Skip to main content
Top
Published in: Inflammation 3/2014

01-06-2014

The PPARβ/δ Agonist GW501516 Attenuates Peritonitis in Peritoneal Fibrosis via Inhibition of TAK1–NFκB Pathway in Rats

Authors: Xuesong Su, Guangyu Zhou, Yanqiu Wang, Xu Yang, Li Li, Rui Yu, Detian Li

Published in: Inflammation | Issue 3/2014

Login to get access

Abstract

Peritoneal fibrosis is a common consequence of long-term peritoneal dialysis (PD), and peritonitis is a factor in its onset. Agonist-bound peroxisome proliferator-activated receptors (PPARs) function as key regulators of energy metabolism and inflammation. Here, we examined the effects of PPARβ/δ agonist GW501516 on peritonitis in a rat peritoneal fibrosis model. Peritoneal fibrosis secondary to inflammation was induced into uremic rats by daily injection of Dianeal 4.25 % PD solutions along with six doses of lipopolysaccharide before commencement of GW501516 treatment. Normal non-uremic rats served as control, and all rats were fed with a control diet or a GW501516-containing diet. Compared to control group, exposure to PD fluids caused peritoneal fibrosis that was accompanied by increased mRNA levels of monocyte chemoattractant protein-1, tumor necrotic factor-α, and interleukin-6 in the uremic rats, and these effects were prevented by GW501516 treatment. Moreover, GW501516 was found to attenuate glucose-stimulated inflammation in cultured rat peritoneal mesothelial cells via inhibition of transforming growth factor-β-activated kinase 1 (TAK1), and nuclear factor kappa B (NFκB) signaling pathway (TAK1–NFκB pathway), a main inflammation regulatory pathway. In conclusion, inhibition of TAK1–NFκB pathway with GW501516 may represent a novel therapeutic approach to ameliorate peritonitis-induced peritoneal fibrosis for patients on PD.
Literature
1.
go back to reference Levey, A.S., R. Atkins, J. Coresh, E.P. Cohen, A.J. Collins, K.U. Eckardt, M.E. Nahas, B.L. Jaber, M. Jadoul, A. Levin, N.R. Powe, J. Rossert, D.C. Wheeler, N. Lameire, and G. Eknoyan. 2007. Chronic kidney disease as a global public health problem: approaches and initiatives—a position statement from Kidney Disease Improving Global Outcomes. Kidney International 72: 247–259.PubMedCrossRef Levey, A.S., R. Atkins, J. Coresh, E.P. Cohen, A.J. Collins, K.U. Eckardt, M.E. Nahas, B.L. Jaber, M. Jadoul, A. Levin, N.R. Powe, J. Rossert, D.C. Wheeler, N. Lameire, and G. Eknoyan. 2007. Chronic kidney disease as a global public health problem: approaches and initiatives—a position statement from Kidney Disease Improving Global Outcomes. Kidney International 72: 247–259.PubMedCrossRef
2.
go back to reference Weiner, D.E. 2007. Causes and consequences of chronic kidney disease: implications for managed health care. Journal Of Managed Care Pharmacy 13: S1–S9.PubMed Weiner, D.E. 2007. Causes and consequences of chronic kidney disease: implications for managed health care. Journal Of Managed Care Pharmacy 13: S1–S9.PubMed
3.
go back to reference Kramann, R., J. Floege, M. Ketteler, N. Marx, and V.M. Brandenburg. 2012. Medical options to fight mortality in end-stage renal disease: a review of the literature. Nephrology Dialysis Transplantation 27: 4298–4307.CrossRef Kramann, R., J. Floege, M. Ketteler, N. Marx, and V.M. Brandenburg. 2012. Medical options to fight mortality in end-stage renal disease: a review of the literature. Nephrology Dialysis Transplantation 27: 4298–4307.CrossRef
4.
go back to reference Margetts, P.J., and P. Bonniaud. 2003. Basic mechanisms and clinical implications of peritoneal fibrosis. Peritoneal Dialysis International 23: 530–541.PubMed Margetts, P.J., and P. Bonniaud. 2003. Basic mechanisms and clinical implications of peritoneal fibrosis. Peritoneal Dialysis International 23: 530–541.PubMed
5.
go back to reference Chow, F.Y., D.J. Nikolic-Paterson, E. Ozols, R.C. Atkins, B.J. Rollin, and G.H. Tesch. 2006. Monocyte chemoattractant protein-1 promotes the development of diabetic renal injury in streptozotocin-treated mice. Kidney International 69: 73–80.PubMedCrossRef Chow, F.Y., D.J. Nikolic-Paterson, E. Ozols, R.C. Atkins, B.J. Rollin, and G.H. Tesch. 2006. Monocyte chemoattractant protein-1 promotes the development of diabetic renal injury in streptozotocin-treated mice. Kidney International 69: 73–80.PubMedCrossRef
6.
go back to reference Shim, J., H.O. Byun, Y.D. Lee, E.S. Lee, and S. Sohn. 2009. Interleukin-6 small interfering RNA improved the herpes simplex virus-induced systemic inflammation in vivo Behcet’s disease-like mouse model. Gene Therapy 16: 415–425.PubMedCrossRef Shim, J., H.O. Byun, Y.D. Lee, E.S. Lee, and S. Sohn. 2009. Interleukin-6 small interfering RNA improved the herpes simplex virus-induced systemic inflammation in vivo Behcet’s disease-like mouse model. Gene Therapy 16: 415–425.PubMedCrossRef
7.
go back to reference Krediet, R.T., and D.G. Struijk. 2013. Peritoneal changes in patients on long-term peritoneal dialysis. Nature Reviews Nephrology 9: 419–429.PubMedCrossRef Krediet, R.T., and D.G. Struijk. 2013. Peritoneal changes in patients on long-term peritoneal dialysis. Nature Reviews Nephrology 9: 419–429.PubMedCrossRef
8.
go back to reference Williams, J.D., K.J. Craig, N. Topley, C. Von Ruhland, M. Fallon, G.R. Newman, R.K. Mackenzie, and G.T. Williams. 2002. Morphologic changes in the peritoneal membrane of patients with renal disease. Journal of the American Society of Nephrology 13: 470–479.PubMed Williams, J.D., K.J. Craig, N. Topley, C. Von Ruhland, M. Fallon, G.R. Newman, R.K. Mackenzie, and G.T. Williams. 2002. Morphologic changes in the peritoneal membrane of patients with renal disease. Journal of the American Society of Nephrology 13: 470–479.PubMed
9.
go back to reference Williams, J.D., K.J. Craig, N. Topley, and G.T. Williams. 2003. Peritoneal dialysis: changes to the structure of the peritoneal membrane and potential for biocompatible solutions. Kidney International 84: S158–161.PubMedCrossRef Williams, J.D., K.J. Craig, N. Topley, and G.T. Williams. 2003. Peritoneal dialysis: changes to the structure of the peritoneal membrane and potential for biocompatible solutions. Kidney International 84: S158–161.PubMedCrossRef
10.
go back to reference Brown, J.D., and J. Plutzky. 2007. Peroxisome proliferator-activated receptors as transcriptional nodal points and therapeutic targets. Circulation 115: 518–533.PubMedCrossRef Brown, J.D., and J. Plutzky. 2007. Peroxisome proliferator-activated receptors as transcriptional nodal points and therapeutic targets. Circulation 115: 518–533.PubMedCrossRef
11.
go back to reference Guan, Y., and M.D. Breyer. 2001. Peroxisome proliferator-activated receptors (PPARs): novel therapeutic targets in renal disease. Kidney International 60: 14–30.PubMedCrossRef Guan, Y., and M.D. Breyer. 2001. Peroxisome proliferator-activated receptors (PPARs): novel therapeutic targets in renal disease. Kidney International 60: 14–30.PubMedCrossRef
12.
go back to reference Gervois, P., J.C. Fruchart, and B. Staels. 2007. Drug Insight: mechanisms of action and therapeutic applications for agonists of peroxisome proliferator-activated receptors. Nature Clinical Practice Endocrinology & Metabolism 3: 145–156.CrossRef Gervois, P., J.C. Fruchart, and B. Staels. 2007. Drug Insight: mechanisms of action and therapeutic applications for agonists of peroxisome proliferator-activated receptors. Nature Clinical Practice Endocrinology & Metabolism 3: 145–156.CrossRef
13.
go back to reference Wang, Y.X., C.H. Lee, S. Tiep, R.T. Yu, J. Ham, H. Kang, and R.M. Evans. 2003. Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity. Cell 113: 159–170.PubMedCrossRef Wang, Y.X., C.H. Lee, S. Tiep, R.T. Yu, J. Ham, H. Kang, and R.M. Evans. 2003. Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity. Cell 113: 159–170.PubMedCrossRef
14.
go back to reference Barish, G.D., A.R. Atkins, M. Downes, P. Olson, L.W. Chong, M. Nelson, Y. Zou, H. Hwang, H. Kang, L. Curtiss, R.M. Evans, and C.H. Lee. 2008. PPARdelta regulates multiple proinflammatory pathways to suppress atherosclerosis. Proceedings of the National Academy of Sciences of the United States of America 105: 4271–4276.PubMedCentralPubMedCrossRef Barish, G.D., A.R. Atkins, M. Downes, P. Olson, L.W. Chong, M. Nelson, Y. Zou, H. Hwang, H. Kang, L. Curtiss, R.M. Evans, and C.H. Lee. 2008. PPARdelta regulates multiple proinflammatory pathways to suppress atherosclerosis. Proceedings of the National Academy of Sciences of the United States of America 105: 4271–4276.PubMedCentralPubMedCrossRef
15.
go back to reference Takata, Y., J. Liu, F. Yin, A.R. Collins, C.J. Lyon, C.H. Lee, A.R. Atkins, M. Downes, G.D. Barish, R.M. Evans, W.A. Hsueh, and R.K. Tangirala. 2008. PPAR delta-mediated antiinflammatory mechanisms inhibit angiotensin II-accelerated atherosclerosis. Proceedings of the National Academy of Sciences of the United States of America 105: 4277–4282.PubMedCentralPubMedCrossRef Takata, Y., J. Liu, F. Yin, A.R. Collins, C.J. Lyon, C.H. Lee, A.R. Atkins, M. Downes, G.D. Barish, R.M. Evans, W.A. Hsueh, and R.K. Tangirala. 2008. PPAR delta-mediated antiinflammatory mechanisms inhibit angiotensin II-accelerated atherosclerosis. Proceedings of the National Academy of Sciences of the United States of America 105: 4277–4282.PubMedCentralPubMedCrossRef
16.
go back to reference Yang, X., S. Kume, Y. Tanaka, K. Isshiki, S. Araki, M. Chin-Kanasaki, T. Sugimoto, D. Koya, M. Haneda, T. Sugaya, D. Li, P. Han, Y. Nishio, A. Kashiwagi, H. Maegawa, and T. Uzu. 2011. GW501516, a PPARdelta agonist, ameliorates tubulointerstitial inflammation in proteinuric kidney disease via inhibition of TAK1-NFkappaB pathway in mice. PLoS One 6: e25271.PubMedCentralPubMedCrossRef Yang, X., S. Kume, Y. Tanaka, K. Isshiki, S. Araki, M. Chin-Kanasaki, T. Sugimoto, D. Koya, M. Haneda, T. Sugaya, D. Li, P. Han, Y. Nishio, A. Kashiwagi, H. Maegawa, and T. Uzu. 2011. GW501516, a PPARdelta agonist, ameliorates tubulointerstitial inflammation in proteinuric kidney disease via inhibition of TAK1-NFkappaB pathway in mice. PLoS One 6: e25271.PubMedCentralPubMedCrossRef
17.
go back to reference Piqueras, L., M.J. Sanz, M. Perretti, E. Morcillo, L. Norling, J.A. Mitchell, Y. Li, and D. Bishop-Bailey. 2009. Activation of PPARbeta/delta inhibits leukocyte recruitment, cell adhesion molecule expression, and chemokine release. Journal of Leukocyte Biology 86: 115–122.PubMedCrossRef Piqueras, L., M.J. Sanz, M. Perretti, E. Morcillo, L. Norling, J.A. Mitchell, Y. Li, and D. Bishop-Bailey. 2009. Activation of PPARbeta/delta inhibits leukocyte recruitment, cell adhesion molecule expression, and chemokine release. Journal of Leukocyte Biology 86: 115–122.PubMedCrossRef
18.
go back to reference Oliver Jr., W.R., J.L. Shenk, M.R. Snaith, C.S. Russell, K.D. Plunket, N.L. Bodkin, M.C. Lewis, D.A. Winegar, M.L. Sznaidman, M.H. Lambert, H.E. Xu, D.D. Sternbach, S.A. Kliewer, B.C. Hansen, and T.M. Willson. 2001. A selective peroxisome proliferator-activated receptor delta agonist promotes reverse cholesterol transport. Proceedings of the National Academy of Sciences of the United States of America 98: 5306–5311.PubMedCentralPubMedCrossRef Oliver Jr., W.R., J.L. Shenk, M.R. Snaith, C.S. Russell, K.D. Plunket, N.L. Bodkin, M.C. Lewis, D.A. Winegar, M.L. Sznaidman, M.H. Lambert, H.E. Xu, D.D. Sternbach, S.A. Kliewer, B.C. Hansen, and T.M. Willson. 2001. A selective peroxisome proliferator-activated receptor delta agonist promotes reverse cholesterol transport. Proceedings of the National Academy of Sciences of the United States of America 98: 5306–5311.PubMedCentralPubMedCrossRef
19.
go back to reference Margetts, P.J., and P. Bonniaud. 2003. Basic mechanisms and clinical implications of peritoneal fibrosis. Peritoneal Dialysis International 23: 530–541.PubMed Margetts, P.J., and P. Bonniaud. 2003. Basic mechanisms and clinical implications of peritoneal fibrosis. Peritoneal Dialysis International 23: 530–541.PubMed
20.
go back to reference Guo, H., J.C. Leung, M.F. Lam, L.Y. Chan, A.W. Tsang, H.Y. Lan, and K.N. Lai. 2007. Smad7 transgene attenuates peritoneal fibrosis in uremic rats treated with peritoneal dialysis. Journal of the American Society of Nephrology 18: 2689–2703.PubMedCrossRef Guo, H., J.C. Leung, M.F. Lam, L.Y. Chan, A.W. Tsang, H.Y. Lan, and K.N. Lai. 2007. Smad7 transgene attenuates peritoneal fibrosis in uremic rats treated with peritoneal dialysis. Journal of the American Society of Nephrology 18: 2689–2703.PubMedCrossRef
21.
go back to reference Song, S.H., I.S. Kwak, B.Y. Yang, D.W. Lee, S.B. Lee, and M.Y. Lee. 2009. Role of rosiglitazone in lipopolysaccharide-induced peritonitis: a rat peritoneal dialysis model. Nephrology (Carlton, Vic.) 14: 155–163.CrossRef Song, S.H., I.S. Kwak, B.Y. Yang, D.W. Lee, S.B. Lee, and M.Y. Lee. 2009. Role of rosiglitazone in lipopolysaccharide-induced peritonitis: a rat peritoneal dialysis model. Nephrology (Carlton, Vic.) 14: 155–163.CrossRef
22.
go back to reference Schaller, E., A.J. Macfarlane, R.A. Rupec, S. Gordon, A.J. McKnight, and K. Pfeffer. 2002. Inactivation of the F4/80 glycoprotein in the mouse germ line. Molecular and Cellular Biology 22: 8035–8043.PubMedCentralPubMedCrossRef Schaller, E., A.J. Macfarlane, R.A. Rupec, S. Gordon, A.J. McKnight, and K. Pfeffer. 2002. Inactivation of the F4/80 glycoprotein in the mouse germ line. Molecular and Cellular Biology 22: 8035–8043.PubMedCentralPubMedCrossRef
23.
go back to reference Bot, J., D. Whitaker, J. Vivian, R. Lake, V. Yao, and R. McCauley. 2003. Culturing mouse peritoneal mesothelial cells. Pathology Research and Practice 199: 341–344.CrossRef Bot, J., D. Whitaker, J. Vivian, R. Lake, V. Yao, and R. McCauley. 2003. Culturing mouse peritoneal mesothelial cells. Pathology Research and Practice 199: 341–344.CrossRef
24.
go back to reference Muller, P.Y., H. Janovjak, A.R. Miserez, and Z. Dobbie. 2002. Processing of gene expression data generated by quantitative real-time RT-PCR. Biotechniques 32: 1372–1374. 1376, 1378–1379.PubMed Muller, P.Y., H. Janovjak, A.R. Miserez, and Z. Dobbie. 2002. Processing of gene expression data generated by quantitative real-time RT-PCR. Biotechniques 32: 1372–1374. 1376, 1378–1379.PubMed
25.
go back to reference Talkington, D.F. 2013. Real-time PCR in food science: current technology and applications. Emerging Infectious Diseases 19: 1352–1353.PubMedCentralCrossRef Talkington, D.F. 2013. Real-time PCR in food science: current technology and applications. Emerging Infectious Diseases 19: 1352–1353.PubMedCentralCrossRef
26.
go back to reference Worrad, D.M., B.M. Turner, and R.M. Schultz. 1995. Temporally restricted spatial localization of acetylated isoforms of histone H4 and RNA polymerase II in the 2-cell mouse embryo. Development 121: 2949–2959.PubMed Worrad, D.M., B.M. Turner, and R.M. Schultz. 1995. Temporally restricted spatial localization of acetylated isoforms of histone H4 and RNA polymerase II in the 2-cell mouse embryo. Development 121: 2949–2959.PubMed
27.
go back to reference Kaneko, K., C. Hamada, and Y. Tomino. 2007. Peritoneal fibrosis intervention. Peritoneal Dialysis International 27: S82–S86.PubMed Kaneko, K., C. Hamada, and Y. Tomino. 2007. Peritoneal fibrosis intervention. Peritoneal Dialysis International 27: S82–S86.PubMed
28.
go back to reference Pletinck, A., R. Vanholder, N. Veys, and W. Van Biesen. 2012. Protecting the peritoneal membrane: factors beyond peritoneal dialysis solutions. Nature Reviews Nephrology 8: 542–550.PubMedCrossRef Pletinck, A., R. Vanholder, N. Veys, and W. Van Biesen. 2012. Protecting the peritoneal membrane: factors beyond peritoneal dialysis solutions. Nature Reviews Nephrology 8: 542–550.PubMedCrossRef
29.
go back to reference Tamura, M., A. Osajima, S. Nakayamada, H. Anai, N. Kabashima, K. Kanegae, T. Ota, Y. Tanaka, and Y. Nakashima. 2003. High glucose levels inhibit focal adhesion kinase-mediated wound healing of rat peritoneal mesothelial cells. Kidney International 63: 722–731.PubMedCrossRef Tamura, M., A. Osajima, S. Nakayamada, H. Anai, N. Kabashima, K. Kanegae, T. Ota, Y. Tanaka, and Y. Nakashima. 2003. High glucose levels inhibit focal adhesion kinase-mediated wound healing of rat peritoneal mesothelial cells. Kidney International 63: 722–731.PubMedCrossRef
30.
31.
go back to reference Fan, Y.H., Y. Yu, R.F. Mao, X.J. Tan, G.F. Xu, H. Zhang, X.B. Lu, S.B. Fu, and J. Yang. 2011. USP4 targets TAK1 to downregulate TNFalpha-induced NF-kappaB activation. Cell Death and Differentiation 18: 1547–1560.PubMedCentralPubMedCrossRef Fan, Y.H., Y. Yu, R.F. Mao, X.J. Tan, G.F. Xu, H. Zhang, X.B. Lu, S.B. Fu, and J. Yang. 2011. USP4 targets TAK1 to downregulate TNFalpha-induced NF-kappaB activation. Cell Death and Differentiation 18: 1547–1560.PubMedCentralPubMedCrossRef
32.
go back to reference Neri, T., C. Armani, A. Pegoli, C. Cordazzo, Y. Carmazzi, S. Brunelleschi, C. Bardelli, M.C. Breschi, P. Paggiaro, and A. Celi. 2011. Role of NF-kappaB and PPAR-gamma in lung inflammation induced by monocyte-derived microparticles. European Respiratory Journal 37: 1494–1502.PubMedCrossRef Neri, T., C. Armani, A. Pegoli, C. Cordazzo, Y. Carmazzi, S. Brunelleschi, C. Bardelli, M.C. Breschi, P. Paggiaro, and A. Celi. 2011. Role of NF-kappaB and PPAR-gamma in lung inflammation induced by monocyte-derived microparticles. European Respiratory Journal 37: 1494–1502.PubMedCrossRef
33.
go back to reference Kostadinova, R., A. Montagner, E. Gouranton, S. Fleury, H. Guillou, D. Dombrowicz, P. Desreumaux, and W. Wahli. 2012. GW501516-activated PPARbeta/delta promotes liver fibrosis via p38-JNK MAPK-induced hepatic stellate cell proliferation. Cell Bioscience 2: 34.PubMedCentralPubMedCrossRef Kostadinova, R., A. Montagner, E. Gouranton, S. Fleury, H. Guillou, D. Dombrowicz, P. Desreumaux, and W. Wahli. 2012. GW501516-activated PPARbeta/delta promotes liver fibrosis via p38-JNK MAPK-induced hepatic stellate cell proliferation. Cell Bioscience 2: 34.PubMedCentralPubMedCrossRef
34.
go back to reference Wenzel, U., A. Schneider, A.J. Valente, H.E. Abboud, F. Thaiss, U.M. Helmchen, and R.A. Stahl. 1997. Monocyte chemoattractant protein-1 mediates monocyte/macrophage influx in anti-thymocyte antibody-induced glomerulonephritis. Kidney International 51: 770–776.PubMedCrossRef Wenzel, U., A. Schneider, A.J. Valente, H.E. Abboud, F. Thaiss, U.M. Helmchen, and R.A. Stahl. 1997. Monocyte chemoattractant protein-1 mediates monocyte/macrophage influx in anti-thymocyte antibody-induced glomerulonephritis. Kidney International 51: 770–776.PubMedCrossRef
35.
go back to reference Stenvinkel, P., M. Ketteler, R.J. Johnson, B. Lindholm, R. Pecoits-Filho, M. Riella, O. Heimburger, T. Cederholm, and M. Girndt. 2005. IL-10, IL-6, and TNF-alpha: central factors in the altered cytokine network of uremia—the good, the bad, and the ugly. Kidney International 67: 1216–1233.PubMedCrossRef Stenvinkel, P., M. Ketteler, R.J. Johnson, B. Lindholm, R. Pecoits-Filho, M. Riella, O. Heimburger, T. Cederholm, and M. Girndt. 2005. IL-10, IL-6, and TNF-alpha: central factors in the altered cytokine network of uremia—the good, the bad, and the ugly. Kidney International 67: 1216–1233.PubMedCrossRef
36.
go back to reference Biswas, S.K., and A. Sodhi. 2002. In vitro activation of murine peritoneal macrophages by monocyte chemoattractant protein-1: upregulation of CD11b, production of proinflammatory cytokines, and the signal transduction pathway. Journal of Interferon & Cytokine Research 22: 527–538.CrossRef Biswas, S.K., and A. Sodhi. 2002. In vitro activation of murine peritoneal macrophages by monocyte chemoattractant protein-1: upregulation of CD11b, production of proinflammatory cytokines, and the signal transduction pathway. Journal of Interferon & Cytokine Research 22: 527–538.CrossRef
37.
go back to reference Ferreira, A.M., S. Takagawa, R. Fresco, X. Zhu, J. Varga, and L.A. DiPietro. 2006. Diminished induction of skin fibrosis in mice with MCP-1 deficiency. Journal of Investigative Dermatology 126: 1900–1908.PubMedCrossRef Ferreira, A.M., S. Takagawa, R. Fresco, X. Zhu, J. Varga, and L.A. DiPietro. 2006. Diminished induction of skin fibrosis in mice with MCP-1 deficiency. Journal of Investigative Dermatology 126: 1900–1908.PubMedCrossRef
38.
go back to reference Kassel, K.M., G.L. Guo, O. Tawfik, and J.P. Luyendyk. 2010. Monocyte chemoattractant protein-1 deficiency does not affect steatosis or inflammation in livers of mice fed a methionine-choline-deficient diet. Laboratory Investigation 90: 1794–1804.PubMedCentralPubMedCrossRef Kassel, K.M., G.L. Guo, O. Tawfik, and J.P. Luyendyk. 2010. Monocyte chemoattractant protein-1 deficiency does not affect steatosis or inflammation in livers of mice fed a methionine-choline-deficient diet. Laboratory Investigation 90: 1794–1804.PubMedCentralPubMedCrossRef
39.
go back to reference Westergaard, M., J. Henningsen, C. Johansen, S. Rasmussen, M.L. Svendsen, U.B. Jensen, H.D. Schroder, B. Staels, L. Iversen, L. Bolund, K. Kragballe, and K. Kristiansen. 2003. Expression and localization of peroxisome proliferator-activated receptors and nuclear factor kappaB in normal and lesional psoriatic skin. Journal of Investigative Dermatology 121: 1104–1117.PubMedCrossRef Westergaard, M., J. Henningsen, C. Johansen, S. Rasmussen, M.L. Svendsen, U.B. Jensen, H.D. Schroder, B. Staels, L. Iversen, L. Bolund, K. Kragballe, and K. Kristiansen. 2003. Expression and localization of peroxisome proliferator-activated receptors and nuclear factor kappaB in normal and lesional psoriatic skin. Journal of Investigative Dermatology 121: 1104–1117.PubMedCrossRef
40.
go back to reference Coll, T., D. Alvarez-Guardia, E. Barroso, A.M. Gomez-Foix, X. Palomer, J.C. Laguna, and M. Vazquez-Carrera. 2010. Activation of peroxisome proliferator-activated receptor-{delta} by GW501516 prevents fatty acid-induced nuclear factor-{kappa}B activation and insulin resistance in skeletal muscle cells. Endocrinology 151: 1560–1569.PubMedCrossRef Coll, T., D. Alvarez-Guardia, E. Barroso, A.M. Gomez-Foix, X. Palomer, J.C. Laguna, and M. Vazquez-Carrera. 2010. Activation of peroxisome proliferator-activated receptor-{delta} by GW501516 prevents fatty acid-induced nuclear factor-{kappa}B activation and insulin resistance in skeletal muscle cells. Endocrinology 151: 1560–1569.PubMedCrossRef
41.
go back to reference Barroso, E., E. Eyre, X. Palomer, and M. Vazquez-Carrera. 2011. The peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) agonist GW501516 prevents TNF-alpha-induced NF-kappaB activation in human HaCaT cells by reducing p65 acetylation through AMPK and SIRT1. Biochemical Pharmacology 81: 534–543.PubMedCrossRef Barroso, E., E. Eyre, X. Palomer, and M. Vazquez-Carrera. 2011. The peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) agonist GW501516 prevents TNF-alpha-induced NF-kappaB activation in human HaCaT cells by reducing p65 acetylation through AMPK and SIRT1. Biochemical Pharmacology 81: 534–543.PubMedCrossRef
42.
go back to reference Douvdevani, A., O. Abramson, A. Tamir, A. Konforty, N. Isakov, and C. Chaimovitz. 1995. Commercial dialysate inhibits TNF alpha mRNA expression and NF-kappa B DNA-binding activity in LPS-stimulated macrophages. Kidney International 47: 1537–1545.PubMedCrossRef Douvdevani, A., O. Abramson, A. Tamir, A. Konforty, N. Isakov, and C. Chaimovitz. 1995. Commercial dialysate inhibits TNF alpha mRNA expression and NF-kappa B DNA-binding activity in LPS-stimulated macrophages. Kidney International 47: 1537–1545.PubMedCrossRef
44.
go back to reference Li, Q., and I.M. Verma. 2002. NF-kappaB regulation in the immune system. Nature Reviews Immunology 2: 725–734.PubMedCrossRef Li, Q., and I.M. Verma. 2002. NF-kappaB regulation in the immune system. Nature Reviews Immunology 2: 725–734.PubMedCrossRef
45.
go back to reference Ghosh, S., and M.S. Hayden. 2008. New regulators of NF-kappaB in inflammation. Nature Reviews Immunology 8: 837–848.PubMedCrossRef Ghosh, S., and M.S. Hayden. 2008. New regulators of NF-kappaB in inflammation. Nature Reviews Immunology 8: 837–848.PubMedCrossRef
Metadata
Title
The PPARβ/δ Agonist GW501516 Attenuates Peritonitis in Peritoneal Fibrosis via Inhibition of TAK1–NFκB Pathway in Rats
Authors
Xuesong Su
Guangyu Zhou
Yanqiu Wang
Xu Yang
Li Li
Rui Yu
Detian Li
Publication date
01-06-2014
Publisher
Springer US
Published in
Inflammation / Issue 3/2014
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-013-9791-z

Other articles of this Issue 3/2014

Inflammation 3/2014 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.