Skip to main content
Top
Published in: Inflammation 2/2020

Open Access 01-04-2020 | Cytokines | Original Article

WISP1 and TLR4 on Macrophages Contribute to Ventilator-Induced Lung Injury

Authors: Zhuang Yu, Tingting Wang, Liming Zhang, Xiaohu Yang, Quan Li, Xibing Ding

Published in: Inflammation | Issue 2/2020

Login to get access

Abstract

Injurious mechanical ventilation has been shown to directly affect pulmonary and systemic immune responses. How these responses propagate or attenuate remains unknown. The goal of this study was to further determine whether toll-like receptor (TLR) 4 and WNT1-inducible signaling pathway protein 1 (WISP1) could contribute to injurious mechanical ventilation, especially focusing on the role of macrophages during experimental ventilator-induced lung injury. A prospective, randomized, and controlled animal study was designed, and male, wild-type (WT) C57BL/6 mice, TLR4 knockout (TLR4−/−), and lyzTLR4 knockout (lyzTLR4−/−) mice aging 8~12 weeks were used. Animals were anesthetized and randomized to spontaneous breathing (SB) group or to high tidal volume (VT, 20 ml/kg) mechanical ventilation (HTV) group. Histological evaluation, alveolar–capillary permeability of Evan’s blue albumin (EBA), WISP1 protein levels, macrophage inflammatory protein-2 (MIP-2), and interleukin-6 (IL-6) in plasma and bronchoalveolar lavage fluid (BALF) concentrations were analyzed. HTV group was associated with a significant increase of WISP1 and EBA ratio in C57BL/6 mice, a significant decrease of WISP1 protein levels, and a significant decrease of IL-6, MIP-2 in plasma, and BALF concentrations of pro-inflammatory cytokines in TLR4−/− and lyzTLR4−/− knockout mice. In TLR4−/− mice and lyzTLR4−/− mice, there were also significant differences between SB group and HTV group in terms of H&E score and EBA ratio and level of pro-inflammation cytokines. The entire TLR4-targeted mice could further improve various inflammatory changes and damages when compared with lyzTLR4-targeted mice. What is more, TLR4−/− mice and lyzTLR4−/− mice reacted differently to rWISP1 and/or BMMC treated. TLR4−/− mice had no response to rWISP1, while lyzTLR4−/− mice still showed drastic response to both treatments. TLR4 and WISP1, especially the former one, on macrophages could contribute to releasing of pro-inflammatory cytokines during ventilator-induced lung injury. Injurious mechanical ventilation may result in an immune response which is similar to that of infection.
Literature
1.
go back to reference Dreyfuss, D., P. Soler, G. Basset, and G. Saumon. 1988. High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. The American review of respiratory disease 137: 1159–1164.CrossRef Dreyfuss, D., P. Soler, G. Basset, and G. Saumon. 1988. High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. The American review of respiratory disease 137: 1159–1164.CrossRef
2.
go back to reference Vaneker, M., L.A. Joosten, L.M. Heunks, D.G. Snijdelaar, F.J. Halbertsma, J. van Egmond, M.G. Netea, J. van der Hoeven, and G.J. Scheffer. 2008. Low-tidal-volume mechanical ventilation induces a toll-like receptor 4-dependent inflammatory response in healthy mice. Anesthesiology 109: 465–472.CrossRef Vaneker, M., L.A. Joosten, L.M. Heunks, D.G. Snijdelaar, F.J. Halbertsma, J. van Egmond, M.G. Netea, J. van der Hoeven, and G.J. Scheffer. 2008. Low-tidal-volume mechanical ventilation induces a toll-like receptor 4-dependent inflammatory response in healthy mice. Anesthesiology 109: 465–472.CrossRef
3.
go back to reference Herrera, M.T., C. Toledo, F. Valladares, M. Muros, L. Diaz-Flores, C. Flores, et al. 2003. Positive end-expiratory pressure modulates local and systemic inflammatory responses in a sepsis-induced lung injury model. Intensive Care Medicine 29: 1345–1353.CrossRef Herrera, M.T., C. Toledo, F. Valladares, M. Muros, L. Diaz-Flores, C. Flores, et al. 2003. Positive end-expiratory pressure modulates local and systemic inflammatory responses in a sepsis-induced lung injury model. Intensive Care Medicine 29: 1345–1353.CrossRef
4.
go back to reference Stuber, F., H. Wrigge, S. Schroeder, S. Wetegrove, J. Zinserling, A. Hoeft, et al. 2002. Kinetic and reversibility of mechanical ventilation-associated pulmonary and systemic inflammatory response in patients with acute lung injury. Intensive Care Medicine 28: 834–841.CrossRef Stuber, F., H. Wrigge, S. Schroeder, S. Wetegrove, J. Zinserling, A. Hoeft, et al. 2002. Kinetic and reversibility of mechanical ventilation-associated pulmonary and systemic inflammatory response in patients with acute lung injury. Intensive Care Medicine 28: 834–841.CrossRef
5.
go back to reference von Bethmann, A.N., F. Brasch, R. Nusing, K. Vogt, H.D. Volk, K.M. Muller, et al. 1998. Hyperventilation induces release of cytokines from perfused mouse lung. American Journal of Respiratory and Critical Care Medicine 157: 263–272.CrossRef von Bethmann, A.N., F. Brasch, R. Nusing, K. Vogt, H.D. Volk, K.M. Muller, et al. 1998. Hyperventilation induces release of cytokines from perfused mouse lung. American Journal of Respiratory and Critical Care Medicine 157: 263–272.CrossRef
6.
go back to reference Kuhn, H., K. Petzold, S. Hammerschmidt, and H. Wirtz. 2014. Interaction of cyclic mechanical stretch and toll-like receptor 4-mediated innate immunity in rat alveolar type II cells. Respirology 19: 67–73.CrossRef Kuhn, H., K. Petzold, S. Hammerschmidt, and H. Wirtz. 2014. Interaction of cyclic mechanical stretch and toll-like receptor 4-mediated innate immunity in rat alveolar type II cells. Respirology 19: 67–73.CrossRef
7.
go back to reference Slutsky, A.S., and L.N. Tremblay. 1998. Multiple system organ failure. Is mechanical ventilation a contributing factor? American journal of respiratory and critical care medicine 157: 1721–1725.CrossRef Slutsky, A.S., and L.N. Tremblay. 1998. Multiple system organ failure. Is mechanical ventilation a contributing factor? American journal of respiratory and critical care medicine 157: 1721–1725.CrossRef
8.
go back to reference Dekker, R.J., S. van Soest, R.D. Fontijn, S. Salamanca, P.G. de Groot, E. VanBavel, H. Pannekoek, and A.J. Horrevoets. 2002. Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Kruppel-like factor (KLF2). Blood 100: 1689–1698.CrossRef Dekker, R.J., S. van Soest, R.D. Fontijn, S. Salamanca, P.G. de Groot, E. VanBavel, H. Pannekoek, and A.J. Horrevoets. 2002. Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Kruppel-like factor (KLF2). Blood 100: 1689–1698.CrossRef
9.
go back to reference Liu, M., A.K. Tanswell, and M. Post. 1999. Mechanical force-induced signal transduction in lung cells. The American Journal of Physiology 277: L667–L683.PubMed Liu, M., A.K. Tanswell, and M. Post. 1999. Mechanical force-induced signal transduction in lung cells. The American Journal of Physiology 277: L667–L683.PubMed
10.
11.
go back to reference Aderem, A., and R.J. Ulevitch. 2000. Toll-like receptors in the induction of the innate immune response. Nature 406: 782–787.CrossRef Aderem, A., and R.J. Ulevitch. 2000. Toll-like receptors in the induction of the innate immune response. Nature 406: 782–787.CrossRef
12.
go back to reference Poltorak, A., P. Ricciardi-Castagnoli, S. Citterio, and B. Beutler. 2000. Physical contact between lipopolysaccharide and toll-like receptor 4 revealed by genetic complementation. Proceedings of the National Academy of Sciences of the United States of America 97: 2163–2167.CrossRef Poltorak, A., P. Ricciardi-Castagnoli, S. Citterio, and B. Beutler. 2000. Physical contact between lipopolysaccharide and toll-like receptor 4 revealed by genetic complementation. Proceedings of the National Academy of Sciences of the United States of America 97: 2163–2167.CrossRef
13.
go back to reference Smith, L.S., O. Kajikawa, G. Elson, M. Wick, S. Mongovin, M. Kosco-Vilbois, T.R. Martin, and C.W. Frevert. 2008. Effect of Toll-like receptor 4 blockade on pulmonary inflammation caused by mechanical ventilation and bacterial endotoxin. Experimental Lung Research 34: 225–243.CrossRef Smith, L.S., O. Kajikawa, G. Elson, M. Wick, S. Mongovin, M. Kosco-Vilbois, T.R. Martin, and C.W. Frevert. 2008. Effect of Toll-like receptor 4 blockade on pulmonary inflammation caused by mechanical ventilation and bacterial endotoxin. Experimental Lung Research 34: 225–243.CrossRef
14.
go back to reference Villar, J., N.E. Cabrera, M. Casula, C. Flores, F. Valladares, L. Diaz-Flores, et al. 2010. Mechanical ventilation modulates TLR4 and IRAK-3 in a non-infectious, ventilator-induced lung injury model. Respiratory Research 11: 27.CrossRef Villar, J., N.E. Cabrera, M. Casula, C. Flores, F. Valladares, L. Diaz-Flores, et al. 2010. Mechanical ventilation modulates TLR4 and IRAK-3 in a non-infectious, ventilator-induced lung injury model. Respiratory Research 11: 27.CrossRef
15.
go back to reference Li, H.H., Q. Li, P. Liu, Y. Liu, J. Li, K. Wasserloos, W. Chao, M. You, T.D. Oury, S. Chhinder, D.J. Hackam, T.R. Billiar, G.D. Leikauf, B.R. Pitt, and L.M. Zhang. 2012. WNT1-inducible signaling pathway protein 1 contributes to ventilator-induced lung injury. American Journal of Respiratory Cell and Molecular Biology 47: 528–535.CrossRef Li, H.H., Q. Li, P. Liu, Y. Liu, J. Li, K. Wasserloos, W. Chao, M. You, T.D. Oury, S. Chhinder, D.J. Hackam, T.R. Billiar, G.D. Leikauf, B.R. Pitt, and L.M. Zhang. 2012. WNT1-inducible signaling pathway protein 1 contributes to ventilator-induced lung injury. American Journal of Respiratory Cell and Molecular Biology 47: 528–535.CrossRef
16.
go back to reference Tong, Y., X.B. Ding, Z.X. Chen, S.Q. Jin, X. Zhao, X. Wang, et al. 2016. WISP1 mediates hepatic warm ischemia reperfusion injury via TLR4 signaling in mice. Scientific Reports 6: 20141.CrossRef Tong, Y., X.B. Ding, Z.X. Chen, S.Q. Jin, X. Zhao, X. Wang, et al. 2016. WISP1 mediates hepatic warm ischemia reperfusion injury via TLR4 signaling in mice. Scientific Reports 6: 20141.CrossRef
17.
go back to reference Held, H.D., S. Boettcher, L. Hamann, and S. Uhlig. 2001. Ventilation-induced chemokine and cytokine release is associated with activation of nuclear factor-kappaB and is blocked by steroids. American Journal of Respiratory and Critical Care Medicine 163: 711–716.CrossRef Held, H.D., S. Boettcher, L. Hamann, and S. Uhlig. 2001. Ventilation-induced chemokine and cytokine release is associated with activation of nuclear factor-kappaB and is blocked by steroids. American Journal of Respiratory and Critical Care Medicine 163: 711–716.CrossRef
18.
go back to reference Prakash, A., K.R. Mesa, K. Wilhelmsen, F. Xu, J.M. Dodd-o, and J. Hellman. 2012. Alveolar macrophages and Toll-like receptor 4 mediate ventilated lung ischemia reperfusion injury in mice. Anesthesiology 117: 822–835.CrossRef Prakash, A., K.R. Mesa, K. Wilhelmsen, F. Xu, J.M. Dodd-o, and J. Hellman. 2012. Alveolar macrophages and Toll-like receptor 4 mediate ventilated lung ischemia reperfusion injury in mice. Anesthesiology 117: 822–835.CrossRef
19.
go back to reference Ding, X., X. Wang, X. Zhao, S. Jin, Y. Tong, H. Ren, Z. Chen, and Q. Li. 2015. RGD peptides protects against acute lung injury in septic mice through Wisp1-integrin beta6 pathway inhibition. Shock 43: 352–360.CrossRef Ding, X., X. Wang, X. Zhao, S. Jin, Y. Tong, H. Ren, Z. Chen, and Q. Li. 2015. RGD peptides protects against acute lung injury in septic mice through Wisp1-integrin beta6 pathway inhibition. Shock 43: 352–360.CrossRef
20.
go back to reference Li, H., X. Su, X. Yan, K. Wasserloos, W. Chao, A.M. Kaynar, Z.Q. Liu, G.D. Leikauf, B.R. Pitt, and L.M. Zhang. 2010. Toll-like receptor 4-myeloid differentiation factor 88 signaling contributes to ventilator-induced lung injury in mice. Anesthesiology 113: 619–629.CrossRef Li, H., X. Su, X. Yan, K. Wasserloos, W. Chao, A.M. Kaynar, Z.Q. Liu, G.D. Leikauf, B.R. Pitt, and L.M. Zhang. 2010. Toll-like receptor 4-myeloid differentiation factor 88 signaling contributes to ventilator-induced lung injury in mice. Anesthesiology 113: 619–629.CrossRef
21.
go back to reference Ding, X., S. Jin, Y. Tong, X. Jiang, Z. Chen, S. Mei, et al. 2017. TLR4 signaling induces TLR3 up-regulation in alveolar macrophages during acute lung injury. Scientific Reports 7: 34278.CrossRef Ding, X., S. Jin, Y. Tong, X. Jiang, Z. Chen, S. Mei, et al. 2017. TLR4 signaling induces TLR3 up-regulation in alveolar macrophages during acute lung injury. Scientific Reports 7: 34278.CrossRef
22.
go back to reference Moriyama, K., A. Ishizaka, M. Nakamura, H. Kubo, T. Kotani, S. Yamamoto, E.N. Ogawa, O. Kajikawa, C.W. Frevert, Y. Kotake, H. Morisaki, H. Koh, S. Tasaka, T.R. Martin, and J. Takeda. 2004. Enhancement of the endotoxin recognition pathway by ventilation with a large tidal volume in rabbits. American Journal of Physiology. Lung Cellular and Molecular Physiology 286: L1114–L1121.CrossRef Moriyama, K., A. Ishizaka, M. Nakamura, H. Kubo, T. Kotani, S. Yamamoto, E.N. Ogawa, O. Kajikawa, C.W. Frevert, Y. Kotake, H. Morisaki, H. Koh, S. Tasaka, T.R. Martin, and J. Takeda. 2004. Enhancement of the endotoxin recognition pathway by ventilation with a large tidal volume in rabbits. American Journal of Physiology. Lung Cellular and Molecular Physiology 286: L1114–L1121.CrossRef
23.
go back to reference Dai, H., L. Pan, F. Lin, W. Ge, W. Li, and S. He. 2015. Mechanical ventilation modulates toll-like receptors 2, 4, and 9 on alveolar macrophages in a ventilator-induced lung injury model. Journal of Thoracic Disease 7: 616–624.PubMedPubMedCentral Dai, H., L. Pan, F. Lin, W. Ge, W. Li, and S. He. 2015. Mechanical ventilation modulates toll-like receptors 2, 4, and 9 on alveolar macrophages in a ventilator-induced lung injury model. Journal of Thoracic Disease 7: 616–624.PubMedPubMedCentral
24.
go back to reference Villar, J., N. Cabrera, M. Casula, C. Flores, F. Valladares, M. Muros, L. Blanch, A.S. Slutsky, and R.M. Kacmarek. 2010. Mechanical ventilation modulates toll-like receptor signaling pathway in a sepsis-induced lung injury model. Intensive Care Medicine 36: 1049–1057.CrossRef Villar, J., N. Cabrera, M. Casula, C. Flores, F. Valladares, M. Muros, L. Blanch, A.S. Slutsky, and R.M. Kacmarek. 2010. Mechanical ventilation modulates toll-like receptor signaling pathway in a sepsis-induced lung injury model. Intensive Care Medicine 36: 1049–1057.CrossRef
25.
go back to reference Matthay, M.A. 2008. Treatment of acute lung injury: clinical and experimental studies. Proceedings of the American Thoracic Society 5: 297–299.CrossRef Matthay, M.A. 2008. Treatment of acute lung injury: clinical and experimental studies. Proceedings of the American Thoracic Society 5: 297–299.CrossRef
26.
go back to reference Matthay, M.A., and G.A. Zimmerman. 2005. Acute lung injury and the acute respiratory distress syndrome: four decades of inquiry into pathogenesis and rational management. American Journal of Respiratory Cell and Molecular Biology 33: 319–327.CrossRef Matthay, M.A., and G.A. Zimmerman. 2005. Acute lung injury and the acute respiratory distress syndrome: four decades of inquiry into pathogenesis and rational management. American Journal of Respiratory Cell and Molecular Biology 33: 319–327.CrossRef
27.
go back to reference Dolinay, T., N. Kaminski, M. Felgendreher, H.P. Kim, P. Reynolds, S.C. Watkins, D. Karp, S. Uhlig, and A.M. Choi. 2006. Gene expression profiling of target genes in ventilator-induced lung injury. Physiological Genomics 26: 68–75.CrossRef Dolinay, T., N. Kaminski, M. Felgendreher, H.P. Kim, P. Reynolds, S.C. Watkins, D. Karp, S. Uhlig, and A.M. Choi. 2006. Gene expression profiling of target genes in ventilator-induced lung injury. Physiological Genomics 26: 68–75.CrossRef
28.
go back to reference Ma, S.F., D.N. Grigoryev, A.D. Taylor, S. Nonas, S. Sammani, S.Q. Ye, and J.G. Garcia. 2005. Bioinformatic identification of novel early stress response genes in rodent models of lung injury. American Journal of Physiology. Lung Cellular and Molecular Physiology 289: L468–L477.CrossRef Ma, S.F., D.N. Grigoryev, A.D. Taylor, S. Nonas, S. Sammani, S.Q. Ye, and J.G. Garcia. 2005. Bioinformatic identification of novel early stress response genes in rodent models of lung injury. American Journal of Physiology. Lung Cellular and Molecular Physiology 289: L468–L477.CrossRef
29.
go back to reference Wurfel, M.M. 2007. Microarray-based analysis of ventilator-induced lung injury. Proceedings of the American Thoracic Society 4: 77–84.CrossRef Wurfel, M.M. 2007. Microarray-based analysis of ventilator-induced lung injury. Proceedings of the American Thoracic Society 4: 77–84.CrossRef
30.
go back to reference Berschneider, B., and M. Konigshoff. 2011. WNT1 inducible signaling pathway protein 1 (WISP1): a novel mediator linking development and disease. The International Journal of Biochemistry & Cell Biology 43: 306–309.CrossRef Berschneider, B., and M. Konigshoff. 2011. WNT1 inducible signaling pathway protein 1 (WISP1): a novel mediator linking development and disease. The International Journal of Biochemistry & Cell Biology 43: 306–309.CrossRef
31.
go back to reference Ding, X., Y. Tong, S. Jin, Z. Chen, T. Li, T.R. Billiar, et al. 2018. Mechanical ventilation enhances extrapulmonary sepsis-induced lung injury: role of WISP1-alphavbeta5 integrin pathway in TLR4-mediated inflammation and injury. Critical Care 22: 302.CrossRef Ding, X., Y. Tong, S. Jin, Z. Chen, T. Li, T.R. Billiar, et al. 2018. Mechanical ventilation enhances extrapulmonary sepsis-induced lung injury: role of WISP1-alphavbeta5 integrin pathway in TLR4-mediated inflammation and injury. Critical Care 22: 302.CrossRef
32.
go back to reference Chen, Z., X. Ding, S. Jin, B. Pitt, L. Zhang, T. Billiar, et al. 2016. WISP1-alphavbeta3 integrin signaling positively regulates TLR-triggered inflammation response in sepsis induced lung injury. Scientific Reports 6: 28841.CrossRef Chen, Z., X. Ding, S. Jin, B. Pitt, L. Zhang, T. Billiar, et al. 2016. WISP1-alphavbeta3 integrin signaling positively regulates TLR-triggered inflammation response in sepsis induced lung injury. Scientific Reports 6: 28841.CrossRef
33.
go back to reference Jin, S., Z. Chen, X. Ding, X. Zhao, X. Jiang, Y. Tong, et al. 2016. Mechanical ventilation augments poly(I:C)induced lung injury via a WISP1-integrin beta3 dependent pathway in mice. Molecular medicine 22: 54–63.CrossRef Jin, S., Z. Chen, X. Ding, X. Zhao, X. Jiang, Y. Tong, et al. 2016. Mechanical ventilation augments poly(I:C)induced lung injury via a WISP1-integrin beta3 dependent pathway in mice. Molecular medicine 22: 54–63.CrossRef
Metadata
Title
WISP1 and TLR4 on Macrophages Contribute to Ventilator-Induced Lung Injury
Authors
Zhuang Yu
Tingting Wang
Liming Zhang
Xiaohu Yang
Quan Li
Xibing Ding
Publication date
01-04-2020
Publisher
Springer US
Keyword
Cytokines
Published in
Inflammation / Issue 2/2020
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-019-01103-0

Other articles of this Issue 2/2020

Inflammation 2/2020 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.