 68–81.PubMedPubMedCentral
25.
go back to reference Fink, A.L. 1995. Molten globules. Methods in Molecular Biology 40: 343–360.PubMed Fink, A.L. 1995. Molten globules. Methods in Molecular Biology 40: 343–360.PubMed
26.
go back to reference Volanakis, J.E. 2001. Human C-reactive protein: Expression, structure, and function. Molecular Immunology 38: 189–197.PubMed Volanakis, J.E. 2001. Human C-reactive protein: Expression, structure, and function. Molecular Immunology 38: 189–197.PubMed
27.
go back to reference Monera, O.D., C.M. Kay, and R.S. Hodges. 1994. Protein denaturation with guanidine hydrochloride or urea provides a different estimate of stability depending on the contributions of electrostatic interactions. Protein Science 3: 1984–1991.PubMedPubMedCentral Monera, O.D., C.M. Kay, and R.S. Hodges. 1994. Protein denaturation with guanidine hydrochloride or urea provides a different estimate of stability depending on the contributions of electrostatic interactions. Protein Science 3: 1984–1991.PubMedPubMedCentral
28.
go back to reference Schwedler, S.B., J.G. Filep, J. Galle, C. Wanner, and L.A. Potempa. 2006. C-reactive protein: A family of proteins to regulate cardiovascular function. American Journal of Kidney Diseases 47: 212–222.PubMed Schwedler, S.B., J.G. Filep, J. Galle, C. Wanner, and L.A. Potempa. 2006. C-reactive protein: A family of proteins to regulate cardiovascular function. American Journal of Kidney Diseases 47: 212–222.PubMed
29.
go back to reference Schwedler, S.B., K. Amann, K. Wernicke, A. Krebs, M. Nauck, C. Wanner, L.A. Potempa, and J. Galle. 2005. Native C-reactive protein (CRP) increases, whereas modified CRP reduces atherosclerosis in ApoE-knockout-mice. Circulation. 112: 1016–1023.PubMed Schwedler, S.B., K. Amann, K. Wernicke, A. Krebs, M. Nauck, C. Wanner, L.A. Potempa, and J. Galle. 2005. Native C-reactive protein (CRP) increases, whereas modified CRP reduces atherosclerosis in ApoE-knockout-mice. Circulation. 112: 1016–1023.PubMed
30.
go back to reference Braig, D., B. Kaiser, J.R. Thiele, H. Bannasch, K. Peter, G.B. Stark, H.G. Koch, and S.U. Eisenhardt. 2014. A conformational change of C-reactive protein in burn wounds unmasks its proinflammatory properties. International Immunology 26: 467–478.PubMed Braig, D., B. Kaiser, J.R. Thiele, H. Bannasch, K. Peter, G.B. Stark, H.G. Koch, and S.U. Eisenhardt. 2014. A conformational change of C-reactive protein in burn wounds unmasks its proinflammatory properties. International Immunology 26: 467–478.PubMed
31.
go back to reference Strang, F., A. Scheichl, Y.C. Chen, X. Wang, N.M. Htun, N. Bassler, S.U. Eisenhardt, J. Habersberger, and K. Peter. 2011. Amyloid plaques dissociate pentameric to monomeric C-reactive protein: A novel pathomechanism driving cortical inflammation in Alzheimer’s disease? Brain Pathology (Zurich, Switzerland). Strang, F., A. Scheichl, Y.C. Chen, X. Wang, N.M. Htun, N. Bassler, S.U. Eisenhardt, J. Habersberger, and K. Peter. 2011. Amyloid plaques dissociate pentameric to monomeric C-reactive protein: A novel pathomechanism driving cortical inflammation in Alzheimer’s disease? Brain Pathology (Zurich, Switzerland).
32.
go back to reference Eisenhardt, S.U., J.R. Thiele, H. Bannasch, G.B. Stark, and K. Peter. 2009. C-reactive protein: How conformational changes influence inflammatory properties. Cell Cycle (Georgetown, Tex.) 8: 3885–3892. Eisenhardt, S.U., J.R. Thiele, H. Bannasch, G.B. Stark, and K. Peter. 2009. C-reactive protein: How conformational changes influence inflammatory properties. Cell Cycle (Georgetown, Tex.) 8: 3885–3892.
33.
go back to reference Ji, S.R., L. Ma, C.J. Bai, J.M. Shi, H.Y. Li, L.A. Potempa, J.G. Filep, J. Zhao, and Y. Wu. 2009. Monomeric C-reactive protein activates endothelial cells via interaction with lipid raft microdomains. The FASEB Journal 23: 1806–1816.PubMed Ji, S.R., L. Ma, C.J. Bai, J.M. Shi, H.Y. Li, L.A. Potempa, J.G. Filep, J. Zhao, and Y. Wu. 2009. Monomeric C-reactive protein activates endothelial cells via interaction with lipid raft microdomains. The FASEB Journal 23: 1806–1816.PubMed
34.
go back to reference Breydo, L., and V.N. Uversky. 2015. Structural, morphological, and functional diversity of amyloid oligomers. FEBS Letters 589: 2640–2648.PubMed Breydo, L., and V.N. Uversky. 2015. Structural, morphological, and functional diversity of amyloid oligomers. FEBS Letters 589: 2640–2648.PubMed
35.
go back to reference Pelton, J.T., and L.R. McLean. 2000. Spectroscopic methods for analysis of protein secondary structure. Analytical Biochemistry 277: 167–176.PubMed Pelton, J.T., and L.R. McLean. 2000. Spectroscopic methods for analysis of protein secondary structure. Analytical Biochemistry 277: 167–176.PubMed
36.
go back to reference Lu, J., K.D. Marjon, L.L. Marnell, R. Wang, C. Mold, T.W. Du Clos, and P. Sun. 2011. Recognition and functional activation of the human IgA receptor (FcalphaRI) by C-reactive protein. Proceedings of the National Academy of Sciences of the United States of America 108: 4974–4979.PubMedPubMedCentral Lu, J., K.D. Marjon, L.L. Marnell, R. Wang, C. Mold, T.W. Du Clos, and P. Sun. 2011. Recognition and functional activation of the human IgA receptor (FcalphaRI) by C-reactive protein. Proceedings of the National Academy of Sciences of the United States of America 108: 4974–4979.PubMedPubMedCentral
37.
go back to reference Fujita, Y., A. Kakino, N. Nishimichi, S. Yamaguchi, Y. Sato, S. Machida, L. Cominacini, Y. Delneste, H. Matsuda, and T. Sawamura. 2009. Oxidized LDL receptor LOX-1 binds to C-reactive protein and mediates its vascular effects. Clinical Chemistry 55: 285–294.PubMed Fujita, Y., A. Kakino, N. Nishimichi, S. Yamaguchi, Y. Sato, S. Machida, L. Cominacini, Y. Delneste, H. Matsuda, and T. Sawamura. 2009. Oxidized LDL receptor LOX-1 binds to C-reactive protein and mediates its vascular effects. Clinical Chemistry 55: 285–294.PubMed
38.
go back to reference Lu, J., L.L. Marnell, K.D. Marjon, C. Mold, T.W. Du Clos, and P.D. Sun. 2008. Structural recognition and functional activation of FcgammaR by innate pentraxins. Nature 456: 989–992.PubMedPubMedCentral Lu, J., L.L. Marnell, K.D. Marjon, C. Mold, T.W. Du Clos, and P.D. Sun. 2008. Structural recognition and functional activation of FcgammaR by innate pentraxins. Nature 456: 989–992.PubMedPubMedCentral
39.
go back to reference Yang, J., M. Wezeman, X. Zhang, P. Lin, M. Wang, J. Qian, B. Wan, L.W. Kwak, L. Yu, and Q. Yi. 2007. Human C-reactive protein binds activating Fcgamma receptors and protects myeloma tumor cells from apoptosis. Cancer Cell 12: 252–265.PubMed Yang, J., M. Wezeman, X. Zhang, P. Lin, M. Wang, J. Qian, B. Wan, L.W. Kwak, L. Yu, and Q. Yi. 2007. Human C-reactive protein binds activating Fcgamma receptors and protects myeloma tumor cells from apoptosis. Cancer Cell 12: 252–265.PubMed
40.
go back to reference Blaschke, F., Y. Takata, E. Caglayan, A. Collins, P. Tontonoz, W.A. Hsueh, and R.K. Tangirala. 2006. A nuclear receptor corepressor-dependent pathway mediates suppression of cytokine-induced C-reactive protein gene expression by liver X receptor. Circulation Research 99: e88–e99.PubMed Blaschke, F., Y. Takata, E. Caglayan, A. Collins, P. Tontonoz, W.A. Hsueh, and R.K. Tangirala. 2006. A nuclear receptor corepressor-dependent pathway mediates suppression of cytokine-induced C-reactive protein gene expression by liver X receptor. Circulation Research 99: e88–e99.PubMed
41.
go back to reference Du Clos, T.W. 2000. Function of C-reactive protein. Annals of Medicine 32: 274–278.PubMed Du Clos, T.W. 2000. Function of C-reactive protein. Annals of Medicine 32: 274–278.PubMed
42.
go back to reference Vigushin, D.M., M.B. Pepys, and P.N. Hawkins. 1993. Metabolic and scintigraphic studies of radioiodinated human C-reactive protein in health and disease. The Journal of Clinical Investigation 91: 1351–1357.PubMedPubMedCentral Vigushin, D.M., M.B. Pepys, and P.N. Hawkins. 1993. Metabolic and scintigraphic studies of radioiodinated human C-reactive protein in health and disease. The Journal of Clinical Investigation 91: 1351–1357.PubMedPubMedCentral
43.
go back to reference Motie, M., K.W. Schaul, and L.A. Potempa. 1998. Biodistribution and clearance of 125I-labeled C-reactive protein and 125I-labeled modified C-reactive protein in CD-1 mice. Drug Metabolism and Disposition 26: 977–981.PubMed Motie, M., K.W. Schaul, and L.A. Potempa. 1998. Biodistribution and clearance of 125I-labeled C-reactive protein and 125I-labeled modified C-reactive protein in CD-1 mice. Drug Metabolism and Disposition 26: 977–981.PubMed
44.
go back to reference Singh, S.K., A. Thirumalai, D.J. Hammond Jr., M.K. Pangburn, V.K. Mishra, D.A. Johnson, A.E. Rusinol, and A. Agrawal. 2012. Exposing a hidden functional site of C-reactive protein by site-directed mutagenesis. The Journal of Biological Chemistry 287: 3550–3558.PubMed Singh, S.K., A. Thirumalai, D.J. Hammond Jr., M.K. Pangburn, V.K. Mishra, D.A. Johnson, A.E. Rusinol, and A. Agrawal. 2012. Exposing a hidden functional site of C-reactive protein by site-directed mutagenesis. The Journal of Biological Chemistry 287: 3550–3558.PubMed
Metadata
Title
Intra-subunit Disulfide Determines the Conversion and Structural Stability of CRP Isoforms
Authors
Chun-Miao Zhang
Yu-Bo Tan
Hai-Hong Zhou
Zhong-Bo Ge
Jun-Rui Feng
Guang-Bo Lv
Zhi-Yuan Sun
Yu Fu
Ming-Yu Wang
Publication date
01-04-2020
Publisher
Springer US
Published in
Inflammation / Issue 2/2020
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-019-01130-x

Other articles of this Issue 2/2020

Inflammation 2/2020 Go to the issue