Skip to main content
Top
Published in: Inflammation 2/2018

01-03-2018 | ORIGINAL ARTICLE

Apolipoprotein M Protects Against Lipopolysaccharide-Induced Acute Lung Injury via Sphingosine-1-Phosphate Signaling

Authors: Bin Zhu, Guang-hua Luo, Yue-hua Feng, Miao-mei Yu, Jun Zhang, Jiang Wei, Chun Yang, Ning Xu, Xiao-ying Zhang

Published in: Inflammation | Issue 2/2018

Login to get access

Abstract

It had been demonstrated that apolipoprotein M (apoM) is an important carrier of sphingosine-1-phosphate (S1P) in blood, and the S1P has critical roles in the pathogenesis of sepsis-induced acute lung injury (ALI). In the present study, we investigated whether apoM has beneficial effects in a mouse model after lipopolysaccharide (LPS)-induced ALI. Forty-eight mice were divided into two groups: male C57BL/6 wild-type (apoM+/+) group (n = 24) and apoM gene-deficient (apoM−/−) group (n = 24) and then randomly subdivided into four subgroups (n = 6 each) according to different intraperitoneal (i.p.) injection: control group, W146 group, LPS group, and LPS + W146 group. Serum levels of interleukin-1 beta (IL-1β) and mRNA levels of IL-1β, interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), lung histology, wet/dry weight ratio, and immunohistochemistry were measured at 3 h after the baseline and compared in each group. Our results clearly demonstrated that IL-1β mRNA levels and other inflammatory biomarkers were significantly increased in the lungs of LPS-induced ALI apoM−/− mice compared to those of the apoM+/+ mice. Moreover, when apoM+/+ mice were treated with W146, a S1P receptor (S1PR1) antagonist, these inflammatory biomarkers could be significantly upregulated by LPS-induced ALI. Therefore, it suggests that apoM-S1P-S1PR1 signaling might underlie the pathogenesis of ALI and apoM could have physiological benefits to alleviate LPS-induced ALI.
Literature
1.
go back to reference Dellinger, R.P., M.M. Levy, A. Rhodes, D. Annane, H. Gerlach, S.M. Opal, J.E. Sevransky, C.L. Sprung, I.S. Douglas, R. Jaeschke, T.M. Osborn, M.E. Nunnally, S.R. Townsend, K. Reinhart, R.M. Kleinpell, D.C. Angus, C.S. Deutschman, F.R. Machado, G.D. Rubenfeld, S. Webb, R.J. Beale, J.L. Vincent, and R. Moreno. 2013. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Medicine 39 (2): 165–228.PubMedCrossRef Dellinger, R.P., M.M. Levy, A. Rhodes, D. Annane, H. Gerlach, S.M. Opal, J.E. Sevransky, C.L. Sprung, I.S. Douglas, R. Jaeschke, T.M. Osborn, M.E. Nunnally, S.R. Townsend, K. Reinhart, R.M. Kleinpell, D.C. Angus, C.S. Deutschman, F.R. Machado, G.D. Rubenfeld, S. Webb, R.J. Beale, J.L. Vincent, and R. Moreno. 2013. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Medicine 39 (2): 165–228.PubMedCrossRef
2.
go back to reference Chenaud, C., P.G. Merlani, P. Roux-Lombard, D. Burger, S. Harbarth, S. Luyasu, J.D. Graf, J.M. Dayer, and B. Ricou. 2004. Low apolipoprotein A-I level at intensive care unit admission and systemic inflammatory response syndrome exacerbation. Critical Care Medicine 32 (3): 632–637.PubMedCrossRef Chenaud, C., P.G. Merlani, P. Roux-Lombard, D. Burger, S. Harbarth, S. Luyasu, J.D. Graf, J.M. Dayer, and B. Ricou. 2004. Low apolipoprotein A-I level at intensive care unit admission and systemic inflammatory response syndrome exacerbation. Critical Care Medicine 32 (3): 632–637.PubMedCrossRef
3.
go back to reference Vermont, C.L., M. den Brinker, N. Kakeci, E.D. de Kleijn, Y.B. de Rijke, K.F. Joosten, R. de Groot, and J.A. Hazelzet. 2005. Serum lipids and disease severity in children with severe meningococcal sepsis. Critical Care Medicine 33 (7): 1610–1615.PubMedCrossRef Vermont, C.L., M. den Brinker, N. Kakeci, E.D. de Kleijn, Y.B. de Rijke, K.F. Joosten, R. de Groot, and J.A. Hazelzet. 2005. Serum lipids and disease severity in children with severe meningococcal sepsis. Critical Care Medicine 33 (7): 1610–1615.PubMedCrossRef
4.
go back to reference Chien, J.Y., J.S. Jerng, Yu CJ, and P.C. Yang. 2005. Low serum level of high-density lipoprotein cholesterol is a poor prognostic factor for severe sepsis. Critical Care Medicine 33 (8): 1688–1693.PubMedCrossRef Chien, J.Y., J.S. Jerng, Yu CJ, and P.C. Yang. 2005. Low serum level of high-density lipoprotein cholesterol is a poor prognostic factor for severe sepsis. Critical Care Medicine 33 (8): 1688–1693.PubMedCrossRef
5.
go back to reference Berbee, J.F., C.C. van der Hoogt, C.J. de Haas, K.P. van Kessel, G.M. Dallinga-Thie, J.A. Romijn, L.M. Havekes, H.J. van Leeuwen, and P.C. Rensen. 2008. Plasma apolipoprotein CI correlates with increased survival in patients with severe sepsis. Intensive Care Medicine 34 (5): 907–911.PubMedCrossRef Berbee, J.F., C.C. van der Hoogt, C.J. de Haas, K.P. van Kessel, G.M. Dallinga-Thie, J.A. Romijn, L.M. Havekes, H.J. van Leeuwen, and P.C. Rensen. 2008. Plasma apolipoprotein CI correlates with increased survival in patients with severe sepsis. Intensive Care Medicine 34 (5): 907–911.PubMedCrossRef
6.
go back to reference Barlage, S., C. Gnewuch, G. Liebisch, Z. Wolf, F.X. Audebert, T. Gluck, D. Frohlich, B.K. Kramer, G. Rothe, and G. Schmitz. 2009. Changes in HDL-associated apolipoproteins relate to mortality in human sepsis and correlate to monocyte and platelet activation. Intensive Care Medicine 35 (11): 1877–1885.PubMedCrossRef Barlage, S., C. Gnewuch, G. Liebisch, Z. Wolf, F.X. Audebert, T. Gluck, D. Frohlich, B.K. Kramer, G. Rothe, and G. Schmitz. 2009. Changes in HDL-associated apolipoproteins relate to mortality in human sepsis and correlate to monocyte and platelet activation. Intensive Care Medicine 35 (11): 1877–1885.PubMedCrossRef
7.
go back to reference Grion, C.M., L.T. Cardoso, T.F. Perazolo, A.S. Garcia, D.S. Barbosa, H.K. Morimoto, T. Matsuo, and A.J. Carrilho. 2010. Lipoproteins and CETP levels as risk factors for severe sepsis in hospitalized patients. European Journal of Clinical Investigation 40 (4): 330–338.PubMedCrossRef Grion, C.M., L.T. Cardoso, T.F. Perazolo, A.S. Garcia, D.S. Barbosa, H.K. Morimoto, T. Matsuo, and A.J. Carrilho. 2010. Lipoproteins and CETP levels as risk factors for severe sepsis in hospitalized patients. European Journal of Clinical Investigation 40 (4): 330–338.PubMedCrossRef
9.
go back to reference Hotchkiss, R.S., and I.E. Karl. 2003. The pathophysiology and treatment of sepsis. The New England Journal of Medicine 348 (2): 138–150.PubMedCrossRef Hotchkiss, R.S., and I.E. Karl. 2003. The pathophysiology and treatment of sepsis. The New England Journal of Medicine 348 (2): 138–150.PubMedCrossRef
10.
11.
go back to reference Dellinger, R.P., M.M. Levy, J.M. Carlet, J. Bion, M.M. Parker, R. Jaeschke, K. Reinhart, D.C. Angus, C. Brun-Buisson, R. Beale, T. Calandra, J.F. Dhainaut, H. Gerlach, M. Harvey, J.J. Marini, J. Marshall, M. Ranieri, G. Ramsay, J. Sevransky, B.T. Thompson, S. Townsend, J.S. Vender, J.L. Zimmerman, and J.L. Vincent. 2008. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2008. Intensive Care Medicine 34 (1): 17–60.PubMedCrossRef Dellinger, R.P., M.M. Levy, J.M. Carlet, J. Bion, M.M. Parker, R. Jaeschke, K. Reinhart, D.C. Angus, C. Brun-Buisson, R. Beale, T. Calandra, J.F. Dhainaut, H. Gerlach, M. Harvey, J.J. Marini, J. Marshall, M. Ranieri, G. Ramsay, J. Sevransky, B.T. Thompson, S. Townsend, J.S. Vender, J.L. Zimmerman, and J.L. Vincent. 2008. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2008. Intensive Care Medicine 34 (1): 17–60.PubMedCrossRef
12.
go back to reference Roy, S.K., D. Kendrick, B.D. Sadowitz, L. Gatto, K. Snyder, J.M. Satalin, L.M. Golub, and G. Nieman. 2011. Jack of all trades: pleiotropy and the application of chemically modified tetracycline-3 in sepsis and the acute respiratory distress syndrome (ARDS). Pharmacological Research 64 (6): 580–589.PubMedPubMedCentralCrossRef Roy, S.K., D. Kendrick, B.D. Sadowitz, L. Gatto, K. Snyder, J.M. Satalin, L.M. Golub, and G. Nieman. 2011. Jack of all trades: pleiotropy and the application of chemically modified tetracycline-3 in sepsis and the acute respiratory distress syndrome (ARDS). Pharmacological Research 64 (6): 580–589.PubMedPubMedCentralCrossRef
14.
go back to reference Ranieri, V.M., G.D. Rubenfeld, B.T. Thompson, N.D. Ferguson, E. Caldwell, E. Fan, L. Camporota, and A.S. Slutsky. 2012. Acute respiratory distress syndrome: the Berlin Definition. JAMA 307 (23): 2526–2533.PubMed Ranieri, V.M., G.D. Rubenfeld, B.T. Thompson, N.D. Ferguson, E. Caldwell, E. Fan, L. Camporota, and A.S. Slutsky. 2012. Acute respiratory distress syndrome: the Berlin Definition. JAMA 307 (23): 2526–2533.PubMed
15.
go back to reference Bernard, G.R., A. Artigas, K.L. Brigham, J. Carlet, K. Falke, L. Hudson, M. Lamy, J.R. Legall, A. Morris, and R. Spragg. 1994. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. American Journal of Respiratory and Critical Care Medicine 149 (3 Pt 1): 818–824.PubMedCrossRef Bernard, G.R., A. Artigas, K.L. Brigham, J. Carlet, K. Falke, L. Hudson, M. Lamy, J.R. Legall, A. Morris, and R. Spragg. 1994. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. American Journal of Respiratory and Critical Care Medicine 149 (3 Pt 1): 818–824.PubMedCrossRef
16.
go back to reference Ferguson, N.D., A.M. Davis, A.S. Slutsky, and T.E. Stewart. 2005. Development of a clinical definition for acute respiratory distress syndrome using the Delphi technique. Journal of Critical Care 20 (2): 147–154.PubMedCrossRef Ferguson, N.D., A.M. Davis, A.S. Slutsky, and T.E. Stewart. 2005. Development of a clinical definition for acute respiratory distress syndrome using the Delphi technique. Journal of Critical Care 20 (2): 147–154.PubMedCrossRef
17.
go back to reference Kangelaris, K.N., A. Prakash, K.D. Liu, B. Aouizerat, P.G. Woodruff, D.J. Erle, A. Rogers, E.J. Seeley, J. Chu, T. Liu, T. Osterberg-Deiss, H. Zhuo, M.A. Matthay, and C.S. Calfee. 2015. Increased expression of neutrophil-related genes in patients with early sepsis-induced ARDS. American Journal of Physiology. Lung Cellular and Molecular Physiology 308 (11): L1102–L1113.PubMedPubMedCentralCrossRef Kangelaris, K.N., A. Prakash, K.D. Liu, B. Aouizerat, P.G. Woodruff, D.J. Erle, A. Rogers, E.J. Seeley, J. Chu, T. Liu, T. Osterberg-Deiss, H. Zhuo, M.A. Matthay, and C.S. Calfee. 2015. Increased expression of neutrophil-related genes in patients with early sepsis-induced ARDS. American Journal of Physiology. Lung Cellular and Molecular Physiology 308 (11): L1102–L1113.PubMedPubMedCentralCrossRef
18.
go back to reference Petroni, R.C., P.J. Biselli, T.M. de Lima, M.C. Theobaldo, E.T. Caldini, R.N. Pimentel, H.V. Barbeiro, S.A. Kubo, I.T. Velasco, and F.G. Soriano. 2015. Hypertonic saline (NaCl 7.5%) reduces LPS-induced acute lung injury in rats. Inflammation 38 (6): 2026–2035.PubMedCrossRef Petroni, R.C., P.J. Biselli, T.M. de Lima, M.C. Theobaldo, E.T. Caldini, R.N. Pimentel, H.V. Barbeiro, S.A. Kubo, I.T. Velasco, and F.G. Soriano. 2015. Hypertonic saline (NaCl 7.5%) reduces LPS-induced acute lung injury in rats. Inflammation 38 (6): 2026–2035.PubMedCrossRef
19.
go back to reference Kuebler, W.M., J. Borges, A. Sckell, G.E. Kuhnle, K. Bergh, K. Messmer, and A.E. Goetz. 2000. Role of L-selectin in leukocyte sequestration in lung capillaries in a rabbit model of endotoxemia. American Journal of Respiratory and Critical Care Medicine 161 (1): 36–43.PubMedCrossRef Kuebler, W.M., J. Borges, A. Sckell, G.E. Kuhnle, K. Bergh, K. Messmer, and A.E. Goetz. 2000. Role of L-selectin in leukocyte sequestration in lung capillaries in a rabbit model of endotoxemia. American Journal of Respiratory and Critical Care Medicine 161 (1): 36–43.PubMedCrossRef
20.
go back to reference Ware, L.B., and M.A. Matthay. 2000. The acute respiratory distress syndrome. The New England Journal of Medicine 342 (18): 1334–1349.PubMedCrossRef Ware, L.B., and M.A. Matthay. 2000. The acute respiratory distress syndrome. The New England Journal of Medicine 342 (18): 1334–1349.PubMedCrossRef
21.
go back to reference Densmore, J.C., P.R. Signorino, J. Ou, O.A. Hatoum, J.J. Rowe, Y. Shi, S. Kaul, D.W. Jones, R.E. Sabina, K.A. Pritchard Jr., K.S. Guice, and K.T. Oldham. 2006. Endothelium-derived microparticles induce endothelial dysfunction and acute lung injury. Shock 26 (5): 464–471.PubMedCrossRef Densmore, J.C., P.R. Signorino, J. Ou, O.A. Hatoum, J.J. Rowe, Y. Shi, S. Kaul, D.W. Jones, R.E. Sabina, K.A. Pritchard Jr., K.S. Guice, and K.T. Oldham. 2006. Endothelium-derived microparticles induce endothelial dysfunction and acute lung injury. Shock 26 (5): 464–471.PubMedCrossRef
22.
go back to reference Wang, X., K.B. Adler, J. Erjefalt, and C. Bai. 2007. Airway epithelial dysfunction in the development of acute lung injury and acute respiratory distress syndrome. Expert Review of Respiratory Medicine 1 (1): 149–155.PubMedCrossRef Wang, X., K.B. Adler, J. Erjefalt, and C. Bai. 2007. Airway epithelial dysfunction in the development of acute lung injury and acute respiratory distress syndrome. Expert Review of Respiratory Medicine 1 (1): 149–155.PubMedCrossRef
23.
go back to reference Hla, T., M.J. Lee, N. Ancellin, S. Thangada, C.H. Liu, M. Kluk, S.S. Chae, and M.T. Wu. 2000. Sphingosine-1-phosphate signaling via the EDG-1 family of G-protein-coupled receptors. Annals of the New York Academy of Sciences 905: 16–24.PubMedCrossRef Hla, T., M.J. Lee, N. Ancellin, S. Thangada, C.H. Liu, M. Kluk, S.S. Chae, and M.T. Wu. 2000. Sphingosine-1-phosphate signaling via the EDG-1 family of G-protein-coupled receptors. Annals of the New York Academy of Sciences 905: 16–24.PubMedCrossRef
24.
go back to reference Im, D.S., A.R. Ungar, and K.R. Lynch. 2000. Characterization of a zebrafish (Danio rerio) sphingosine 1-phosphate receptor expressed in the embryonic brain. Biochemical and Biophysical Research Communications 279 (1): 139–143.PubMedCrossRef Im, D.S., A.R. Ungar, and K.R. Lynch. 2000. Characterization of a zebrafish (Danio rerio) sphingosine 1-phosphate receptor expressed in the embryonic brain. Biochemical and Biophysical Research Communications 279 (1): 139–143.PubMedCrossRef
25.
go back to reference Pyne, S., and N. Pyne. 2000. Sphingosine 1-phosphate signalling via the endothelial differentiation gene family of G-protein-coupled receptors. Pharmacology & Therapeutics 88 (2): 115–131.CrossRef Pyne, S., and N. Pyne. 2000. Sphingosine 1-phosphate signalling via the endothelial differentiation gene family of G-protein-coupled receptors. Pharmacology & Therapeutics 88 (2): 115–131.CrossRef
26.
go back to reference Anliker, B., and J. Chun. 2004. Cell surface receptors in lysophospholipid signaling. Seminars in Cell & Developmental Biology 15 (5): 457–465.CrossRef Anliker, B., and J. Chun. 2004. Cell surface receptors in lysophospholipid signaling. Seminars in Cell & Developmental Biology 15 (5): 457–465.CrossRef
27.
go back to reference Rosen, H., and E.J. Goetzl. 2005. Sphingosine 1-phosphate and its receptors: an autocrine and paracrine network. Nature Reviews. Immunology 5 (7): 560–570.PubMedCrossRef Rosen, H., and E.J. Goetzl. 2005. Sphingosine 1-phosphate and its receptors: an autocrine and paracrine network. Nature Reviews. Immunology 5 (7): 560–570.PubMedCrossRef
28.
go back to reference Camerer, E., J.B. Regard, I. Cornelissen, Y. Srinivasan, D.N. Duong, D. Palmer, T.H. Pham, J.S. Wong, R. Pappu, and S.R. Coughlin. 2009. Sphingosine-1-phosphate in the plasma compartment regulates basal and inflammation-induced vascular leak in mice. The Journal of Clinical Investigation 119 (7): 1871–1879.PubMedPubMedCentral Camerer, E., J.B. Regard, I. Cornelissen, Y. Srinivasan, D.N. Duong, D. Palmer, T.H. Pham, J.S. Wong, R. Pappu, and S.R. Coughlin. 2009. Sphingosine-1-phosphate in the plasma compartment regulates basal and inflammation-induced vascular leak in mice. The Journal of Clinical Investigation 119 (7): 1871–1879.PubMedPubMedCentral
29.
go back to reference Christoffersen, C., and L.B. Nielsen. 2013. Apolipoprotein M: bridging HDL and endothelial function. Current Opinion in Lipidology 24 (4): 295–300.PubMedCrossRef Christoffersen, C., and L.B. Nielsen. 2013. Apolipoprotein M: bridging HDL and endothelial function. Current Opinion in Lipidology 24 (4): 295–300.PubMedCrossRef
30.
go back to reference Sammani, S., L. Moreno-Vinasco, T. Mirzapoiazova, P.A. Singleton, E.T. Chiang, C.L. Evenoski, T. Wang, B. Mathew, A. Husain, J. Moitra, X. Sun, L. Nunez, J.R. Jacobson, S.M. Dudek, V. Natarajan, and J.G. Garcia. 2010. Differential effects of sphingosine 1-phosphate receptors on airway and vascular barrier function in the murine lung. American Journal of Respiratory Cell and Molecular Biology 43 (4): 394–402.PubMedCrossRef Sammani, S., L. Moreno-Vinasco, T. Mirzapoiazova, P.A. Singleton, E.T. Chiang, C.L. Evenoski, T. Wang, B. Mathew, A. Husain, J. Moitra, X. Sun, L. Nunez, J.R. Jacobson, S.M. Dudek, V. Natarajan, and J.G. Garcia. 2010. Differential effects of sphingosine 1-phosphate receptors on airway and vascular barrier function in the murine lung. American Journal of Respiratory Cell and Molecular Biology 43 (4): 394–402.PubMedCrossRef
31.
go back to reference Xu, N., and B. Dahlback. 1999. A novel human apolipoprotein (apoM). The Journal of Biological Chemistry 274 (44): 31286–31290.PubMedCrossRef Xu, N., and B. Dahlback. 1999. A novel human apolipoprotein (apoM). The Journal of Biological Chemistry 274 (44): 31286–31290.PubMedCrossRef
32.
go back to reference Feingold, K.R., J.K. Shigenaga, L.G. Chui, A. Moser, W. Khovidhunkit, and C. Grunfeld. 2008. Infection and inflammation decrease apolipoprotein M expression. Atherosclerosis 199 (1): 19–26.PubMedCrossRef Feingold, K.R., J.K. Shigenaga, L.G. Chui, A. Moser, W. Khovidhunkit, and C. Grunfeld. 2008. Infection and inflammation decrease apolipoprotein M expression. Atherosclerosis 199 (1): 19–26.PubMedCrossRef
33.
go back to reference Christoffersen, C., H. Obinata, S.B. Kumaraswamy, S. Galvani, J. Ahnstrom, M. Sevvana, C. Egerer-Sieber, Y.A. Muller, T. Hla, L.B. Nielsen, and B. Dahlback. 2011. Endothelium-protective sphingosine-1-phosphate provided by HDL-associated apolipoprotein M. Proceedings of the National Academy of Sciences of the United States of America 108 (23): 9613–9618.PubMedPubMedCentralCrossRef Christoffersen, C., H. Obinata, S.B. Kumaraswamy, S. Galvani, J. Ahnstrom, M. Sevvana, C. Egerer-Sieber, Y.A. Muller, T. Hla, L.B. Nielsen, and B. Dahlback. 2011. Endothelium-protective sphingosine-1-phosphate provided by HDL-associated apolipoprotein M. Proceedings of the National Academy of Sciences of the United States of America 108 (23): 9613–9618.PubMedPubMedCentralCrossRef
34.
go back to reference Rodriguez, C., M. Gonzalez-Diez, L. Badimon, and J. Martinez-Gonzalez. 2009. Sphingosine-1-phosphate: a bioactive lipid that confers high-density lipoprotein with vasculoprotection mediated by nitric oxide and prostacyclin. Thrombosis and Haemostasis 101 (4): 665–673.PubMed Rodriguez, C., M. Gonzalez-Diez, L. Badimon, and J. Martinez-Gonzalez. 2009. Sphingosine-1-phosphate: a bioactive lipid that confers high-density lipoprotein with vasculoprotection mediated by nitric oxide and prostacyclin. Thrombosis and Haemostasis 101 (4): 665–673.PubMed
35.
go back to reference Wang, Z., G. Luo, Y. Feng, L. Zheng, H. Liu, Y. Liang, Z. Liu, P. Shao, M. Berggren-Soderlund, X. Zhang, and N. Xu. 2015. Decreased splenic CD4(+) T-lymphocytes in apolipoprotein M gene deficient mice. BioMed Research International 2015: 293512.PubMedPubMedCentral Wang, Z., G. Luo, Y. Feng, L. Zheng, H. Liu, Y. Liang, Z. Liu, P. Shao, M. Berggren-Soderlund, X. Zhang, and N. Xu. 2015. Decreased splenic CD4(+) T-lymphocytes in apolipoprotein M gene deficient mice. BioMed Research International 2015: 293512.PubMedPubMedCentral
36.
go back to reference Szarka, R.J., N. Wang, L. Gordon, P.N. Nation, and R.H. Smith. 1997. A murine model of pulmonary damage induced by lipopolysaccharide via intranasal instillation. Journal of Immunological Methods 202 (1): 49–57.PubMedCrossRef Szarka, R.J., N. Wang, L. Gordon, P.N. Nation, and R.H. Smith. 1997. A murine model of pulmonary damage induced by lipopolysaccharide via intranasal instillation. Journal of Immunological Methods 202 (1): 49–57.PubMedCrossRef
37.
go back to reference Smith, K.M., J.D. Mrozek, S.C. Simonton, D.R. Bing, P.A. Meyers, J.E. Connett, and M.C. Mammel. 1997. Prolonged partial liquid ventilation using conventional and high-frequency ventilatory techniques: gas exchange and lung pathology in an animal model of respiratory distress syndrome. Critical Care Medicine 25 (11): 1888–1897.PubMedCrossRef Smith, K.M., J.D. Mrozek, S.C. Simonton, D.R. Bing, P.A. Meyers, J.E. Connett, and M.C. Mammel. 1997. Prolonged partial liquid ventilation using conventional and high-frequency ventilatory techniques: gas exchange and lung pathology in an animal model of respiratory distress syndrome. Critical Care Medicine 25 (11): 1888–1897.PubMedCrossRef
38.
go back to reference Nahum, A., J. Hoyt, L. Schmitz, J. Moody, R. Shapiro, and J.J. Marini. 1997. Effect of mechanical ventilation strategy on dissemination of intratracheally instilled Escherichia coli in dogs. Critical Care Medicine 25 (10): 1733–1743.PubMedCrossRef Nahum, A., J. Hoyt, L. Schmitz, J. Moody, R. Shapiro, and J.J. Marini. 1997. Effect of mechanical ventilation strategy on dissemination of intratracheally instilled Escherichia coli in dogs. Critical Care Medicine 25 (10): 1733–1743.PubMedCrossRef
39.
go back to reference Rotta, A.T., and D.M. Steinhorn. 1998. Partial liquid ventilation reduces pulmonary neutrophil accumulation in an experimental model of systemic endotoxemia and acute lung injury. Critical Care Medicine 26 (10): 1707–1715.PubMedCrossRef Rotta, A.T., and D.M. Steinhorn. 1998. Partial liquid ventilation reduces pulmonary neutrophil accumulation in an experimental model of systemic endotoxemia and acute lung injury. Critical Care Medicine 26 (10): 1707–1715.PubMedCrossRef
40.
go back to reference Luo, G., X. Zhang, Q. Mu, L. Chen, L. Zheng, J. Wei, M. Berggren-Soderlund, P. Nilsson-Ehle, and N. Xu. 2010. Expression and localization of apolipoprotein M in human colorectal tissues. Lipids in Health and Disease 9: 102.PubMedPubMedCentralCrossRef Luo, G., X. Zhang, Q. Mu, L. Chen, L. Zheng, J. Wei, M. Berggren-Soderlund, P. Nilsson-Ehle, and N. Xu. 2010. Expression and localization of apolipoprotein M in human colorectal tissues. Lipids in Health and Disease 9: 102.PubMedPubMedCentralCrossRef
41.
go back to reference Hammes, L.S., R.R. Tekmal, P. Naud, M.I. Edelweiss, N. Kirma, P.T. Valente, K.J. Syrjanen, and J.S. Cunha-Filho. 2008. Up-regulation of VEGF, c-fms and COX-2 expression correlates with severity of cervical cancer precursor (CIN) lesions and invasive disease. Gynecologic Oncology 110 (3): 445–451.PubMedCrossRef Hammes, L.S., R.R. Tekmal, P. Naud, M.I. Edelweiss, N. Kirma, P.T. Valente, K.J. Syrjanen, and J.S. Cunha-Filho. 2008. Up-regulation of VEGF, c-fms and COX-2 expression correlates with severity of cervical cancer precursor (CIN) lesions and invasive disease. Gynecologic Oncology 110 (3): 445–451.PubMedCrossRef
42.
go back to reference Rubenfeld, G.D., E. Caldwell, E. Peabody, J. Weaver, D.P. Martin, M. Neff, E.J. Stern, and L.D. Hudson. 2005. Incidence and outcomes of acute lung injury. The New England Journal of Medicine 353 (16): 1685–1693.PubMedCrossRef Rubenfeld, G.D., E. Caldwell, E. Peabody, J. Weaver, D.P. Martin, M. Neff, E.J. Stern, and L.D. Hudson. 2005. Incidence and outcomes of acute lung injury. The New England Journal of Medicine 353 (16): 1685–1693.PubMedCrossRef
43.
go back to reference Steinhauser, M.L., S.L. Kunkel, and C.M. Hogaboam. 1999. New Frontiers in cytokine involvement during experimental sepsis. ILAR Journal 40 (4): 142–150.PubMedCrossRef Steinhauser, M.L., S.L. Kunkel, and C.M. Hogaboam. 1999. New Frontiers in cytokine involvement during experimental sepsis. ILAR Journal 40 (4): 142–150.PubMedCrossRef
44.
go back to reference Khovidhunkit, W., M.S. Kim, R.A. Memon, J.K. Shigenaga, A.H. Moser, K.R. Feingold, and C. Grunfeld. 2004. Effects of infection and inflammation on lipid and lipoprotein metabolism: mechanisms and consequences to the host. Journal of Lipid Research 45 (7): 1169–1196.PubMedCrossRef Khovidhunkit, W., M.S. Kim, R.A. Memon, J.K. Shigenaga, A.H. Moser, K.R. Feingold, and C. Grunfeld. 2004. Effects of infection and inflammation on lipid and lipoprotein metabolism: mechanisms and consequences to the host. Journal of Lipid Research 45 (7): 1169–1196.PubMedCrossRef
45.
go back to reference Chen, H., C. Bai, and X. Wang. 2010. The value of the lipopolysaccharide-induced acute lung injury model in respiratory medicine. Expert Review of Respiratory Medicine 4 (6): 773–783.PubMedCrossRef Chen, H., C. Bai, and X. Wang. 2010. The value of the lipopolysaccharide-induced acute lung injury model in respiratory medicine. Expert Review of Respiratory Medicine 4 (6): 773–783.PubMedCrossRef
46.
go back to reference Tong, Q., L. Zheng, Q. Kang, O.J. Dodd, J. Langer, B. Li, D. Wang, and D. Li. 2006. Upregulation of hypoxia-induced mitogenic factor in bacterial lipopolysaccharide-induced acute lung injury. FEBS Letters 580 (9): 2207–2215.PubMedCrossRef Tong, Q., L. Zheng, Q. Kang, O.J. Dodd, J. Langer, B. Li, D. Wang, and D. Li. 2006. Upregulation of hypoxia-induced mitogenic factor in bacterial lipopolysaccharide-induced acute lung injury. FEBS Letters 580 (9): 2207–2215.PubMedCrossRef
47.
go back to reference Melo, A.C., S.S. Valenca, L.B. Gitirana, J.C. Santos, M.L. Ribeiro, M.N. Machado, C.B. Magalhaes, W.A. Zin, and L.C. Porto. 2013. Redox markers and inflammation are differentially affected by atorvastatin, pravastatin or simvastatin administered before endotoxin-induced acute lung injury. International Immunopharmacology 17 (1): 57–64.PubMedCrossRef Melo, A.C., S.S. Valenca, L.B. Gitirana, J.C. Santos, M.L. Ribeiro, M.N. Machado, C.B. Magalhaes, W.A. Zin, and L.C. Porto. 2013. Redox markers and inflammation are differentially affected by atorvastatin, pravastatin or simvastatin administered before endotoxin-induced acute lung injury. International Immunopharmacology 17 (1): 57–64.PubMedCrossRef
48.
go back to reference He, Z., X. Chen, S. Wang, and Z. Zou. 2014. Toll-like receptor 4 monoclonal antibody attenuates lipopolysaccharide-induced acute lung injury in mice. Experimental and Therapeutic Medicine 8 (3): 871–876.PubMedPubMedCentralCrossRef He, Z., X. Chen, S. Wang, and Z. Zou. 2014. Toll-like receptor 4 monoclonal antibody attenuates lipopolysaccharide-induced acute lung injury in mice. Experimental and Therapeutic Medicine 8 (3): 871–876.PubMedPubMedCentralCrossRef
49.
go back to reference Wittwer, T., U.F. Franke, M. Ochs, T. Sandhaus, A. Schuette, S. Richter, N. Dreyer, L. Knudsen, T. Muller, H. Schubert, J. Richter, and T. Wahlers. 2005. Inhalative pre-treatment of donor lungs using the aerosolized prostacyclin analog iloprost ameliorates reperfusion injury. The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation 24 (10): 1673–1679.CrossRef Wittwer, T., U.F. Franke, M. Ochs, T. Sandhaus, A. Schuette, S. Richter, N. Dreyer, L. Knudsen, T. Muller, H. Schubert, J. Richter, and T. Wahlers. 2005. Inhalative pre-treatment of donor lungs using the aerosolized prostacyclin analog iloprost ameliorates reperfusion injury. The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation 24 (10): 1673–1679.CrossRef
50.
go back to reference Katzenstein, A.L., C.M. Bloor, and A.A. Leibow. 1976. Diffuse alveolar damage—the role of oxygen, shock, and related factors. A review. The American Journal of Pathology 85 (1): 209–228.PubMedPubMedCentral Katzenstein, A.L., C.M. Bloor, and A.A. Leibow. 1976. Diffuse alveolar damage—the role of oxygen, shock, and related factors. A review. The American Journal of Pathology 85 (1): 209–228.PubMedPubMedCentral
51.
go back to reference Thille, A.W., A. Esteban, P. Fernandez-Segoviano, J.M. Rodriguez, J.A. Aramburu, O. Penuelas, I. Cortes-Puch, P. Cardinal-Fernandez, J.A. Lorente, and F. Frutos-Vivar. 2013. Comparison of the berlin definition for acute respiratory distress syndrome with autopsy. American Journal of Respiratory and Critical Care Medicine 187 (7): 761–767.PubMedCrossRef Thille, A.W., A. Esteban, P. Fernandez-Segoviano, J.M. Rodriguez, J.A. Aramburu, O. Penuelas, I. Cortes-Puch, P. Cardinal-Fernandez, J.A. Lorente, and F. Frutos-Vivar. 2013. Comparison of the berlin definition for acute respiratory distress syndrome with autopsy. American Journal of Respiratory and Critical Care Medicine 187 (7): 761–767.PubMedCrossRef
52.
go back to reference Zhao, Y., I.A. Gorshkova, E. Berdyshev, D. He, P. Fu, W. Ma, Y. Su, P.V. Usatyuk, S. Pendyala, B. Oskouian, J.D. Saba, J.G. Garcia, and V. Natarajan. 2011. Protection of LPS-induced murine acute lung injury by sphingosine-1-phosphate lyase suppression. American Journal of Respiratory Cell and Molecular Biology 45 (2): 426–435.PubMedCrossRef Zhao, Y., I.A. Gorshkova, E. Berdyshev, D. He, P. Fu, W. Ma, Y. Su, P.V. Usatyuk, S. Pendyala, B. Oskouian, J.D. Saba, J.G. Garcia, and V. Natarajan. 2011. Protection of LPS-induced murine acute lung injury by sphingosine-1-phosphate lyase suppression. American Journal of Respiratory Cell and Molecular Biology 45 (2): 426–435.PubMedCrossRef
53.
go back to reference Liu, J., P.S. Zhang, Q. Yu, L. Liu, Y. Yang, and H.B. Qiu. 2012. Kinetic and distinct distribution of conventional dendritic cells in the early phase of lipopolysaccharide-induced acute lung injury. Molecular Biology Reports 39 (12): 10421–10431.PubMedCrossRef Liu, J., P.S. Zhang, Q. Yu, L. Liu, Y. Yang, and H.B. Qiu. 2012. Kinetic and distinct distribution of conventional dendritic cells in the early phase of lipopolysaccharide-induced acute lung injury. Molecular Biology Reports 39 (12): 10421–10431.PubMedCrossRef
54.
go back to reference Kumaraswamy, S.B., A. Linder, P. Akesson, and B. Dahlback. 2012. Decreased plasma concentrations of apolipoprotein M in sepsis and systemic inflammatory response syndromes. Critical Care 16 (2): R60.PubMedPubMedCentralCrossRef Kumaraswamy, S.B., A. Linder, P. Akesson, and B. Dahlback. 2012. Decreased plasma concentrations of apolipoprotein M in sepsis and systemic inflammatory response syndromes. Critical Care 16 (2): R60.PubMedPubMedCentralCrossRef
55.
go back to reference Mihara, Y., T. Miyamoto, Y. Hagari, and M. Mihara. 1997. Rudimentary meningocele of the scalp. The Journal of Dermatology 24 (9): 606–610.PubMedCrossRef Mihara, Y., T. Miyamoto, Y. Hagari, and M. Mihara. 1997. Rudimentary meningocele of the scalp. The Journal of Dermatology 24 (9): 606–610.PubMedCrossRef
56.
go back to reference Blaho, V.A., and T. Hla. 2011. Regulation of mammalian physiology, development, and disease by the sphingosine 1-phosphate and lysophosphatidic acid receptors. Chemical Reviews 111 (10): 6299–6320.PubMedPubMedCentralCrossRef Blaho, V.A., and T. Hla. 2011. Regulation of mammalian physiology, development, and disease by the sphingosine 1-phosphate and lysophosphatidic acid receptors. Chemical Reviews 111 (10): 6299–6320.PubMedPubMedCentralCrossRef
Metadata
Title
Apolipoprotein M Protects Against Lipopolysaccharide-Induced Acute Lung Injury via Sphingosine-1-Phosphate Signaling
Authors
Bin Zhu
Guang-hua Luo
Yue-hua Feng
Miao-mei Yu
Jun Zhang
Jiang Wei
Chun Yang
Ning Xu
Xiao-ying Zhang
Publication date
01-03-2018
Publisher
Springer US
Published in
Inflammation / Issue 2/2018
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-017-0719-x

Other articles of this Issue 2/2018

Inflammation 2/2018 Go to the issue