Skip to main content
Top
Published in: Inflammation 2/2012

01-04-2012

Proinflammatory Stimulants Promote the Expression of a Promiscuous G Protein-Coupled Receptor, mFPR2, in Microvascular Endothelial Cells

Authors: Haiwei Mou, Zongmeng Li, Yan Kong, Bo Deng, Lihua Qian, Ji Ming Wang, Yingying Le

Published in: Inflammation | Issue 2/2012

Login to get access

Abstract

Human formylpeptide receptor 2 (FPR2) and its mouse homologue mFPR2 belong to the G protein-coupled, seven-transmembrane receptor superfamily. Both FPR2 and mFPR2 recognize a variety of exogenous and host-derived chemotactic peptides associated with proinflammatory conditions. Since endothelial cells actively participate in inflammation, we investigated whether microvascular endothelial cells express mFPR2 and its regulation by proinflammatory factors. We found that resting primary mouse microvascular endothelial cells and a cell line bEnd.3 expressed low levels of mFPR2 at both mRNA and protein levels, which was markedly enhanced by two key proinflammatory stimulants, lipopolysaccharide (LPS) and interleukin (IL)-1β. While the inductive effect of LPS was dependent on the JNK MAP kinase, both JNK and ERK MAP kinases were utilized by IL-1β to enhance mFPR2 expression. Overexpression of dominant-negative IκBα attenuated LPS- and IL-1β-induced mFPR2 expression, indicating an essential role for NF-κB in regulating mFPR2 expression in endothelial cells by proinflammatory stimulants. Our results suggest that upregulated mFPR2 in vascular endothelial cells under inflammatory conditions may mediate cell responses in diseases in which mFPR2 agonists are elevated.
Literature
1.
go back to reference Ye, R.D., S.L. Cavanagh, O. Quehenberger, E.R. Prossnitz, and C.G. Cochrane. 1992. Isolation of a cDNA that encodes a novel granulocyte N-formyl peptide receptor. Biochem. Biophys. Res. Commun 184: 582–589.PubMedCrossRef Ye, R.D., S.L. Cavanagh, O. Quehenberger, E.R. Prossnitz, and C.G. Cochrane. 1992. Isolation of a cDNA that encodes a novel granulocyte N-formyl peptide receptor. Biochem. Biophys. Res. Commun 184: 582–589.PubMedCrossRef
2.
go back to reference Yang, D., Q. Chen, Y. Le, J.M. Wang, and J.J. Oppenheim. 2001. Differential regulation of formyl peptide receptor-like 1 expression during the differentiation of monocytes to dendritic cells and macrophages. J. Immunol 166: 4092–4098.PubMed Yang, D., Q. Chen, Y. Le, J.M. Wang, and J.J. Oppenheim. 2001. Differential regulation of formyl peptide receptor-like 1 expression during the differentiation of monocytes to dendritic cells and macrophages. J. Immunol 166: 4092–4098.PubMed
3.
go back to reference Le, Y., W. Gong, H.L. Tiffany, A. Tumanov, S. Nedospasov, W. Shen, N.M. Dunlop, J.L. Gao, P.M. Murphy, J.J. Oppenheim, and J.M. Wang. 2001. Amyloid (beta)42 activates a G-protein-coupled chemoattractant receptor, FPR-like-1. J. Neurosci. 21: RC123.PubMed Le, Y., W. Gong, H.L. Tiffany, A. Tumanov, S. Nedospasov, W. Shen, N.M. Dunlop, J.L. Gao, P.M. Murphy, J.J. Oppenheim, and J.M. Wang. 2001. Amyloid (beta)42 activates a G-protein-coupled chemoattractant receptor, FPR-like-1. J. Neurosci. 21: RC123.PubMed
4.
go back to reference Brandenburg, L.O., M. Konrad, C.J. Wruck, T. Koch, R. Lucius, and T. Pufe. 2010. Functional and physical interactions between formyl-peptide-receptors and scavenger receptor MARCO and their involvement in amyloid beta 1-42-induced signal transduction in glial cells. J. Neurochem 113: 749–760.PubMedCrossRef Brandenburg, L.O., M. Konrad, C.J. Wruck, T. Koch, R. Lucius, and T. Pufe. 2010. Functional and physical interactions between formyl-peptide-receptors and scavenger receptor MARCO and their involvement in amyloid beta 1-42-induced signal transduction in glial cells. J. Neurochem 113: 749–760.PubMedCrossRef
5.
go back to reference Brandenburg, L.O., S. Seyferth, C.J. Wruck, T. Koch, P. Rosenstiel, R. Lucius, and T. Pufe. 2009. Involvement of phospholipase D 1 and 2 in the subcellular localization and activity of formyl-peptide-receptors in the human colonic cell line HT29. Mol. Membr. Biol 26: 371–383.PubMedCrossRef Brandenburg, L.O., S. Seyferth, C.J. Wruck, T. Koch, P. Rosenstiel, R. Lucius, and T. Pufe. 2009. Involvement of phospholipase D 1 and 2 in the subcellular localization and activity of formyl-peptide-receptors in the human colonic cell line HT29. Mol. Membr. Biol 26: 371–383.PubMedCrossRef
6.
go back to reference O'Hara, R., E.P. Murphy, A.S. Whitehead, O. FitzGerald, and B. Bresnihan. 2004. Local expression of the serum amyloid A and formyl peptide receptor-like 1 genes in synovial tissue is associated with matrix metalloproteinase production in patients with inflammatory arthritis. Arthritis. Rheum 50: 1788–1799.PubMedCrossRef O'Hara, R., E.P. Murphy, A.S. Whitehead, O. FitzGerald, and B. Bresnihan. 2004. Local expression of the serum amyloid A and formyl peptide receptor-like 1 genes in synovial tissue is associated with matrix metalloproteinase production in patients with inflammatory arthritis. Arthritis. Rheum 50: 1788–1799.PubMedCrossRef
7.
go back to reference Le, Y., P.M. Murphy, and J.M. Wang. 2002. Formyl-peptide receptors revisited. Trends. Immunol 23: 541–548.PubMedCrossRef Le, Y., P.M. Murphy, and J.M. Wang. 2002. Formyl-peptide receptors revisited. Trends. Immunol 23: 541–548.PubMedCrossRef
8.
go back to reference Tiffany, H.L., M.C. Lavigne, Y.H. Cui, J.M. Wang, T.L. Leto, J.L. Gao, and P.M. Murphy. 2001. Amyloid-beta induces chemotaxis and oxidant stress by acting at formylpeptide receptor 2, a G protein-coupled receptor expressed in phagocytes and brain. J. Biol. Chem 276: 23645–23652.PubMedCrossRef Tiffany, H.L., M.C. Lavigne, Y.H. Cui, J.M. Wang, T.L. Leto, J.L. Gao, and P.M. Murphy. 2001. Amyloid-beta induces chemotaxis and oxidant stress by acting at formylpeptide receptor 2, a G protein-coupled receptor expressed in phagocytes and brain. J. Biol. Chem 276: 23645–23652.PubMedCrossRef
9.
go back to reference Liang, T.S., J.M. Wang, P.M. Murphy, and J.L. Gao. 2000. Serum amyloid A is a chemotactic agonist at FPR2, a low-affinity N-formylpeptide receptor on mouse neutrophils. Biochem. Biophys. Res. Commun 270: 331–335.PubMedCrossRef Liang, T.S., J.M. Wang, P.M. Murphy, and J.L. Gao. 2000. Serum amyloid A is a chemotactic agonist at FPR2, a low-affinity N-formylpeptide receptor on mouse neutrophils. Biochem. Biophys. Res. Commun 270: 331–335.PubMedCrossRef
10.
go back to reference Gavins, F.N., S. Yona, A.M. Kamal, R.J. Flower, and M. Perretti. 2003. Leukocyte antiadhesive actions of annexin 1: ALXR- and FPR-related anti-inflammatory mechanisms. Blood 101: 4140–4147.PubMedCrossRef Gavins, F.N., S. Yona, A.M. Kamal, R.J. Flower, and M. Perretti. 2003. Leukocyte antiadhesive actions of annexin 1: ALXR- and FPR-related anti-inflammatory mechanisms. Blood 101: 4140–4147.PubMedCrossRef
11.
go back to reference Lee, H.Y., H.K. Kang, E.J. Jo, J.I. Kim, Y.N. Lee, S.H. Lee, Y.M. Park, S.H. Ryu, J.Y. Kwak, and Y.S. Bae. 2004. Trp-Lys-Tyr-Met-Val-Met stimulates phagocytosis via phospho-lipase D-dependent signaling in mouse dendritic cells. Exp. Mol. Med 6: 135–144. Lee, H.Y., H.K. Kang, E.J. Jo, J.I. Kim, Y.N. Lee, S.H. Lee, Y.M. Park, S.H. Ryu, J.Y. Kwak, and Y.S. Bae. 2004. Trp-Lys-Tyr-Met-Val-Met stimulates phagocytosis via phospho-lipase D-dependent signaling in mouse dendritic cells. Exp. Mol. Med 6: 135–144.
12.
go back to reference Cui, Y.H., Y. Le, X. Zhang, W. Gong, K. Abe, R. Sun, J. Van Damme, P. Proost, and J.M. Wang. 2002. Up-regulation of FPR2, a chemotactic receptor for amyloid beta 1–42 (A beta 42), in murine microglial cells by TNF alpha. Neurobiol. Dis 10: 366–377.PubMedCrossRef Cui, Y.H., Y. Le, X. Zhang, W. Gong, K. Abe, R. Sun, J. Van Damme, P. Proost, and J.M. Wang. 2002. Up-regulation of FPR2, a chemotactic receptor for amyloid beta 1–42 (A beta 42), in murine microglial cells by TNF alpha. Neurobiol. Dis 10: 366–377.PubMedCrossRef
13.
go back to reference Dufton, N., R. Hannon, V. Brancaleone, J. Dalli, H.B. Patel, M. Gray, F. D'Acquisto, J.C. Buckingham, M. Perretti, and R.J. Flower. 2010. Anti-inflammatory role of the murine formyl-peptide receptor 2: ligand-specific effects on leukocyte responses and experimental inflammation. J. Immunol 184: 2611–2619.PubMedCrossRef Dufton, N., R. Hannon, V. Brancaleone, J. Dalli, H.B. Patel, M. Gray, F. D'Acquisto, J.C. Buckingham, M. Perretti, and R.J. Flower. 2010. Anti-inflammatory role of the murine formyl-peptide receptor 2: ligand-specific effects on leukocyte responses and experimental inflammation. J. Immunol 184: 2611–2619.PubMedCrossRef
14.
go back to reference Chen, K., Y. Le, Y. Liu, W. Gong, G. Ying, J. Huang, T. Yoshimura, L. Tessarollo, and J.M. Wang. 2010. A critical role for the G protein-coupled receptor mFPR2 in airway inflammation and immune responses. J. Immunol. 184: 3331–3335.PubMedCrossRef Chen, K., Y. Le, Y. Liu, W. Gong, G. Ying, J. Huang, T. Yoshimura, L. Tessarollo, and J.M. Wang. 2010. A critical role for the G protein-coupled receptor mFPR2 in airway inflammation and immune responses. J. Immunol. 184: 3331–3335.PubMedCrossRef
15.
go back to reference Chen, K., P. Iribarren, J. Huang, L. Zhang, W. Gong, E.H. Cho, S. Lockett, N.M. Dunlop, and J.M. Wang. 2007. Induction of the formyl peptide receptor 2 in microglia by IFN-gamma and synergy with CD40 ligand. J. Immunol 178: 1759–1766.PubMed Chen, K., P. Iribarren, J. Huang, L. Zhang, W. Gong, E.H. Cho, S. Lockett, N.M. Dunlop, and J.M. Wang. 2007. Induction of the formyl peptide receptor 2 in microglia by IFN-gamma and synergy with CD40 ligand. J. Immunol 178: 1759–1766.PubMed
16.
go back to reference Cui, Y.H., Y. Le, W. Gong, P. Proost, J. Van Damme, W.J. Murphy, and J.M. Wang. 2002. Bacterial lipopolysaccharide selectively up-regulates the function of the chemotactic peptide receptor formyl peptide receptor 2 in murine microglial cells. J. Immunol 168: 434–442.PubMed Cui, Y.H., Y. Le, W. Gong, P. Proost, J. Van Damme, W.J. Murphy, and J.M. Wang. 2002. Bacterial lipopolysaccharide selectively up-regulates the function of the chemotactic peptide receptor formyl peptide receptor 2 in murine microglial cells. J. Immunol 168: 434–442.PubMed
17.
go back to reference Chen, K., P. Iribarren, J. Hu, J. Chen, W. Gong, E.H. Cho, S. Lockett, N.M. Dunlop, and J.M. Wang. 2006. Activation of Toll-like receptor 2 on microglia promotes cell uptake of Alzheimer disease-associated amyloid beta peptide. J. Biol. Chem 281: 3651–3659.PubMedCrossRef Chen, K., P. Iribarren, J. Hu, J. Chen, W. Gong, E.H. Cho, S. Lockett, N.M. Dunlop, and J.M. Wang. 2006. Activation of Toll-like receptor 2 on microglia promotes cell uptake of Alzheimer disease-associated amyloid beta peptide. J. Biol. Chem 281: 3651–3659.PubMedCrossRef
18.
go back to reference Chen, K., J. Huang, Y. Liu, W. Gong, Y. Cui, and J.M. Wang. 2009. Synergy of TRIF-dependent TLR3 and MyD88-dependent TLR7 in up-regulating expression of mouse FPR2, a promiscuous G-protein-coupled receptor, in microglial cells. J. Neuroimmunol 213: 69–77.PubMedCrossRef Chen, K., J. Huang, Y. Liu, W. Gong, Y. Cui, and J.M. Wang. 2009. Synergy of TRIF-dependent TLR3 and MyD88-dependent TLR7 in up-regulating expression of mouse FPR2, a promiscuous G-protein-coupled receptor, in microglial cells. J. Neuroimmunol 213: 69–77.PubMedCrossRef
19.
go back to reference Iribarren, P., K. Chen, J. Hu, W. Gong, E.H. Cho, S. Lockett, B. Uranchimeg, and J.M. Wang. 2005. CpG-containing oligodeoxynucleotide promotes microglial cell uptake of amyloid beta 1–42 peptide by up-regulating the expression of the G-protein- coupled receptor mFPR2. FASEB. J 19: 2032–2034.PubMed Iribarren, P., K. Chen, J. Hu, W. Gong, E.H. Cho, S. Lockett, B. Uranchimeg, and J.M. Wang. 2005. CpG-containing oligodeoxynucleotide promotes microglial cell uptake of amyloid beta 1–42 peptide by up-regulating the expression of the G-protein- coupled receptor mFPR2. FASEB. J 19: 2032–2034.PubMed
20.
go back to reference Pober, J.S., and W.C. Sessa. 2007. Evolving functions of endothelial cells in inflammation. Nat. Rev. Immunol 7: 803–815.PubMedCrossRef Pober, J.S., and W.C. Sessa. 2007. Evolving functions of endothelial cells in inflammation. Nat. Rev. Immunol 7: 803–815.PubMedCrossRef
21.
go back to reference Lee, H., S.D. Yl, J.W. Kim, J. Shim, K.K. Yun, and Y.S. Bae. 2009. Activation of formyl peptide receptor like-1 by serum amyloid A induces CCL2 production in human umbilical vein endothelial cells. Biochem. Biophys. Res. Commun 380: 313–317.PubMedCrossRef Lee, H., S.D. Yl, J.W. Kim, J. Shim, K.K. Yun, and Y.S. Bae. 2009. Activation of formyl peptide receptor like-1 by serum amyloid A induces CCL2 production in human umbilical vein endothelial cells. Biochem. Biophys. Res. Commun 380: 313–317.PubMedCrossRef
22.
go back to reference Cura, A.J., and A. Carruthers. 2010. Acute modulation of sugar transport in brain capillary endothelial cell cultures during activation of the metabolic stress pathway. J Biol. Chem 285: 15430–15439.PubMedCrossRef Cura, A.J., and A. Carruthers. 2010. Acute modulation of sugar transport in brain capillary endothelial cell cultures during activation of the metabolic stress pathway. J Biol. Chem 285: 15430–15439.PubMedCrossRef
23.
go back to reference Jung, S.S., and E. Levy. 2005. Murine cerebrovascular cells as a cell culture model for cerebral amyloid angiopathy: isolation of smooth muscle and endothelial cells from mouse brain. Methods. Mol. Biol 299: 211–219.PubMed Jung, S.S., and E. Levy. 2005. Murine cerebrovascular cells as a cell culture model for cerebral amyloid angiopathy: isolation of smooth muscle and endothelial cells from mouse brain. Methods. Mol. Biol 299: 211–219.PubMed
24.
go back to reference Yazawa, H., Z.X. Yu, Takeda, Y. Le, W. Gong, V.J. Ferrans, J.J. Oppenheim, C.C. Li, and J.M. Wang. 2001. Beta amyloid peptide (Abeta42) is internalized via the G-protein-coupled receptor FPRL1 and forms fibrillar aggregates in macrophages. FASEB. J. 15: 2454–2462.PubMedCrossRef Yazawa, H., Z.X. Yu, Takeda, Y. Le, W. Gong, V.J. Ferrans, J.J. Oppenheim, C.C. Li, and J.M. Wang. 2001. Beta amyloid peptide (Abeta42) is internalized via the G-protein-coupled receptor FPRL1 and forms fibrillar aggregates in macrophages. FASEB. J. 15: 2454–2462.PubMedCrossRef
25.
go back to reference Lee, H.Y., M.K. Kim, K.S. Park, Y.H. Bae, J. Yun, J.I. Park, J.Y. Kwak, and Y.S. Bae. 2005. Serum amyloid A stimulates matrix-metalloproteinase-9 upregulation via formyl peptide receptor like-1-mediated signaling in human monocytic cells. Biochem. Biophys. Res. Commun 330: 989–998.PubMedCrossRef Lee, H.Y., M.K. Kim, K.S. Park, Y.H. Bae, J. Yun, J.I. Park, J.Y. Kwak, and Y.S. Bae. 2005. Serum amyloid A stimulates matrix-metalloproteinase-9 upregulation via formyl peptide receptor like-1-mediated signaling in human monocytic cells. Biochem. Biophys. Res. Commun 330: 989–998.PubMedCrossRef
26.
go back to reference Lee, J.M., K. Yin, I. Hsin, S. Chen, J.D. Fryer, D.M. Holtzman, C.Y. Hsu, and J. Xu. 2005. Matrix metalloproteinase-9 in cerebral-amyloid-angiopathy-related hemorrhage. J. Neurol. Sci 229–230: 249–254.PubMedCrossRef Lee, J.M., K. Yin, I. Hsin, S. Chen, J.D. Fryer, D.M. Holtzman, C.Y. Hsu, and J. Xu. 2005. Matrix metalloproteinase-9 in cerebral-amyloid-angiopathy-related hemorrhage. J. Neurol. Sci 229–230: 249–254.PubMedCrossRef
27.
go back to reference Lee, J.M., K.J. Yin, I. Hsin, S. Chen, J.D. Fryer, D.M. Holtzman, C.Y. Hsu, and J. Xu. 2003. Matrix metalloproteinase-9 and spontaneous hemorrhage in an animal model of cerebral amyloid angiopathy. Ann. Neurol 54: 379–382.PubMedCrossRef Lee, J.M., K.J. Yin, I. Hsin, S. Chen, J.D. Fryer, D.M. Holtzman, C.Y. Hsu, and J. Xu. 2003. Matrix metalloproteinase-9 and spontaneous hemorrhage in an animal model of cerebral amyloid angiopathy. Ann. Neurol 54: 379–382.PubMedCrossRef
28.
go back to reference Su, S.B., W. Gong, J.L. Gao, W. Shen, P.M. Murphy, J.J. Oppenheim, and J.M. Wang. 1999. A seven-transmembrane, G protein-coupled receptor, FPRL1, mediates the chemotactic activity of serum amyloid A for human phagocytic cells. J. Exp. Med 189: 395–402.PubMedCrossRef Su, S.B., W. Gong, J.L. Gao, W. Shen, P.M. Murphy, J.J. Oppenheim, and J.M. Wang. 1999. A seven-transmembrane, G protein-coupled receptor, FPRL1, mediates the chemotactic activity of serum amyloid A for human phagocytic cells. J. Exp. Med 189: 395–402.PubMedCrossRef
29.
go back to reference Lee, M.S., S.A. Yoo, C.S. Cho, P.G. Suh, W.U. Kim, and S.H. Ryu. 2006. Serum amyloid A binding to formyl peptide receptor-like 1 induces synovial hyperplasia and angiogenesis. J. Immunol 177: 5585–5594.PubMed Lee, M.S., S.A. Yoo, C.S. Cho, P.G. Suh, W.U. Kim, and S.H. Ryu. 2006. Serum amyloid A binding to formyl peptide receptor-like 1 induces synovial hyperplasia and angiogenesis. J. Immunol 177: 5585–5594.PubMed
30.
go back to reference Mullan, R.H., B. Bresnihan, L. Golden-Mason, T. Markham, R. O'Hara, O. FitzGerald, D.J. Veale, and U. Fearon. 2006. Acute-phase serum amyloid A stimulation of angiogenesis, leukocyte recruitment, and matrix degradation in rheumatoid arthritis through an NF-kappaB-dependent signal transduction pathway. Arthritis. Rheum 54: 105–114.PubMedCrossRef Mullan, R.H., B. Bresnihan, L. Golden-Mason, T. Markham, R. O'Hara, O. FitzGerald, D.J. Veale, and U. Fearon. 2006. Acute-phase serum amyloid A stimulation of angiogenesis, leukocyte recruitment, and matrix degradation in rheumatoid arthritis through an NF-kappaB-dependent signal transduction pathway. Arthritis. Rheum 54: 105–114.PubMedCrossRef
31.
go back to reference Zhao, Y., S. Zhou, and C.K. Heng. 2007. Impact of serum amyloid A on tissue factor and tissue factor pathway inhibitor expression and activity in endothelial cells. Arterioscler. Thromb. Vasc. Biol 27: 1645–1650.PubMedCrossRef Zhao, Y., S. Zhou, and C.K. Heng. 2007. Impact of serum amyloid A on tissue factor and tissue factor pathway inhibitor expression and activity in endothelial cells. Arterioscler. Thromb. Vasc. Biol 27: 1645–1650.PubMedCrossRef
Metadata
Title
Proinflammatory Stimulants Promote the Expression of a Promiscuous G Protein-Coupled Receptor, mFPR2, in Microvascular Endothelial Cells
Authors
Haiwei Mou
Zongmeng Li
Yan Kong
Bo Deng
Lihua Qian
Ji Ming Wang
Yingying Le
Publication date
01-04-2012
Publisher
Springer US
Published in
Inflammation / Issue 2/2012
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-011-9358-9

Other articles of this Issue 2/2012

Inflammation 2/2012 Go to the issue