Skip to main content
Top
Published in: Inflammation 3/2018

01-06-2018 | ORIGINAL ARTICLE

FGF-21 Elevated IL-10 Production to Correct LPS-Induced Inflammation

Authors: Jun-yan Li, Nan Wang, Mir Hassan Khoso, Cheng-bin Shen, Meng-ze Guo, Xin-xin Pang, De-shan Li, Wen-fei Wang

Published in: Inflammation | Issue 3/2018

Login to get access

Abstract

Fibroblast growth factor 21 (FGF-21) has been previously judged as a major metabolic regulator. In this paper, we show that FGF-21 has a potential role in anti-inflammation and immunoregulation. In vivo, treatment with exogenous FGF-21 can alleviate LPS-induced inflammation. In vitro, FGF-21 inhibited LPS-induced IL-1β expression in THP-1 cells. Furthermore, besides the NF-κB pathway, the mechanism of action of FGF-21 was observed to involve the elevation of IL-10 in the ERK1/2 pathway. This study clearly indicates that FGF21 can be used as an attractive target for the management of inflammatory disorders. This piece of research indicates that FGF-21 could have much value in the management of inflammatory disorders.
Literature
1.
go back to reference Gariani, K., G. Drifte, I. Dunn-Siegrist, J. Pugin, and F.R. Jornayvaz. 2013. Increased FGF21 plasma levels in humans with sepsis and SIRS. Endocrine Connection. 2 (3): 146–153.CrossRef Gariani, K., G. Drifte, I. Dunn-Siegrist, J. Pugin, and F.R. Jornayvaz. 2013. Increased FGF21 plasma levels in humans with sepsis and SIRS. Endocrine Connection. 2 (3): 146–153.CrossRef
2.
go back to reference Dreiher, J., Y. Almog, C.L. Sprung, et al. 2012. Temporal trends in patient characteristics and survival of intensive care admissions with sepsis: a multicenter analysis. Critical Care Medicine 40 (3): 855–860.CrossRefPubMed Dreiher, J., Y. Almog, C.L. Sprung, et al. 2012. Temporal trends in patient characteristics and survival of intensive care admissions with sepsis: a multicenter analysis. Critical Care Medicine 40 (3): 855–860.CrossRefPubMed
3.
go back to reference Longo, C.J., D.K. Heyland, H.N. Fisher, et al. 2007. A long-term follow-up study investigating health-related quality of life and resource use in survivors of severe sepsis: comparison of recombinant human activated protein C with standard care. Critical Care 11 (6): R128.CrossRefPubMedPubMedCentral Longo, C.J., D.K. Heyland, H.N. Fisher, et al. 2007. A long-term follow-up study investigating health-related quality of life and resource use in survivors of severe sepsis: comparison of recombinant human activated protein C with standard care. Critical Care 11 (6): R128.CrossRefPubMedPubMedCentral
4.
go back to reference Camporez, J.P., F.R. Jornayvaz, M. Petersen, D. Pesta, B.A. Guigni, J. Serr, D. Zhang, M. Kahn, V.T. Samuel, M.J. Jurczak, et al. 2013. Cellular mechanisms by which FGF21 improves insulin sensitivity in male mice. Endocrinology 154: 3099–3109.CrossRefPubMedPubMedCentral Camporez, J.P., F.R. Jornayvaz, M. Petersen, D. Pesta, B.A. Guigni, J. Serr, D. Zhang, M. Kahn, V.T. Samuel, M.J. Jurczak, et al. 2013. Cellular mechanisms by which FGF21 improves insulin sensitivity in male mice. Endocrinology 154: 3099–3109.CrossRefPubMedPubMedCentral
5.
go back to reference Coskun, T., H.A. Bina, M.A. Schneider, J.D. Dunbar, C.C. Hu, Y. Chen, D.E. Moller, and A. Kharitonenkov. 2008. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 149: 6018–6027.CrossRefPubMed Coskun, T., H.A. Bina, M.A. Schneider, J.D. Dunbar, C.C. Hu, Y. Chen, D.E. Moller, and A. Kharitonenkov. 2008. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 149: 6018–6027.CrossRefPubMed
6.
go back to reference Kharitonenkov, A., T.L. Shiyanova, A. Koester, A.M. Ford, R. Micanovic, E.J. Galbreath, G.E. Sandusky, L.J. Hammond, J.S. Moyers, R.A. Owens, et al. 2005. FGF-21 as a novel metabolic regulator. Journal of Clinical Investigation 115: 1627–1635.CrossRefPubMedPubMedCentral Kharitonenkov, A., T.L. Shiyanova, A. Koester, A.M. Ford, R. Micanovic, E.J. Galbreath, G.E. Sandusky, L.J. Hammond, J.S. Moyers, R.A. Owens, et al. 2005. FGF-21 as a novel metabolic regulator. Journal of Clinical Investigation 115: 1627–1635.CrossRefPubMedPubMedCentral
7.
go back to reference Kharitonenkov, A., V.J. Wroblewski, A. Koester, Y.F. Chen, C.K. Clutinger, X.T. Tigno, B.C. Hansen, A.B. Shanafelt, and G.J. Etgen. 2007. The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21. Endocrinology 148: 774–781.CrossRefPubMed Kharitonenkov, A., V.J. Wroblewski, A. Koester, Y.F. Chen, C.K. Clutinger, X.T. Tigno, B.C. Hansen, A.B. Shanafelt, and G.J. Etgen. 2007. The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21. Endocrinology 148: 774–781.CrossRefPubMed
8.
9.
go back to reference Feingold, Kenneth R., Carl Grunfeld, Josef G. Heuer, Akanksha Gupta, Martin Cramer, Tonghai Zhang, et al. 2012. FGF21 is increased by inflammatory stimuli and protects leptin-deficient ob/ob mice from the toxicity of sepsis. Endocrinology 153 (6): 2689–2700.CrossRefPubMedPubMedCentral Feingold, Kenneth R., Carl Grunfeld, Josef G. Heuer, Akanksha Gupta, Martin Cramer, Tonghai Zhang, et al. 2012. FGF21 is increased by inflammatory stimuli and protects leptin-deficient ob/ob mice from the toxicity of sepsis. Endocrinology 153 (6): 2689–2700.CrossRefPubMedPubMedCentral
10.
go back to reference Johnson, C.L., J.Y. Weston, S.A. Chadi, E.N. Fazio, M.W. Huff, A. Kharitonenkov, et al. 2009. Fibroblast growth factor 21 reduces the severity of cerulein-induced pancreatitis in mice. Gastroenterology 137: 1795–1804.CrossRefPubMed Johnson, C.L., J.Y. Weston, S.A. Chadi, E.N. Fazio, M.W. Huff, A. Kharitonenkov, et al. 2009. Fibroblast growth factor 21 reduces the severity of cerulein-induced pancreatitis in mice. Gastroenterology 137: 1795–1804.CrossRefPubMed
11.
go back to reference Li, S.M., W.F. Wang, L.H. Zhou, L. Ma, Y. An, W.J. Xu, T.H. Li, Y.H. Yu, D.S. Li, and Y. Liu. 2014, 2014. Fibroblast growth factor 21 expressions in white blood cells and sera of patients with gestational diabetes mellitus during gestation and postpartum. Endocrine. https://doi.org/10.1007/s12020-014-0309-8. Li, S.M., W.F. Wang, L.H. Zhou, L. Ma, Y. An, W.J. Xu, T.H. Li, Y.H. Yu, D.S. Li, and Y. Liu. 2014, 2014. Fibroblast growth factor 21 expressions in white blood cells and sera of patients with gestational diabetes mellitus during gestation and postpartum. Endocrine. https://​doi.​org/​10.​1007/​s12020-014-0309-8.
12.
13.
go back to reference Koch, L., D. Frommhold, K. Buschmann, et al. 2014, 2014. LPS-and LTA-induced expression of IL-6 and TNF-α in neonatal and adult blood: role of MAPKs and NF-κB. Mediators of Inflammation. Koch, L., D. Frommhold, K. Buschmann, et al. 2014, 2014. LPS-and LTA-induced expression of IL-6 and TNF-α in neonatal and adult blood: role of MAPKs and NF-κB. Mediators of Inflammation.
14.
go back to reference Kim, H.J., J. Hart, N. Knatz, et al. 2004. Janus kinase 3 down-regulates lipopolysaccharide-induced IL-1 beta-converting enzyme activation by autocrine IL-10[J]. Journal of Immunology 172 (8): 4948–4955.CrossRef Kim, H.J., J. Hart, N. Knatz, et al. 2004. Janus kinase 3 down-regulates lipopolysaccharide-induced IL-1 beta-converting enzyme activation by autocrine IL-10[J]. Journal of Immunology 172 (8): 4948–4955.CrossRef
15.
go back to reference Cao, Z., M. Tanaka, C. Regnier, et al. 1999. NF-κB activation by tumor necrosis factor and interleukin-1[J]. Cold Spring Harbor Symposia on Quantitative Biology 64 (1): 473–484.CrossRefPubMed Cao, Z., M. Tanaka, C. Regnier, et al. 1999. NF-κB activation by tumor necrosis factor and interleukin-1[J]. Cold Spring Harbor Symposia on Quantitative Biology 64 (1): 473–484.CrossRefPubMed
16.
go back to reference Jacobs, R.F., D.R. Tabor, A.W. Burks, et al. 1989. Elevated interleukin-1 release by human alveolar macrophages during the adult respiratory distress syndrome[J]. American Review of Respiratory Disease 140 (6): 1686–1692.CrossRefPubMed Jacobs, R.F., D.R. Tabor, A.W. Burks, et al. 1989. Elevated interleukin-1 release by human alveolar macrophages during the adult respiratory distress syndrome[J]. American Review of Respiratory Disease 140 (6): 1686–1692.CrossRefPubMed
17.
go back to reference Siler, T.M., J.E. Swierkosz, T.M. Hyers, et al. 2009. Immunoreactive interleukin-1 in bronchoalveolar lavage fluid of high-risk patients and patients with the adult respiratory distress syndrome[J]. Experimental Lung Research 15 (6): 881–894.CrossRef Siler, T.M., J.E. Swierkosz, T.M. Hyers, et al. 2009. Immunoreactive interleukin-1 in bronchoalveolar lavage fluid of high-risk patients and patients with the adult respiratory distress syndrome[J]. Experimental Lung Research 15 (6): 881–894.CrossRef
18.
go back to reference Kowluru, R.A., Q. Zhong, J.M. Santos, et al. 2014. Beneficial effects of the nutritional supplements on the development of diabetic retinopathy[J]. Nutrition and Metabolism 11 (1): 8.CrossRefPubMedPubMedCentral Kowluru, R.A., Q. Zhong, J.M. Santos, et al. 2014. Beneficial effects of the nutritional supplements on the development of diabetic retinopathy[J]. Nutrition and Metabolism 11 (1): 8.CrossRefPubMedPubMedCentral
19.
go back to reference Lee, M.S., S.E. Choi, E.S. Ha, et al. 2012. Fibroblast growth factor-21 protects human skeletal muscle myotubes from palmitate-induced insulin resistance by inhibiting stress kinase and NF-κB[J]. Metabolism 61 (8): 1142–1151.CrossRefPubMed Lee, M.S., S.E. Choi, E.S. Ha, et al. 2012. Fibroblast growth factor-21 protects human skeletal muscle myotubes from palmitate-induced insulin resistance by inhibiting stress kinase and NF-κB[J]. Metabolism 61 (8): 1142–1151.CrossRefPubMed
20.
go back to reference Yu, Y., F. Bai, W. Wang, et al. 2015. Fibroblast growth factor 21 protects mouse brain against d-galactose induced aging via suppression of oxidative stress response and advanced glycation end products formation.[J]. Pharmacology, Biochemistry, and Behavior 133 (1): 122.CrossRefPubMed Yu, Y., F. Bai, W. Wang, et al. 2015. Fibroblast growth factor 21 protects mouse brain against d-galactose induced aging via suppression of oxidative stress response and advanced glycation end products formation.[J]. Pharmacology, Biochemistry, and Behavior 133 (1): 122.CrossRefPubMed
21.
go back to reference Robertson, S.A., R.J. Skinner, and A.S. Care. 2006. Essential role for IL-10 in resistance to lipopolysaccharide-induced preterm labor in mice[J]. Journal of Immunology 177 (7): 4888–4896.CrossRef Robertson, S.A., R.J. Skinner, and A.S. Care. 2006. Essential role for IL-10 in resistance to lipopolysaccharide-induced preterm labor in mice[J]. Journal of Immunology 177 (7): 4888–4896.CrossRef
22.
go back to reference Guarda, G., M. Braun, F. Staehli, et al. 2011. Type I interferon inhibits interleukin-1 production and inflammasome activation[J]. Immunity 34 (2): 213–223.CrossRefPubMed Guarda, G., M. Braun, F. Staehli, et al. 2011. Type I interferon inhibits interleukin-1 production and inflammasome activation[J]. Immunity 34 (2): 213–223.CrossRefPubMed
23.
go back to reference Saraiva, Margarida, and Anne O’Garra. 2010. The regulation of IL-10 production by immune cells[J]. Nature Reviews Immunology 10 (3): 170.CrossRefPubMed Saraiva, Margarida, and Anne O’Garra. 2010. The regulation of IL-10 production by immune cells[J]. Nature Reviews Immunology 10 (3): 170.CrossRefPubMed
24.
go back to reference Lin, X.L., X.L. He, J.F. Zeng, et al. 2014. FGF21 increases cholesterol efflux by upregulating ABCA1 through the ERK1/2-PPARγ-LXRα pathway in THP1 macrophage-derived foam cells[J]. DNA and Cell Biology 33 (8): 514–521.CrossRefPubMed Lin, X.L., X.L. He, J.F. Zeng, et al. 2014. FGF21 increases cholesterol efflux by upregulating ABCA1 through the ERK1/2-PPARγ-LXRα pathway in THP1 macrophage-derived foam cells[J]. DNA and Cell Biology 33 (8): 514–521.CrossRefPubMed
Metadata
Title
FGF-21 Elevated IL-10 Production to Correct LPS-Induced Inflammation
Authors
Jun-yan Li
Nan Wang
Mir Hassan Khoso
Cheng-bin Shen
Meng-ze Guo
Xin-xin Pang
De-shan Li
Wen-fei Wang
Publication date
01-06-2018
Publisher
Springer US
Published in
Inflammation / Issue 3/2018
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-018-0729-3

Other articles of this Issue 3/2018

Inflammation 3/2018 Go to the issue