Skip to main content
Top
Published in: Inflammation 2/2016

01-04-2016 | ORIGINAL ARTICLE

Protective Effects of Growth Arrest-Specific Protein 6 (Gas6) on Sepsis-Induced Acute Kidney Injury

Authors: Long-wang Chen, Wei Chen, Zhi-qiang Hu, Jia-lan Bian, Lan Ying, Guang-liang Hong, Qiao-meng Qiu, Guang-ju Zhao, Zhong-qiu Lu

Published in: Inflammation | Issue 2/2016

Login to get access

Abstract

Acute kidney injury (AKI) is a serious complication of sepsis, which has a high mortality rate. Growth arrest-specific protein 6 (Gas6), the protein product of the growth arrest specific gene 6, has been shown to have an anti-apoptotic effect as well as pro-survival capability. Here, we investigated the effects of Gas6 on sepsis-associated AKI in mice subjected to cecal ligation and puncture (CLP). We found that the administration of rmGas6 significantly reduced serum urea nitrogen and creatinine and improved the survival of septic mice. Furthermore, the renal pathological damage induced by CLP was attenuated by rmGas6 treatment. Finally, rmGas6 reduced the renal tissue apoptotic index and the expression of Bax, while it upregulated the expression of Bcl-2. The data suggest that rmGas6 might be used as a potential therapeutic agent for sepsis-induced AKI.
Literature
2.
go back to reference Bagshaw SM, George C, Bellomo R, et al. 2008. Early acutr kidney injury and sepsis:a multicentre evaluation. Critical Care 12:R47.doi: 10.1186/cc6863. Bagshaw SM, George C, Bellomo R, et al. 2008. Early acutr kidney injury and sepsis:a multicentre evaluation. Critical Care 12:R47.doi: 10.​1186/​cc6863.
3.
go back to reference Rajapakse S, Rodrigo C, Rajapakse A, et al. 2009. Renal replacement therapy in sepsis-induced acute renal failure. Saudi Journal of Kidney Diseases and Transplantation 20:553–559. Rajapakse S, Rodrigo C, Rajapakse A, et al. 2009. Renal replacement therapy in sepsis-induced acute renal failure. Saudi Journal of Kidney Diseases and Transplantation 20:553–559.
5.
6.
go back to reference Varnum BC, Young C, Elliott G, et al. 1995. Axl receptor tyrosine kinase stimulated by the vitamin K-dependent protein encoded by growth-arrest-specific gene 6. Nature 373:623–6. doi:10.1038/373623a0. Varnum BC, Young C, Elliott G, et al. 1995. Axl receptor tyrosine kinase stimulated by the vitamin K-dependent protein encoded by growth-arrest-specific gene 6. Nature 373:623–6. doi:10.​1038/​373623a0.
7.
go back to reference Stitt TN, Conn G, Gore M, Lai C, Bruno J, Radziejewski C, Mattsson K, Fisher J, Gies DR, Jones PF, et al. 1995. The anticoagulation factor protein S and its relative, Gas6, are ligands for the Tyro 3/Axl family of receptor tyrosine kinases. Cell 80:661–70. doi:10.1016/0092-8674(95)90520-0. Stitt TN, Conn G, Gore M, Lai C, Bruno J, Radziejewski C, Mattsson K, Fisher J, Gies DR, Jones PF, et al. 1995. The anticoagulation factor protein S and its relative, Gas6, are ligands for the Tyro 3/Axl family of receptor tyrosine kinases. Cell 80:661–70. doi:10.​1016/​0092-8674(95)90520-0.
8.
go back to reference Stenhoff J, Dahlbäck B, Hafizi S. 2004. Vitamin K-dependent Gas6 activates ERK kinase and stimulates growth of cardiac fibroblasts. Biochemical and Biophysical Research Communications 319:871–878. doi: 10.1016/j.bbrc.2004.05.070. Stenhoff J, Dahlbäck B, Hafizi S. 2004. Vitamin K-dependent Gas6 activates ERK kinase and stimulates growth of cardiac fibroblasts. Biochemical and Biophysical Research Communications 319:871–878. doi: 10.​1016/​j.​bbrc.​2004.​05.​070.
9.
go back to reference O’Donnell K, Harkes IC, Dougherty L, Wicks IP. 1999. Expression of receptor tyrosine kinase Axl and its ligand Gas6 in rheumatoid arthritis: evidence for a novel endothelial cell survival pathway. American Journal Pathology 154:1171–1180. doi:10.1016/S0002-9440(10)65369-2. O’Donnell K, Harkes IC, Dougherty L, Wicks IP. 1999. Expression of receptor tyrosine kinase Axl and its ligand Gas6 in rheumatoid arthritis: evidence for a novel endothelial cell survival pathway. American Journal Pathology 154:1171–1180. doi:10.​1016/​S0002-9440(10)65369-2.
10.
go back to reference Shankar SL, O’Guin K, Kim M, Varnum B, Lemke G, Brosnan CF, Shafit-Zagardo B. 2006. Gas6/Axl signaling activates the phosphatidylserine 3-kinase/Akt1 survival pathway to protect oligodendrocytes from tumor necrosis factor alpha-induced apoptosis. Journal Neuroscience 26:5638–5624. Shankar SL, O’Guin K, Kim M, Varnum B, Lemke G, Brosnan CF, Shafit-Zagardo B. 2006. Gas6/Axl signaling activates the phosphatidylserine 3-kinase/Akt1 survival pathway to protect oligodendrocytes from tumor necrosis factor alpha-induced apoptosis. Journal Neuroscience 26:5638–5624.
11.
go back to reference Hasanbasic I, Cuerguis J, Varnum B, Blostein MD. 2004. Intracellular signaling pathways involved in Gas6-Axl mediated survival of endothelial cells. American Journal Physiology Heart Circulatory Physiology 287:1207–1213. Hasanbasic I, Cuerguis J, Varnum B, Blostein MD. 2004. Intracellular signaling pathways involved in Gas6-Axl mediated survival of endothelial cells. American Journal Physiology Heart Circulatory Physiology 287:1207–1213.
12.
go back to reference Llacuna L, Barcena C, Bellido-Martin L, Fernandez L, Stefanovic M, Mari M, Garcia-Ruiz C, Fernandez-Checa JC, Garcia de Frutos P, Morales A. 2010. Growth arrest-specific protein 6 is heptaoprotective against murine Ischemia /rerperfusion injury. Hepatology 52:1371–1379.doi: 10.1002/hep.23833. Llacuna L, Barcena C, Bellido-Martin L, Fernandez L, Stefanovic M, Mari M, Garcia-Ruiz C, Fernandez-Checa JC, Garcia de Frutos P, Morales A. 2010. Growth arrest-specific protein 6 is heptaoprotective against murine Ischemia /rerperfusion injury. Hepatology 52:1371–1379.doi: 10.​1002/​hep.​23833.
13.
go back to reference Yanagita M, Arai H, Ishii K, Nakano T, et al. 2001. Gas6 regulates mesangial cell proliferation through Axl in experimental glomerulonephritis. American Journal Pathology 158:1423-32. doi:10.1016/S0002-9440(10)64093-X. Yanagita M, Arai H, Ishii K, Nakano T, et al. 2001. Gas6 regulates mesangial cell proliferation through Axl in experimental glomerulonephritis. American Journal Pathology 158:1423-32. doi:10.​1016/​S0002-9440(10)64093-X.
14.
go back to reference Yanagita M, Ishimoto Y, Arai H, Nagai K, et al. 2002. Essential role of Gas6 for glomerular injury in nephrotoxic nephritis. Journal of Clinical Investigation 110:239–46. doi:10.1172/JCI14861. Yanagita M, Ishimoto Y, Arai H, Nagai K, et al. 2002. Essential role of Gas6 for glomerular injury in nephrotoxic nephritis. Journal of Clinical Investigation 110:239–46. doi:10.​1172/​JCI14861.
16.
go back to reference Gibot S, Massin F, Cravoisy A, et al. 2007. Growth arrest-specifi c protein 6 plasma concentrations during septic shock. Critical Care 11:R8. doi:10.1186/cc5158. Gibot S, Massin F, Cravoisy A, et al. 2007. Growth arrest-specifi c protein 6 plasma concentrations during septic shock. Critical Care 11:R8. doi:10.​1186/​cc5158.
18.
19.
go back to reference Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25:402–408.doi:10.1006/meth.2001.1262. Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(Delta Delta C(T)) Method. Methods 25:402408.doi:10.​1006/​meth.​2001.​1262.
20.
go back to reference Doi K, Leelahavanichkul A, Yuen PS, et al. 2009. Animal models of sepsis and sepsis-induced kidney injury. Journal Clinical Investigation 119:2868–2878. doi: 10.1172/JCI39421. Doi K, Leelahavanichkul A, Yuen PS, et al. 2009. Animal models of sepsis and sepsis-induced kidney injury. Journal Clinical Investigation 119:28682878. doi: 10.​1172/​JCI39421.
21.
go back to reference Carl Ekman, Adam Linder, Per Åkesson, Björn Dahlbäck. 2010. Plasma concentrations of Gas6 (growth arrest specific protein 6) and its soluble tyrosine kinase receptor sAxl in sepsis and systemic inflammatory response syndromes. Critical Care 14:R158. doi: 10.1186/cc9233. Carl Ekman, Adam Linder, Per Åkesson, Björn Dahlbäck. 2010. Plasma concentrations of Gas6 (growth arrest specific protein 6) and its soluble tyrosine kinase receptor sAxl in sepsis and systemic inflammatory response syndromes. Critical Care 14:R158. doi: 10.​1186/​cc9233.
22.
go back to reference Gibot S, Massin F, Cravoisy A, Dupays R, Barraud D, Nace L, Bollaert PE. 2007. Growth arrest-specifi c protein 6 plasma concentrations during septic shock. Critical Care 11:R8. doi:10.1186/cc5158. Gibot S, Massin F, Cravoisy A, Dupays R, Barraud D, Nace L, Bollaert PE. 2007. Growth arrest-specifi c protein 6 plasma concentrations during septic shock. Critical Care 11:R8. doi:10.​1186/​cc5158.
23.
go back to reference Matthew D. Giangola, Weng-Lang Yang, Salil R. Rajayer, et al. 2013. Growth arrest-specific protein 6 (Gas6) attenuates neutrophil migration and acute lung injury in Sepsis. Shock 40:485–91.doi: 10.1097/SHK.0b013e3182a588c1. Matthew D. Giangola, Weng-Lang Yang, Salil R. Rajayer, et al. 2013. Growth arrest-specific protein 6 (Gas6) attenuates neutrophil migration and acute lung injury in Sepsis. Shock 40:48591.doi: 10.​1097/​SHK.​0b013e3182a588c1​.
24.
go back to reference Cummings MC, Winterford CM, Walker NI. 1997. Apoptosis. American Journal Surgical Pathology 21:88–101. Cummings MC, Winterford CM, Walker NI. 1997. Apoptosis. American Journal Surgical Pathology 21:88101.
27.
28.
go back to reference Yin JL, Pilmore HL, Yan YQ, et al. 2002. Expression of growth arrest-specific gene 6 and its receptors in a rat model of chronic renal transplant rejection. Transplantation 73:657–60. Yin JL, Pilmore HL, Yan YQ, et al. 2002. Expression of growth arrest-specific gene 6 and its receptors in a rat model of chronic renal transplant rejection. Transplantation 73:657–60.
30.
go back to reference Li Y, Wang X, Bi S, et al. 2015. Inhibition of Mer and Axl receptor tyrosine kinases leads to increased apoptosis and improved chemosensitivity in human neuroblastoma. Biochemical Biophysical Research Communication 457(3):461–6. doi: 10.1016/j.bbrc.2015.01.017. Li Y, Wang X, Bi S, et al. 2015. Inhibition of Mer and Axl receptor tyrosine kinases leads to increased apoptosis and improved chemosensitivity in human neuroblastoma. Biochemical Biophysical Research Communication 457(3):461–6. doi: 10.​1016/​j.​bbrc.​2015.​01.​017.
31.
go back to reference Hotchkiss RS, Swanson PE, Freeman BD, Tinsley KW, Cobb JP, Matuschak GM. 1999. Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Critical Care Medicine 27:1230–1251. Hotchkiss RS, Swanson PE, Freeman BD, Tinsley KW, Cobb JP, Matuschak GM. 1999. Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Critical Care Medicine 27:1230–1251.
32.
go back to reference Lerolle N, Nochy D, Guérot E, et al. 2010. Histopathology of septic shock induced renal injury: apoptosis and leukocytic infiltration. Intensive Care Medicine 36:471–478. doi: 10.1007/s00134-009-1723-x. Lerolle N, Nochy D, Guérot E, et al. 2010. Histopathology of septic shock induced renal injury: apoptosis and leukocytic infiltration. Intensive Care Medicine 36:471–478. doi: 10.​1007/​s00134-009-1723-x.
33.
go back to reference Gareth D. Hyde, Rebecca F. Taylor, Nick Ashton, et al. 2014. Axl tyrosine kinase protects against tubulo-interstitial apoptosis and progression of renal failure in a murine model of chronic kidney disease and hyperphosphataemia. PLOS One 9:e102096. doi:10.1371/journal.pone.0102096. Gareth D. Hyde, Rebecca F. Taylor, Nick Ashton, et al. 2014. Axl tyrosine kinase protects against tubulo-interstitial apoptosis and progression of renal failure in a murine model of chronic kidney disease and hyperphosphataemia. PLOS One 9:e102096. doi:10.​1371/​journal.​pone.​0102096.
Metadata
Title
Protective Effects of Growth Arrest-Specific Protein 6 (Gas6) on Sepsis-Induced Acute Kidney Injury
Authors
Long-wang Chen
Wei Chen
Zhi-qiang Hu
Jia-lan Bian
Lan Ying
Guang-liang Hong
Qiao-meng Qiu
Guang-ju Zhao
Zhong-qiu Lu
Publication date
01-04-2016
Publisher
Springer US
Published in
Inflammation / Issue 2/2016
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-015-0282-2

Other articles of this Issue 2/2016

Inflammation 2/2016 Go to the issue