Skip to main content
Top
Published in: Inflammation 3/2018

01-06-2018 | ORIGINAL ARTICLE

GTS-21 Protected Against LPS-Induced Sepsis Myocardial Injury in Mice Through α7nAChR

Authors: Weilan Kong, Kai Kang, Yang Gao, Haitao Liu, Xianglin Meng, Yanhui Cao, Songliu Yang, Wen Liu, Jiannan Zhang, Kaijiang Yu, Mingyan Zhao

Published in: Inflammation | Issue 3/2018

Login to get access

Abstract

Sepsis-induced myocardial injury is a well-known cause of mortality. The cholinergic anti-inflammatory pathway (CHAIP) is a physiological mechanism by which the central nervous system regulates immune response through the vagus nerve and acetylcholine; the α7-nicotinic acetylcholine receptor (α7nAChR) is the main component of CHAIP; GTS-21, a synthetic α7nAChR selective agonist, has repeatedly shown its powerful anti-inflammatory effect. However, little is known about its effect on LPS-induced myocardial injury. We investigated the protective effects of GTS-21 on lipopolysaccharide (LPS)-induced cardiomyopathy via the cholinergic anti-inflammatory pathway in a mouse sepsis model. We constructed the model of myocardial injury in sepsis mice by C57BL/6 using LPS and determined the time of LPS treatment by hematoxylin-eosin (HE) and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL). C57BL/6 mice were randomized into five groups: blank control group, model group, α-bungarotoxin + LPS group, GTS-21 + LPS group, and α-bungarotoxin + GTS-21 + LPS group. The pathological results of myocardial tissue were detected by the HE method; the apoptosis rate was detected by the TUNEL method; the relative expressions of NF-κB p65, Caspase-3, Caspase-8, Bcl-2, Bax, p53, and a7nAChR were detected by real-time quantitative PCR (RT-PCR); and the protein expressions of IL-6, IL-1 β, TNF-α, and pSTAT3 were detected by western blot. The results showed that LPS-induced myocardial pathological and apoptosis changes were significant compared with the blank group, which was reversed by GTS-21; however, pretreatment with α-bungarotoxin obviously blocked the protective effect of GTS-21. NF-κB p65, Caspase-3, Caspase-8, Bax, p53, IL-6, IL-1β, TNF-α, and pSTAT3 were significantly increased in the model group, while a7nAChR and Bcl-2 were significantly decreased; GTS-21 treatment reversed that result, while pretreatment with α-bungarotoxin strengthened the result in the model. And pretreatment with α-bungarotoxin blocked the protective effect of GTS-21. GTS-21 can alleviate the LPS-induced damage in the heart via a7nAChR, and pretreatment with α-bungarotoxin obviously blocked the protective effect of GTS-21 on sepsis in mice.
Literature
1.
go back to reference Fleischmann, C., A. Scherag, N.K. Adhikari, C.S. Hartog, T. Tsaganos, P. Schlattmann, D.C. Angus, and K. Reinhart. 2016. Assessment of global incidence and mortality of hospital-treated sepsis—current estimates and limitations. American Journal of Respiratory & Critical Care Medicine 193 (3): 259.CrossRef Fleischmann, C., A. Scherag, N.K. Adhikari, C.S. Hartog, T. Tsaganos, P. Schlattmann, D.C. Angus, and K. Reinhart. 2016. Assessment of global incidence and mortality of hospital-treated sepsis—current estimates and limitations. American Journal of Respiratory & Critical Care Medicine 193 (3): 259.CrossRef
2.
go back to reference Weber, G.F., B.G. Chousterman, S. He, A.M. Fenn, M. Nairz, A. Anzai, T. Brenner, F. Uhle, Y. Iwamoto, and C.S. Robbins. 2015. Interleukin-3 amplifies acute inflammation and is a potential therapeutic target in sepsis. Science 347 (6227): 1260–1265.CrossRefPubMedPubMedCentral Weber, G.F., B.G. Chousterman, S. He, A.M. Fenn, M. Nairz, A. Anzai, T. Brenner, F. Uhle, Y. Iwamoto, and C.S. Robbins. 2015. Interleukin-3 amplifies acute inflammation and is a potential therapeutic target in sepsis. Science 347 (6227): 1260–1265.CrossRefPubMedPubMedCentral
3.
go back to reference Liu, A., W. Wang, H. Fang, Y. Yang, X. Jiang, S. Liu, J. Hu, Q. Hu, U. Dahmen, and O. Dirsch. 2015. Baicalein protects against polymicrobial sepsis-induced liver injury via inhibition of inflammation and apoptosis in mice. European Journal of Pharmacology 748: 45–53.CrossRefPubMed Liu, A., W. Wang, H. Fang, Y. Yang, X. Jiang, S. Liu, J. Hu, Q. Hu, U. Dahmen, and O. Dirsch. 2015. Baicalein protects against polymicrobial sepsis-induced liver injury via inhibition of inflammation and apoptosis in mice. European Journal of Pharmacology 748: 45–53.CrossRefPubMed
4.
go back to reference Petronilho, F., S.R. Périco, F. Vuolo, F. Mina, L. Constantino, C.M. Comim, J. Quevedo, D.O. Souza, and F. Dalpizzol. 2012. Protective effects of guanosine against sepsis-induced damage in rat brain and cognitive impairment. Brain Behavior & Immunity 26 (6): 904.CrossRef Petronilho, F., S.R. Périco, F. Vuolo, F. Mina, L. Constantino, C.M. Comim, J. Quevedo, D.O. Souza, and F. Dalpizzol. 2012. Protective effects of guanosine against sepsis-induced damage in rat brain and cognitive impairment. Brain Behavior & Immunity 26 (6): 904.CrossRef
5.
go back to reference Silva, P.L., F.F. Cruz, L.C. Fujisaki, G.P. Oliveira, C.S. Samary, D.S. Ornellas, T. Marongutierrez, N.N. Rocha, R. Goldenberg, and C.S. Garcia. 2010. Hypervolemia induces and potentiates lung damage after recruitment maneuver in a model of sepsis-induced acute lung injury. Critical Care 14 (3): R114.CrossRefPubMedPubMedCentral Silva, P.L., F.F. Cruz, L.C. Fujisaki, G.P. Oliveira, C.S. Samary, D.S. Ornellas, T. Marongutierrez, N.N. Rocha, R. Goldenberg, and C.S. Garcia. 2010. Hypervolemia induces and potentiates lung damage after recruitment maneuver in a model of sepsis-induced acute lung injury. Critical Care 14 (3): R114.CrossRefPubMedPubMedCentral
6.
go back to reference Sordi, R., D. Fernandes, B.T. Heckert, and J. Assreuy. 2011. Early potassium channel blockade improves sepsis-induced organ damage and cardiovascular dysfunction. British Journal of Pharmacology 163 (6): 1289–1301.CrossRefPubMedPubMedCentral Sordi, R., D. Fernandes, B.T. Heckert, and J. Assreuy. 2011. Early potassium channel blockade improves sepsis-induced organ damage and cardiovascular dysfunction. British Journal of Pharmacology 163 (6): 1289–1301.CrossRefPubMedPubMedCentral
7.
go back to reference Fattahi, F., M. Kalbitz, E.A. Malan, E. Abe, L. Jajou, M.S. Huber-Lang, M. Bosmann, M.W. Russell, F.S. Zetoune, and P.A. Ward. 2017. Complement-induced activation of MAPKs and Akt during sepsis: role in cardiac dysfunction. Faseb Journal Official Publication of the Federation of American Societies for Experimental Biology 31 (9): 4129–4139.CrossRefPubMedPubMedCentral Fattahi, F., M. Kalbitz, E.A. Malan, E. Abe, L. Jajou, M.S. Huber-Lang, M. Bosmann, M.W. Russell, F.S. Zetoune, and P.A. Ward. 2017. Complement-induced activation of MAPKs and Akt during sepsis: role in cardiac dysfunction. Faseb Journal Official Publication of the Federation of American Societies for Experimental Biology 31 (9): 4129–4139.CrossRefPubMedPubMedCentral
8.
go back to reference Dal-Secco, D., S. DalBó, N.E.S. Lautherbach, F.N. Gava, M.R.N. Celes, P.O. Benedet, A.H. Souza, J. Akinaga, V. Lima, K.P. Silva, et al. 2017. Cardiac hyporesponsiveness in severe sepsis is associated with nitric oxide-dependent activation of G-protein receptor kinase. American Journal of Physiology - Heart and Circulatory Physiology 313 (1): H149–H163.CrossRefPubMed Dal-Secco, D., S. DalBó, N.E.S. Lautherbach, F.N. Gava, M.R.N. Celes, P.O. Benedet, A.H. Souza, J. Akinaga, V. Lima, K.P. Silva, et al. 2017. Cardiac hyporesponsiveness in severe sepsis is associated with nitric oxide-dependent activation of G-protein receptor kinase. American Journal of Physiology - Heart and Circulatory Physiology 313 (1): H149–H163.CrossRefPubMed
9.
go back to reference Feng, H., J. Chen, H. Wang, Y. Cheng, Z. Zou, Q. Zhong, and J. Xu. 2017. Roflumilast reverses polymicrobial sepsis-induced liver damage by inhibiting inflammation in mice. Laboratory Investigation 97 (9): 1008–1019.CrossRefPubMed Feng, H., J. Chen, H. Wang, Y. Cheng, Z. Zou, Q. Zhong, and J. Xu. 2017. Roflumilast reverses polymicrobial sepsis-induced liver damage by inhibiting inflammation in mice. Laboratory Investigation 97 (9): 1008–1019.CrossRefPubMed
10.
go back to reference Yu, C., P. Li, D. Qi, L. Wang, H.L. Qu, Y.J. Zhang, X.K. Wang, and H.Y. Fan. 2017. Osthole protects sepsis-induced acute kidney injury via down-regulating NF-κB signal pathway. Oncotarget 8 (3): 4796–4813.PubMed Yu, C., P. Li, D. Qi, L. Wang, H.L. Qu, Y.J. Zhang, X.K. Wang, and H.Y. Fan. 2017. Osthole protects sepsis-induced acute kidney injury via down-regulating NF-κB signal pathway. Oncotarget 8 (3): 4796–4813.PubMed
11.
go back to reference Baghel, K., R.N. Srivastava, A. Chandra, S.K. Goel, J. Agrawal, H.R. Kazmi, and S. Raj. 2014. TNF-α, IL-6, and IL-8 cytokines and their association with TNF-α-308 G/a polymorphism and postoperative sepsis. Journal of Gastrointestinal Surgery 18 (8): 1486–1494.CrossRefPubMed Baghel, K., R.N. Srivastava, A. Chandra, S.K. Goel, J. Agrawal, H.R. Kazmi, and S. Raj. 2014. TNF-α, IL-6, and IL-8 cytokines and their association with TNF-α-308 G/a polymorphism and postoperative sepsis. Journal of Gastrointestinal Surgery 18 (8): 1486–1494.CrossRefPubMed
12.
go back to reference Wu, H., J. Liu, W. Li, G. Liu, and Z. Li. 2016. LncRNA-HOTAIR promotes TNF-α production in cardiomyocytes of LPS-induced sepsis mice by activating NF-κB pathway. Biochemical & Biophysical Research Communications 471 (1): 240–246.CrossRef Wu, H., J. Liu, W. Li, G. Liu, and Z. Li. 2016. LncRNA-HOTAIR promotes TNF-α production in cardiomyocytes of LPS-induced sepsis mice by activating NF-κB pathway. Biochemical & Biophysical Research Communications 471 (1): 240–246.CrossRef
13.
go back to reference Duris, K., J. Lipkova, and M. Jurajda. 2017. Cholinergic anti-inflammatory pathway and stroke. Current Drug Delivery 14 (4): 449–457.CrossRefPubMed Duris, K., J. Lipkova, and M. Jurajda. 2017. Cholinergic anti-inflammatory pathway and stroke. Current Drug Delivery 14 (4): 449–457.CrossRefPubMed
14.
go back to reference Treinin, M., R.L. Papke, E. Nizri, Y. Ben-David, T. Mizrachi, and T. Brenner. 2016. Role of the α7 nicotinic acetylcholine receptor and RIC-3 in the cholinergic anti-inflammatory pathway. Central Nervous System Agents in Medicinal Chemistry 16 (999): 1–9. Treinin, M., R.L. Papke, E. Nizri, Y. Ben-David, T. Mizrachi, and T. Brenner. 2016. Role of the α7 nicotinic acetylcholine receptor and RIC-3 in the cholinergic anti-inflammatory pathway. Central Nervous System Agents in Medicinal Chemistry 16 (999): 1–9.
15.
go back to reference Altavilla, D., S. Guarini, A. Bitto, C. Mioni, D. Giuliani, A. Bigiani, G. Squadrito, L. Minutoli, F.S. Venuti, and F. Messineo. 2006. Activation of the cholinergic anti-inflammatory pathway reduces NF-kappab activation, blunts TNF-alpha production, and protects againts splanchic artery occlusion shock. Shock 25 (5): 500–506.CrossRefPubMed Altavilla, D., S. Guarini, A. Bitto, C. Mioni, D. Giuliani, A. Bigiani, G. Squadrito, L. Minutoli, F.S. Venuti, and F. Messineo. 2006. Activation of the cholinergic anti-inflammatory pathway reduces NF-kappab activation, blunts TNF-alpha production, and protects againts splanchic artery occlusion shock. Shock 25 (5): 500–506.CrossRefPubMed
16.
go back to reference Hoover, D.B. 2017. Cholinergic modulation of the immune system presents new approaches for treating inflammation. Pharmacology & Therapeutics 179: 1–16.CrossRef Hoover, D.B. 2017. Cholinergic modulation of the immune system presents new approaches for treating inflammation. Pharmacology & Therapeutics 179: 1–16.CrossRef
17.
go back to reference Bonaz, B., V. Sinniger, and S. Pellissier. 2016. Anti-inflammatory properties of the vagus nerve: potential therapeutic implications of vagus nerve stimulation. Journal of Physiology 594 (20): 5781.CrossRefPubMedPubMedCentral Bonaz, B., V. Sinniger, and S. Pellissier. 2016. Anti-inflammatory properties of the vagus nerve: potential therapeutic implications of vagus nerve stimulation. Journal of Physiology 594 (20): 5781.CrossRefPubMedPubMedCentral
18.
go back to reference Li, S., B. Zhou, B. Liu, Y. Zhou, H. Zhang, T. Li, and X. Zuo. 2016. Activation of the cholinergic anti-inflammatory system by nicotine attenuates arthritis via suppression of macrophage migration. Molecular Medicine Reports 14 (6):5057–5064.CrossRefPubMedPubMedCentral Li, S., B. Zhou, B. Liu, Y. Zhou, H. Zhang, T. Li, and X. Zuo. 2016. Activation of the cholinergic anti-inflammatory system by nicotine attenuates arthritis via suppression of macrophage migration. Molecular Medicine Reports 14 (6):5057–5064.CrossRefPubMedPubMedCentral
19.
go back to reference Bonaz, B., V. Sinniger, and S. Pellissier. 2016. Vagal tone: effects on sensitivity, motility, and inflammation. Neurogastroenterology & Motility the Official Journal of the European Gastrointestinal Motility Society 28 (4): 455–462.CrossRef Bonaz, B., V. Sinniger, and S. Pellissier. 2016. Vagal tone: effects on sensitivity, motility, and inflammation. Neurogastroenterology & Motility the Official Journal of the European Gastrointestinal Motility Society 28 (4): 455–462.CrossRef
20.
go back to reference Zhang, Rong, N. Wugeti, Juan Sun, Huang Yan, Yujun Guo, Ling Zhang, Mei Ma, Xingui Guo, Changan Jiao, Wenli Xu, Tianqi Li, Haili Liu, and Yitong Ma. 2014. Effects of vagus nerve stimulation via cholinergic anti-inflammatory pathway activation on myocardial ischemia/reperfusion injury in canine. International Journal of Clinical & Experimental Medicine 7 (9): 2615–2623. Zhang, Rong, N. Wugeti, Juan Sun, Huang Yan, Yujun Guo, Ling Zhang, Mei Ma, Xingui Guo, Changan Jiao, Wenli Xu, Tianqi Li, Haili Liu, and Yitong Ma. 2014. Effects of vagus nerve stimulation via cholinergic anti-inflammatory pathway activation on myocardial ischemia/reperfusion injury in canine. International Journal of Clinical & Experimental Medicine 7 (9): 2615–2623.
21.
go back to reference Shinlapawittayatorn, K., K. Chinda, S. Palee, S. Surinkaew, K. Thunsiri, P. Weerateerangkul, S. Chattipakorn, B.H. Kenknight, and N. Chattipakorn. 2013. Low-amplitude, left vagus nerve stimulation significantly attenuates ventricular dysfunction and infarct size through prevention of mitochondrial dysfunction during acute ischemia-reperfusion injury. Heart Rhythm 10 (11): 1700–1707.CrossRefPubMed Shinlapawittayatorn, K., K. Chinda, S. Palee, S. Surinkaew, K. Thunsiri, P. Weerateerangkul, S. Chattipakorn, B.H. Kenknight, and N. Chattipakorn. 2013. Low-amplitude, left vagus nerve stimulation significantly attenuates ventricular dysfunction and infarct size through prevention of mitochondrial dysfunction during acute ischemia-reperfusion injury. Heart Rhythm 10 (11): 1700–1707.CrossRefPubMed
22.
go back to reference Endo, M., M. Hori, H. Ozaki, T. Oikawa, and T. Hanawa. 2014. Daikenchuto, a traditional Japanese herbal medicine, ameliorates postoperative ileus by anti-inflammatory action through nicotinic acetylcholine receptors. Journal of Gastroenterology 49 (6): 1026–1039.CrossRefPubMed Endo, M., M. Hori, H. Ozaki, T. Oikawa, and T. Hanawa. 2014. Daikenchuto, a traditional Japanese herbal medicine, ameliorates postoperative ileus by anti-inflammatory action through nicotinic acetylcholine receptors. Journal of Gastroenterology 49 (6): 1026–1039.CrossRefPubMed
23.
go back to reference Li, Y., and X. Shi. 2013. Anti-inflammatory effects of Kupffer cells through α7-nicotinic acetylcholine receptors. Critical Care 17 (Suppl 2): P7–P7.CrossRefPubMedCentral Li, Y., and X. Shi. 2013. Anti-inflammatory effects of Kupffer cells through α7-nicotinic acetylcholine receptors. Critical Care 17 (Suppl 2): P7–P7.CrossRefPubMedCentral
24.
go back to reference Lisha, G., C. Xingxing, W. Lianpin, Z. Depu, L. Xiaowei, L. Jiafeng, and L. Yuechun. 2017. Right cervical vagotomy aggravates viral myocarditis in mice via the cholinergic anti-inflammatory pathway. Frontiers in Pharmacology 8: 25. Lisha, G., C. Xingxing, W. Lianpin, Z. Depu, L. Xiaowei, L. Jiafeng, and L. Yuechun. 2017. Right cervical vagotomy aggravates viral myocarditis in mice via the cholinergic anti-inflammatory pathway. Frontiers in Pharmacology 8: 25.
25.
go back to reference Khan, M.A., M. Farkhondeh, J. Crombie, L. Jacobson, M. Kaneki, and J.A. Martyn. 2012. Lipopolysaccharide upregulates α7 acetylcholine receptors: stimulation with GTS-21 mitigates growth arrest of macrophages and improves survival in burned mice. Shock 38 (2): 213.CrossRefPubMedPubMedCentral Khan, M.A., M. Farkhondeh, J. Crombie, L. Jacobson, M. Kaneki, and J.A. Martyn. 2012. Lipopolysaccharide upregulates α7 acetylcholine receptors: stimulation with GTS-21 mitigates growth arrest of macrophages and improves survival in burned mice. Shock 38 (2): 213.CrossRefPubMedPubMedCentral
26.
go back to reference Kashiwagi, S., M.A. Khan, S. Yasuhara, T. Goto, W.R. Kem, R.G. Tompkins, M. Kaneki, and J.A. Martyn. 2017. Prevention of burn-induced inflammatory responses and muscle wasting by GTS-21, a specific agonist for α7 nicotinic acetylcholine receptors. Shock 47 (1): 61.CrossRefPubMedPubMedCentral Kashiwagi, S., M.A. Khan, S. Yasuhara, T. Goto, W.R. Kem, R.G. Tompkins, M. Kaneki, and J.A. Martyn. 2017. Prevention of burn-induced inflammatory responses and muscle wasting by GTS-21, a specific agonist for α7 nicotinic acetylcholine receptors. Shock 47 (1): 61.CrossRefPubMedPubMedCentral
27.
go back to reference Pavlov, Valentin A., Mahendar Ochani, LiHong Yang, Margot Gallowitsch-Puerta, and Kanta Ochani. 2007. Selective alpha7-nicotinic acetylcholine receptor agonist GTS-21 improves survival in murine endotoxemia and severe sepsis*. Critical Care Medicine 35 (35): 1139–1144.CrossRefPubMed Pavlov, Valentin A., Mahendar Ochani, LiHong Yang, Margot Gallowitsch-Puerta, and Kanta Ochani. 2007. Selective alpha7-nicotinic acetylcholine receptor agonist GTS-21 improves survival in murine endotoxemia and severe sepsis*. Critical Care Medicine 35 (35): 1139–1144.CrossRefPubMed
28.
go back to reference Yue, Y., R. Liu, W. Cheng, Y. Hu, J. Li, X. Pan, J. Peng, and P. Zhang. 2015. GTS-21 attenuates lipopolysaccharide-induced inflammatory cytokine production in vitro by modulating the Akt and NF-κB signaling pathway through the α7 nicotinic acetylcholine receptor. International Immunopharmacology 29 (2): 504.CrossRefPubMed Yue, Y., R. Liu, W. Cheng, Y. Hu, J. Li, X. Pan, J. Peng, and P. Zhang. 2015. GTS-21 attenuates lipopolysaccharide-induced inflammatory cytokine production in vitro by modulating the Akt and NF-κB signaling pathway through the α7 nicotinic acetylcholine receptor. International Immunopharmacology 29 (2): 504.CrossRefPubMed
29.
30.
go back to reference Kempsill, F.E., P.J. Covernton, P.J. Whiting, and J.G. Connolly. 1999. Agonist activation and alpha-bungarotoxin inhibition of wild type and mutant alpha7 nicotinic acetylcholine receptors. European Journal of Pharmacology 383 (3): 347–359.CrossRefPubMed Kempsill, F.E., P.J. Covernton, P.J. Whiting, and J.G. Connolly. 1999. Agonist activation and alpha-bungarotoxin inhibition of wild type and mutant alpha7 nicotinic acetylcholine receptors. European Journal of Pharmacology 383 (3): 347–359.CrossRefPubMed
31.
go back to reference Wu, S., H. Zhao, H. Luo, X. Xiao, H. Zhang, T. Li, and X. Zuo. 2014. GTS-21, an α7-nicotinic acetylcholine receptor agonist, modulates Th1 differentiation in CD4(+) T cells from patients with rheumatoid arthritis. Experimental & Therapeutic Medicine 8 (2): 557–562.CrossRef Wu, S., H. Zhao, H. Luo, X. Xiao, H. Zhang, T. Li, and X. Zuo. 2014. GTS-21, an α7-nicotinic acetylcholine receptor agonist, modulates Th1 differentiation in CD4(+) T cells from patients with rheumatoid arthritis. Experimental & Therapeutic Medicine 8 (2): 557–562.CrossRef
32.
go back to reference Xianchu, L., P.Z. Lan, L. Qiufang, L. Yi, R. Xiangcheng, H. Wenqi, and D. Yang. 2016. Naringin protects against lipopolysaccharide-induced cardiac injury in mice. Environmental Toxicology and Pharmacology 48: 1–6.CrossRefPubMed Xianchu, L., P.Z. Lan, L. Qiufang, L. Yi, R. Xiangcheng, H. Wenqi, and D. Yang. 2016. Naringin protects against lipopolysaccharide-induced cardiac injury in mice. Environmental Toxicology and Pharmacology 48: 1–6.CrossRefPubMed
33.
go back to reference Niu, J., K. Wang, S. Graham, A. Azfer, and P.E. Kolattukudy. 2011. MCP-1-induced protein attenuates endotoxin-induced myocardial dysfunction by suppressing cardiac NF-кB activation via inhibition of IкB kinase activation. Journal of Molecular and Cellular Cardiology 51 (2): 177–186.CrossRefPubMed Niu, J., K. Wang, S. Graham, A. Azfer, and P.E. Kolattukudy. 2011. MCP-1-induced protein attenuates endotoxin-induced myocardial dysfunction by suppressing cardiac NF-кB activation via inhibition of IкB kinase activation. Journal of Molecular and Cellular Cardiology 51 (2): 177–186.CrossRefPubMed
34.
go back to reference Wang, Z., Q. Wu, X. Nie, J. Guo, and C. Yang. 2015. Infusion of esmolol attenuates LPS-induced myocardial dysfunction. J Surg Res 200 (1): 283–289.CrossRefPubMed Wang, Z., Q. Wu, X. Nie, J. Guo, and C. Yang. 2015. Infusion of esmolol attenuates LPS-induced myocardial dysfunction. J Surg Res 200 (1): 283–289.CrossRefPubMed
35.
go back to reference Jung, J.Y., Y.H. Kwak, I. Chang, W.Y. Kwon, G.J. Suh, and D. Choi. 2017. Protective effect of hemopexin on systemic inflammation and acute lung injury in an endotoxemia model. Journal of Surgical Research 212: 15.CrossRefPubMed Jung, J.Y., Y.H. Kwak, I. Chang, W.Y. Kwon, G.J. Suh, and D. Choi. 2017. Protective effect of hemopexin on systemic inflammation and acute lung injury in an endotoxemia model. Journal of Surgical Research 212: 15.CrossRefPubMed
36.
go back to reference Genga, K.R., and J.A. Russell. 2017. Update of sepsis in the intensive care unit. Innate Immunity 9 (5): 441–455.CrossRef Genga, K.R., and J.A. Russell. 2017. Update of sepsis in the intensive care unit. Innate Immunity 9 (5): 441–455.CrossRef
37.
go back to reference Hotchkiss, R.S., and I.E. Karl. 2003. The pathophysiology and treatment of sepsis. New England Journal of Medicine 348 (2): 138.CrossRefPubMed Hotchkiss, R.S., and I.E. Karl. 2003. The pathophysiology and treatment of sepsis. New England Journal of Medicine 348 (2): 138.CrossRefPubMed
38.
go back to reference Dal-Secco, D., S. Dalbó, L. Nes, F.N. Gava, C. Mrn, P.O. Benedet, A.H. Souza, J. Akinaga, V. Lima, and K.P. Silva. 2017. Cardiac hyporesponsiveness in severe sepsis is associated with nitric oxide-dependent activation of G-protein receptor kinase. Ajp Heart & Circulatory Physiology. https://doi.org/10.1152/ajpheart.00052.2016. Dal-Secco, D., S. Dalbó, L. Nes, F.N. Gava, C. Mrn, P.O. Benedet, A.H. Souza, J. Akinaga, V. Lima, and K.P. Silva. 2017. Cardiac hyporesponsiveness in severe sepsis is associated with nitric oxide-dependent activation of G-protein receptor kinase. Ajp Heart & Circulatory Physiology. https://​doi.​org/​10.​1152/​ajpheart.​00052.​2016.
39.
go back to reference Zanotticavazzoni, S.L., and S.M. Hollenberg. 2009. Cardiac dysfunction in severe sepsis and septic shock. Current Opinion in Critical Care 15 (5): 392.CrossRef Zanotticavazzoni, S.L., and S.M. Hollenberg. 2009. Cardiac dysfunction in severe sepsis and septic shock. Current Opinion in Critical Care 15 (5): 392.CrossRef
40.
go back to reference Nevière, R., H. Fauvel, C. Chopin, P. Formstecher, and P. Marchetti. 2001. Caspase inhibition prevents cardiac dysfunction and heart apoptosis in a rat model of sepsis. American Journal of Respiratory & Critical Care Medicine 163 (1): 218.CrossRef Nevière, R., H. Fauvel, C. Chopin, P. Formstecher, and P. Marchetti. 2001. Caspase inhibition prevents cardiac dysfunction and heart apoptosis in a rat model of sepsis. American Journal of Respiratory & Critical Care Medicine 163 (1): 218.CrossRef
41.
go back to reference Zaky, A., S. Deem, K. Bendjelid, and M.M. Treggiari. 2014. Characterization of cardiac dysfunction in sepsis: an ongoing challenge. Shock 41 (1): 12–24.CrossRefPubMed Zaky, A., S. Deem, K. Bendjelid, and M.M. Treggiari. 2014. Characterization of cardiac dysfunction in sepsis: an ongoing challenge. Shock 41 (1): 12–24.CrossRefPubMed
42.
go back to reference Rossi, M.A., M.R. Celes, C.M. Prado, and F.P. Saggioro. 2007. Myocardial structural changes in long-term human severe sepsis/septic shock may be responsible for cardiac dysfunction. Heart Lung & Circulation 27 (1): 10. Rossi, M.A., M.R. Celes, C.M. Prado, and F.P. Saggioro. 2007. Myocardial structural changes in long-term human severe sepsis/septic shock may be responsible for cardiac dysfunction. Heart Lung & Circulation 27 (1): 10.
43.
go back to reference Tan, Y., Q. Wang, Y. She, X. Bi, and B. Zhao. 2015. Ketamine reduces LPS-induced HMGB1 via activation of the Nrf2/HO-1 pathway and NF-κB suppression. Journal of Trauma & Acute Care Surgery 78 (4): 784–792.CrossRef Tan, Y., Q. Wang, Y. She, X. Bi, and B. Zhao. 2015. Ketamine reduces LPS-induced HMGB1 via activation of the Nrf2/HO-1 pathway and NF-κB suppression. Journal of Trauma & Acute Care Surgery 78 (4): 784–792.CrossRef
44.
go back to reference S S, D.L., Y.X. M B, L.W. W X, and Z.Q. Z W. 2016. Gx-50 inhibits neuroinflammation via α7 nAChR activation of the JAK2/STAT3 and PI3K/AKT pathways. Journal of Alzheimer's Disease 50 (3): 859–871.CrossRef S S, D.L., Y.X. M B, L.W. W X, and Z.Q. Z W. 2016. Gx-50 inhibits neuroinflammation via α7 nAChR activation of the JAK2/STAT3 and PI3K/AKT pathways. Journal of Alzheimer's Disease 50 (3): 859–871.CrossRef
45.
go back to reference Kox, M., J.C. Pompe, M.C. Gordinou de Gouberville, J.G. van der Hoeven, C.W. Hoedemaekers, and P. Pickkers. 2009. Effects of the alpha7nAChR Agonist GTS-21 on the Innate Immune Response in Humans. Shock 36 (1): 5–11.CrossRef Kox, M., J.C. Pompe, M.C. Gordinou de Gouberville, J.G. van der Hoeven, C.W. Hoedemaekers, and P. Pickkers. 2009. Effects of the alpha7nAChR Agonist GTS-21 on the Innate Immune Response in Humans. Shock 36 (1): 5–11.CrossRef
Metadata
Title
GTS-21 Protected Against LPS-Induced Sepsis Myocardial Injury in Mice Through α7nAChR
Authors
Weilan Kong
Kai Kang
Yang Gao
Haitao Liu
Xianglin Meng
Yanhui Cao
Songliu Yang
Wen Liu
Jiannan Zhang
Kaijiang Yu
Mingyan Zhao
Publication date
01-06-2018
Publisher
Springer US
Published in
Inflammation / Issue 3/2018
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-018-0759-x

Other articles of this Issue 3/2018

Inflammation 3/2018 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.