Skip to main content
Top
Published in: Heart Failure Reviews 6/2010

01-11-2010

Control of autocrine and paracrine myocardial signals: an emerging therapeutic strategy in heart failure

Authors: Vincenzo Lionetti, Giacomo Bianchi, Fabio A. Recchia, Carlo Ventura

Published in: Heart Failure Reviews | Issue 6/2010

Login to get access

Abstract

A growing body of evidence supports the hypothesis that autocrine and paracrine mechanisms, mediated by factors released by the resident cardiac cells, could play an essential role in the reparative process of the failing heart. Such signals may influence the function of cardiac stem cells via several mechanisms, among which the most extensively studied are cardiomyocyte survival and angiogenesis. Moreover, besides promoting cytoprotection and angiogenesis, paracrine factors released by resident cardiac cells may alter cardiac metabolism and extracellular matrix turnover, resulting in more favorable post-injury remodeling. It is reasonable to believe that critical intracellular signals are activated and modulated in a temporal and spatial manner exerting different effects, overall depending on the microenvironment changes present in the failing myocardium. The recent demonstration that chemically, mechanically or genetically activated cardiac cells may release peptides to protect tissue against ischemic injury provides a potential route to achieve the delivery of specific proteins produced by these cells for innovative pharmacological regenerative therapy of the heart. It is important to keep in mind that therapies currently used to treat heart failure (HF) and leading to improvement of cardiac function fail to induce tissue repair/regeneration. As a matter of facts, if specific autocrine/paracrine cell–derived factors that improve cardiac function will be identified, pharmacological-based therapy might be more easily translated into clinical benefits than cell-based therapy. This review will focus on the recent development of potential pharmacologic targets to promote and drive at molecular level the cardiac repair/regeneration in HF.
Literature
2.
go back to reference Bergmann O, Bhardwaj RD, Bernard S et al (2009) Evidence for cardiomyocyte renewal in humans. Science 324(5923):98–102CrossRefPubMed Bergmann O, Bhardwaj RD, Bernard S et al (2009) Evidence for cardiomyocyte renewal in humans. Science 324(5923):98–102CrossRefPubMed
3.
4.
go back to reference Herrmann JL, Abarbanell AM, Weil BR, Wang Y, Wang M, Tan J, Meldrum DR (2009) Cell-based therapy for ischemic heart disease: a clinical update. Ann Thorac Surg 88(5):1714–1722CrossRefPubMed Herrmann JL, Abarbanell AM, Weil BR, Wang Y, Wang M, Tan J, Meldrum DR (2009) Cell-based therapy for ischemic heart disease: a clinical update. Ann Thorac Surg 88(5):1714–1722CrossRefPubMed
5.
go back to reference Chachques JC (2009) Cellular cardiac regenerative therapy in which patients? Expert Rev Cardiovasc Ther 7(8):911–919CrossRefPubMed Chachques JC (2009) Cellular cardiac regenerative therapy in which patients? Expert Rev Cardiovasc Ther 7(8):911–919CrossRefPubMed
6.
go back to reference Menasche P (2009) Cell-based therapy for heart disease: a clinically oriented perspective. Mol Ther 17(5):758–766CrossRefPubMed Menasche P (2009) Cell-based therapy for heart disease: a clinically oriented perspective. Mol Ther 17(5):758–766CrossRefPubMed
7.
go back to reference Zsolt B, Kaley G (2009) Where have all stem cells gone? Circ Res 104:280–281CrossRef Zsolt B, Kaley G (2009) Where have all stem cells gone? Circ Res 104:280–281CrossRef
8.
go back to reference Leiker M, Suzuki G, Iyer VS, Canty JMJ, Lee T (2008) Assessment of a nuclear affinity labeling method for tracking implanted mesenchymal stem cells. Cell Transplant 17:911–922CrossRefPubMed Leiker M, Suzuki G, Iyer VS, Canty JMJ, Lee T (2008) Assessment of a nuclear affinity labeling method for tracking implanted mesenchymal stem cells. Cell Transplant 17:911–922CrossRefPubMed
9.
go back to reference Breitbach M, Bostani T, Roell W et al (2007) Potential risks of bone marrow cell transplantation into infarcted hearts. Blood 110:1362–1369CrossRefPubMed Breitbach M, Bostani T, Roell W et al (2007) Potential risks of bone marrow cell transplantation into infarcted hearts. Blood 110:1362–1369CrossRefPubMed
10.
go back to reference Barbash IM, Chouraqui P, Baron J et al (2003) Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution. Circulation 108:863–868CrossRefPubMed Barbash IM, Chouraqui P, Baron J et al (2003) Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution. Circulation 108:863–868CrossRefPubMed
11.
go back to reference Gnecchi M, Zhang Z, Ni A, Dzau VJ (2008) Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res 103:1204–1219CrossRefPubMed Gnecchi M, Zhang Z, Ni A, Dzau VJ (2008) Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res 103:1204–1219CrossRefPubMed
12.
go back to reference Gnecchi M, He H, Noiseux N et al (2006) Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J 20:661–669CrossRefPubMed Gnecchi M, He H, Noiseux N et al (2006) Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J 20:661–669CrossRefPubMed
13.
go back to reference Lin H, Shabbir A, Molnar M, Yang J, Marion S, Canty JMJ, Lee T (2008) Adenoviral expression of vascular endothelial growth factor splice variants differen-tially regulate bone marrow-derived mesenchymal stem cells. J Cell Physiol 216:458–468CrossRefPubMed Lin H, Shabbir A, Molnar M, Yang J, Marion S, Canty JMJ, Lee T (2008) Adenoviral expression of vascular endothelial growth factor splice variants differen-tially regulate bone marrow-derived mesenchymal stem cells. J Cell Physiol 216:458–468CrossRefPubMed
14.
go back to reference Shabbir A, Zisa D, Suzuki G, Lee T (2009) Heart failure therapy mediated by the trophic activities of bone marrow mesenchymal stem cells: a noninvasive therapeutic regimen. Am J Physiol Heart Circ Physiol 296(6):H1888–H1897CrossRefPubMed Shabbir A, Zisa D, Suzuki G, Lee T (2009) Heart failure therapy mediated by the trophic activities of bone marrow mesenchymal stem cells: a noninvasive therapeutic regimen. Am J Physiol Heart Circ Physiol 296(6):H1888–H1897CrossRefPubMed
15.
go back to reference Ince H, Petzsch M, Kleine HD et al (2005) Preservation from left ventricular remodeling by front-integrated revascularization and stem cell liberation in evolving acute myocardial infarction by use of granulocyte colony-stimulating factor (FIRSTLINE-AMI). Circulation 112:3097–3106CrossRefPubMed Ince H, Petzsch M, Kleine HD et al (2005) Preservation from left ventricular remodeling by front-integrated revascularization and stem cell liberation in evolving acute myocardial infarction by use of granulocyte colony-stimulating factor (FIRSTLINE-AMI). Circulation 112:3097–3106CrossRefPubMed
16.
go back to reference Saxena A, Fish JE, White MD et al (2008) Stromal cell-derived factor-1alpha is cardioprotective after myocardial infarction. Circulation 117(17):2224–2231CrossRefPubMed Saxena A, Fish JE, White MD et al (2008) Stromal cell-derived factor-1alpha is cardioprotective after myocardial infarction. Circulation 117(17):2224–2231CrossRefPubMed
17.
go back to reference Hamada H, Kim MK, Iwakura A et al (2006) Estrogen receptors alpha and beta mediate contribution of bone marrow-derived endothelial progenitor cells to functional recovery after myocardial infarction. Circulation 114(21):2261–2270CrossRefPubMed Hamada H, Kim MK, Iwakura A et al (2006) Estrogen receptors alpha and beta mediate contribution of bone marrow-derived endothelial progenitor cells to functional recovery after myocardial infarction. Circulation 114(21):2261–2270CrossRefPubMed
19.
go back to reference Lionetti V, Cantoni S, Cavallini C et al. (2010) Hyaluronan mixed esters of butyric and retinoic acid affording myocardial survival and repair without stem cell transplantation. J Biol Chem. doi:10.1074/jbc.M109.087254 Lionetti V, Cantoni S, Cavallini C et al. (2010) Hyaluronan mixed esters of butyric and retinoic acid affording myocardial survival and repair without stem cell transplantation. J Biol Chem. doi:10.​1074/​jbc.​M109.​087254
20.
go back to reference Dhalla NS, Saini-Chohan HK, Rodriguez-Leyva D et al (2009) Subcellular remodeling may induce cardiac dysfunction in congestive heart failure. Cardiovasc Res 81(3):429–438CrossRefPubMed Dhalla NS, Saini-Chohan HK, Rodriguez-Leyva D et al (2009) Subcellular remodeling may induce cardiac dysfunction in congestive heart failure. Cardiovasc Res 81(3):429–438CrossRefPubMed
21.
go back to reference St John Sutton M, Ghio S, Plappert T et al (2009) Cardiac resynchronization induces major structural and functional reverse remodeling in patients with New York Heart Association class I/II heart failure. Circulation 120(19):1858–1860CrossRefPubMed St John Sutton M, Ghio S, Plappert T et al (2009) Cardiac resynchronization induces major structural and functional reverse remodeling in patients with New York Heart Association class I/II heart failure. Circulation 120(19):1858–1860CrossRefPubMed
22.
go back to reference Qanud K, Mamdani M, Pepe M et al (2008) Reverse changes in cardiac substrate oxidation in dogs recovering from heart failure. Am J Physiol Heart Circ Physiol 295(5):2098–2105CrossRef Qanud K, Mamdani M, Pepe M et al (2008) Reverse changes in cardiac substrate oxidation in dogs recovering from heart failure. Am J Physiol Heart Circ Physiol 295(5):2098–2105CrossRef
23.
go back to reference Zacà V, Brewer R, Khanal S et al (2007) Left atrial reverse remodeling in dogs with moderate and advanced heart failure treated with a passive mechanical containment device: an echocardiographic study. J Card Fail 13(4):312–317CrossRefPubMed Zacà V, Brewer R, Khanal S et al (2007) Left atrial reverse remodeling in dogs with moderate and advanced heart failure treated with a passive mechanical containment device: an echocardiographic study. J Card Fail 13(4):312–317CrossRefPubMed
24.
go back to reference Lionetti V, Linke A, Chandler MP et al (2005) Carnitine palmitoyl transferase-I inhibition prevents ventricular remodeling and delays decompensation in pacing-induced heart failure. Cardiovasc Res 66(3):454–461CrossRefPubMed Lionetti V, Linke A, Chandler MP et al (2005) Carnitine palmitoyl transferase-I inhibition prevents ventricular remodeling and delays decompensation in pacing-induced heart failure. Cardiovasc Res 66(3):454–461CrossRefPubMed
25.
go back to reference Zentilin L, Puligadda U, Lionetti V et al. (2009) Cardiomyocyte VEGFR-1 activation by VEGF-B induces compensatory hypertrophy and preserves cardiac function after myocardial infarction. FASEB J. doi:10.1096/fj.09-143180 Zentilin L, Puligadda U, Lionetti V et al. (2009) Cardiomyocyte VEGFR-1 activation by VEGF-B induces compensatory hypertrophy and preserves cardiac function after myocardial infarction. FASEB J. doi:10.​1096/​fj.​09-143180
26.
go back to reference Ventura C, Cantoni S, Bianchi F et al (2007) Hyaluronan mixed esters of butyric and retinoic Acid drive cardiac and endothelial fate in term placenta human mesenchymal stem cells and enhance cardiac repair in infarcted rat hearts. J Biol Chem 282(19):14243–14252CrossRefPubMed Ventura C, Cantoni S, Bianchi F et al (2007) Hyaluronan mixed esters of butyric and retinoic Acid drive cardiac and endothelial fate in term placenta human mesenchymal stem cells and enhance cardiac repair in infarcted rat hearts. J Biol Chem 282(19):14243–14252CrossRefPubMed
27.
go back to reference Ventura C, Maioli M, Asara Y et al (2005) Turning on stem cell cardiogenesis with extremely low frequency magnetic fields. FASEB J 19(1):155–157PubMed Ventura C, Maioli M, Asara Y et al (2005) Turning on stem cell cardiogenesis with extremely low frequency magnetic fields. FASEB J 19(1):155–157PubMed
28.
go back to reference Lionetti V, Fittipaldi A, Agostini S, Giacca M, Recchia FA, Picano E (2009) Enhanced caveolae-mediated endocytosis by diagnostic ultrasound in vitro. Ultrasound Med Biol 35(1):136–143CrossRefPubMed Lionetti V, Fittipaldi A, Agostini S, Giacca M, Recchia FA, Picano E (2009) Enhanced caveolae-mediated endocytosis by diagnostic ultrasound in vitro. Ultrasound Med Biol 35(1):136–143CrossRefPubMed
29.
go back to reference Wang BW, Hung HF, Chang H, Kuan P, Shyu KG (2007) Mechanical stretch enhances the expression of resist in gene in cultured cardiomyocytes via tumor necrosis factor-alpha. Am J Physiol Heart Circ Physiol 293(4):H2305–H2312CrossRefPubMed Wang BW, Hung HF, Chang H, Kuan P, Shyu KG (2007) Mechanical stretch enhances the expression of resist in gene in cultured cardiomyocytes via tumor necrosis factor-alpha. Am J Physiol Heart Circ Physiol 293(4):H2305–H2312CrossRefPubMed
30.
go back to reference Linke WA (2008) Sense and stretchability: the role of titin and titin-associated proteins in myocardial stress-sensing and mechanical dysfunction. Cardiovasc Res 77(4):637–648PubMed Linke WA (2008) Sense and stretchability: the role of titin and titin-associated proteins in myocardial stress-sensing and mechanical dysfunction. Cardiovasc Res 77(4):637–648PubMed
31.
go back to reference Lange S, Ehler E, Gautel M (2006) From A to Z and back? Multicompartment proteins in the sarcomere. Trends Cell Biol 16:11–18CrossRefPubMed Lange S, Ehler E, Gautel M (2006) From A to Z and back? Multicompartment proteins in the sarcomere. Trends Cell Biol 16:11–18CrossRefPubMed
32.
go back to reference Krüger M, Kötter S, Grützner A et al (2009) Protein kinase G modulates human myocardial passive stiffness by phosphorylation of the titin springs. Circ Res 104(1):87–94CrossRefPubMed Krüger M, Kötter S, Grützner A et al (2009) Protein kinase G modulates human myocardial passive stiffness by phosphorylation of the titin springs. Circ Res 104(1):87–94CrossRefPubMed
34.
go back to reference Rastaldo R, Pagliaro P, Cappello S, Penna C, Mancardi D, Westerhof N, Losano G (2007) Nitric oxide and cardiac function. Life Sci 81:779–793CrossRefPubMed Rastaldo R, Pagliaro P, Cappello S, Penna C, Mancardi D, Westerhof N, Losano G (2007) Nitric oxide and cardiac function. Life Sci 81:779–793CrossRefPubMed
35.
go back to reference Mizote I, Yamaguchi O, Hikoso S et al (2010) Activation of MTK1/MEKK4 induces cardiomyocyte death and heart failure. J Mol Cell Cardiol 48(2):302–309CrossRefPubMed Mizote I, Yamaguchi O, Hikoso S et al (2010) Activation of MTK1/MEKK4 induces cardiomyocyte death and heart failure. J Mol Cell Cardiol 48(2):302–309CrossRefPubMed
36.
go back to reference Shahbazian MD, Grunstein M (2007) Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem 76:75–100CrossRefPubMed Shahbazian MD, Grunstein M (2007) Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem 76:75–100CrossRefPubMed
37.
go back to reference Bush EW, McKinsey TA (2009) Targeting histone deacetylases for heart failure. Expert Opin Ther Targets 13(7):767–784CrossRefPubMed Bush EW, McKinsey TA (2009) Targeting histone deacetylases for heart failure. Expert Opin Ther Targets 13(7):767–784CrossRefPubMed
38.
go back to reference Premont RT, Gainetdinov RR (2007) Physiological roles of G protein-coupled receptor kinases and arrestins. Annu Rev Physiol 69:511–534CrossRefPubMed Premont RT, Gainetdinov RR (2007) Physiological roles of G protein-coupled receptor kinases and arrestins. Annu Rev Physiol 69:511–534CrossRefPubMed
39.
go back to reference Rockman HA, Koch WJ, Lefkowitz RJ (2002) Seven-transmembrane-spanning receptors and heart function. Nature 415:206–212CrossRefPubMed Rockman HA, Koch WJ, Lefkowitz RJ (2002) Seven-transmembrane-spanning receptors and heart function. Nature 415:206–212CrossRefPubMed
40.
go back to reference Martini JS, Raake P, Vinge LE et al (2008) Uncovering G protein-coupled receptor kinase-5 as a histone deacetylase kinase in the nucleus of cardiomyocytes. Proc Natl Acad Sci USA 105(34):12457–12462CrossRefPubMed Martini JS, Raake P, Vinge LE et al (2008) Uncovering G protein-coupled receptor kinase-5 as a histone deacetylase kinase in the nucleus of cardiomyocytes. Proc Natl Acad Sci USA 105(34):12457–12462CrossRefPubMed
41.
go back to reference Chang S, McKinsey TA, Zhang CL, Richardson JA, Hill JA, Olson EN (2004) Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development. Mol Cell Biol 24(19):8467–8476CrossRefPubMed Chang S, McKinsey TA, Zhang CL, Richardson JA, Hill JA, Olson EN (2004) Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development. Mol Cell Biol 24(19):8467–8476CrossRefPubMed
42.
go back to reference Makino S, Fukuda K, Miyoshi S et al (1999) Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 103(5):697–705CrossRefPubMed Makino S, Fukuda K, Miyoshi S et al (1999) Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 103(5):697–705CrossRefPubMed
43.
go back to reference Hare JM, Chaparro SV (2008) Cardiac regeneration and stem cell therapy. Curr Opin Organ Transplant 13(5):536–542CrossRefPubMed Hare JM, Chaparro SV (2008) Cardiac regeneration and stem cell therapy. Curr Opin Organ Transplant 13(5):536–542CrossRefPubMed
44.
go back to reference Yun BG, Matts RL (2005) Differential effects of Hsp90 inhibition on protein kinases regulating signal transduction pathways required for myoblast differentiation. Exp Cell Res 307(1):212–223CrossRefPubMed Yun BG, Matts RL (2005) Differential effects of Hsp90 inhibition on protein kinases regulating signal transduction pathways required for myoblast differentiation. Exp Cell Res 307(1):212–223CrossRefPubMed
45.
go back to reference Xaymardan M, Cimini M, Fazel S et al (2009) c-Kit function is necessary for in vitro myogenic differentiation of bone marrow hematopoietic cells. Stem Cells 27(8):1911–1920CrossRefPubMed Xaymardan M, Cimini M, Fazel S et al (2009) c-Kit function is necessary for in vitro myogenic differentiation of bone marrow hematopoietic cells. Stem Cells 27(8):1911–1920CrossRefPubMed
46.
go back to reference Roussel M, Moreau P, Huynh A et al (2010) Bortezomib and high dose melphalan as conditioning regimen before autologous stem cell transplantation in patients with de novo multiple myeloma: a phase II study of the Intergroupe Francophone du Myelome (IFM). Blood 115(1):32–37CrossRefPubMed Roussel M, Moreau P, Huynh A et al (2010) Bortezomib and high dose melphalan as conditioning regimen before autologous stem cell transplantation in patients with de novo multiple myeloma: a phase II study of the Intergroupe Francophone du Myelome (IFM). Blood 115(1):32–37CrossRefPubMed
47.
go back to reference Erker T, Schreder ME, Studenik C (2000) Studies on the chemistry of thienoannelated O,N- and S,N- containing heterocycles. Part 19: thieno[2,3-b][1,4]thiazines with calcium antagonistic and potassium opening activities. Arch Pharm (Weinheim) 333(2-3):58–62CrossRef Erker T, Schreder ME, Studenik C (2000) Studies on the chemistry of thienoannelated O,N- and S,N- containing heterocycles. Part 19: thieno[2,3-b][1,4]thiazines with calcium antagonistic and potassium opening activities. Arch Pharm (Weinheim) 333(2-3):58–62CrossRef
48.
go back to reference Wei L, Malhotra SV (2009) Recent development of cyclic amide (Pyridone/Lactam) moiety containing heterocycles as protein kinase inhibitors. Curr Med Chem 17(3):234–253CrossRef Wei L, Malhotra SV (2009) Recent development of cyclic amide (Pyridone/Lactam) moiety containing heterocycles as protein kinase inhibitors. Curr Med Chem 17(3):234–253CrossRef
49.
go back to reference Desbordes SC, Placantonakis DG, Ciro A, Socci ND, Lee G, Djaballah H, Studer L (2008) High-throughput screening assay for the identification of compounds regulating self-renewal and differentiation in human embryonic stem cells. Cell Stem Cell 2(6):602–612CrossRefPubMed Desbordes SC, Placantonakis DG, Ciro A, Socci ND, Lee G, Djaballah H, Studer L (2008) High-throughput screening assay for the identification of compounds regulating self-renewal and differentiation in human embryonic stem cells. Cell Stem Cell 2(6):602–612CrossRefPubMed
50.
go back to reference Hou J, Charters AM, Lee SC et al (2007) A systematic screen for genes expressed in definitive endoderm by serial analysis of gene expression (SAGE). BMC Dev Biol 7:92CrossRefPubMed Hou J, Charters AM, Lee SC et al (2007) A systematic screen for genes expressed in definitive endoderm by serial analysis of gene expression (SAGE). BMC Dev Biol 7:92CrossRefPubMed
51.
go back to reference Butler GS, Overall CM (2009) Proteomic identification of multitasking proteins in unexpected locations complicates drug targeting. Nat Rev Drug Discov 8(12):935–948CrossRefPubMed Butler GS, Overall CM (2009) Proteomic identification of multitasking proteins in unexpected locations complicates drug targeting. Nat Rev Drug Discov 8(12):935–948CrossRefPubMed
52.
go back to reference Ventura C, Maioli M, Asara Y et al (2004) Butyric and retinoic mixed ester of hyaluronan. A novel differentiating glycoconjugate affording a high throughput of cardiogenesis in embryonic stem cells. J Biol Chem 279(22):23574–23579CrossRefPubMed Ventura C, Maioli M, Asara Y et al (2004) Butyric and retinoic mixed ester of hyaluronan. A novel differentiating glycoconjugate affording a high throughput of cardiogenesis in embryonic stem cells. J Biol Chem 279(22):23574–23579CrossRefPubMed
53.
go back to reference Beltrami AP, Urbanek K, Kajstura J et al (2001) Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med 344(23):1750–1757CrossRefPubMed Beltrami AP, Urbanek K, Kajstura J et al (2001) Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med 344(23):1750–1757CrossRefPubMed
54.
go back to reference Ventura C, Guarnieri C, Vaona I, Campana G, Pintus G, Spampinato S (1994) Dynorphin gene expression and release in the myocardial cell. J Biol Chem 269(7):5384–5386PubMed Ventura C, Guarnieri C, Vaona I, Campana G, Pintus G, Spampinato S (1994) Dynorphin gene expression and release in the myocardial cell. J Biol Chem 269(7):5384–5386PubMed
55.
go back to reference Ventura C, Zinellu E, Maninchedda E, Maioli M (2003) Dynorphin B is an agonist of nuclear opioid receptors coupling nuclear protein kinase C activation to the transcription of cardiogenic genes in GTR1 embryonic stem cells. Circ Res 92(6):623–629CrossRefPubMed Ventura C, Zinellu E, Maninchedda E, Maioli M (2003) Dynorphin B is an agonist of nuclear opioid receptors coupling nuclear protein kinase C activation to the transcription of cardiogenic genes in GTR1 embryonic stem cells. Circ Res 92(6):623–629CrossRefPubMed
56.
go back to reference Weil J, Zolk O, Griepentrog J, Wenzel U, Zimmermann WH, Eschenhagen T (2006) Alterations of the preproenkephalin system in cardiac hypertrophy and its role in atrioventricular conduction. Cardiovasc Res 69(2):412–422CrossRefPubMed Weil J, Zolk O, Griepentrog J, Wenzel U, Zimmermann WH, Eschenhagen T (2006) Alterations of the preproenkephalin system in cardiac hypertrophy and its role in atrioventricular conduction. Cardiovasc Res 69(2):412–422CrossRefPubMed
57.
go back to reference Ventura C, Zinellu E, Maninchedda E, Fadda M, Maioli M (2003) Protein kinase C signaling transduces endorphin-primed cardiogenesis in GTR1 embryonic stem cells. Circ Res 92(6):617–622CrossRefPubMed Ventura C, Zinellu E, Maninchedda E, Fadda M, Maioli M (2003) Protein kinase C signaling transduces endorphin-primed cardiogenesis in GTR1 embryonic stem cells. Circ Res 92(6):617–622CrossRefPubMed
58.
go back to reference Ventura C, Pintus G, Vaona I, Bennardini F, Pinna G, Tadolini B (1995) Phorbol ester regulation of opioid peptide gene expression in myocardial cells. Role of nuclear protein kinase. J Biol Chem 270(50):30115–30120CrossRefPubMed Ventura C, Pintus G, Vaona I, Bennardini F, Pinna G, Tadolini B (1995) Phorbol ester regulation of opioid peptide gene expression in myocardial cells. Role of nuclear protein kinase. J Biol Chem 270(50):30115–30120CrossRefPubMed
59.
go back to reference Re RN, Cook JL (2008) The physiological basis of intracrine stem cell regulation. Am J Physiol Heart Circ Physiol 295(2):H447–H453CrossRefPubMed Re RN, Cook JL (2008) The physiological basis of intracrine stem cell regulation. Am J Physiol Heart Circ Physiol 295(2):H447–H453CrossRefPubMed
60.
go back to reference Wu X, Ding S, Ding Q, Gray NS, Schultz PG (2004) Small molecules that induce cardiomyogenesis in embryonic stem cells. J Am Chem Soc 126(6):1590–1591CrossRefPubMed Wu X, Ding S, Ding Q, Gray NS, Schultz PG (2004) Small molecules that induce cardiomyogenesis in embryonic stem cells. J Am Chem Soc 126(6):1590–1591CrossRefPubMed
61.
go back to reference Kuhn B, Del Monte F, Hajjar RJ et al (2007) Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. Nat Med 13:962–969CrossRefPubMed Kuhn B, Del Monte F, Hajjar RJ et al (2007) Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. Nat Med 13:962–969CrossRefPubMed
62.
go back to reference Bersell K, Arab S, Haring B, Kuhn B (2009) Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell 138:257–270CrossRefPubMed Bersell K, Arab S, Haring B, Kuhn B (2009) Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell 138:257–270CrossRefPubMed
63.
go back to reference Novoyatleva T, Diehl F, van Amerongen MJ et al (2010) TWEAK is a positive regulator of cardiomyocyte proliferation. Cardiovasc Res 85:681–690CrossRefPubMed Novoyatleva T, Diehl F, van Amerongen MJ et al (2010) TWEAK is a positive regulator of cardiomyocyte proliferation. Cardiovasc Res 85:681–690CrossRefPubMed
64.
go back to reference Hellström M, Johansson B, Engström-Laurent A (2006) Hyaluronan and its receptor CD44 in the heart of newborn and adult rats. Anat Rec A Discov Mol Cell Evol Biol 288(6):587–592PubMed Hellström M, Johansson B, Engström-Laurent A (2006) Hyaluronan and its receptor CD44 in the heart of newborn and adult rats. Anat Rec A Discov Mol Cell Evol Biol 288(6):587–592PubMed
65.
go back to reference Rodgers LS, Lalani S, Hardy KM et al (2006) Depolymerized hyaluronan induces vascular endothelial growth factor, a negative regulator of developmental epithelial-to-mesenchymal transformation. Circ Res 99(6):583–589CrossRefPubMed Rodgers LS, Lalani S, Hardy KM et al (2006) Depolymerized hyaluronan induces vascular endothelial growth factor, a negative regulator of developmental epithelial-to-mesenchymal transformation. Circ Res 99(6):583–589CrossRefPubMed
66.
go back to reference Gao F, Yang CX, Mo W, Liu YW, He YQ (2008) Hyaluronan oligosaccharides are potential stimulators to angiogenesis via RHAMM mediated signal pathway in wound healing. Clin Invest Med 31(3):E106–E116PubMed Gao F, Yang CX, Mo W, Liu YW, He YQ (2008) Hyaluronan oligosaccharides are potential stimulators to angiogenesis via RHAMM mediated signal pathway in wound healing. Clin Invest Med 31(3):E106–E116PubMed
67.
go back to reference Lee JL, Wang MJ, Chen JY (2009) Acetylation and activation of STAT3 mediated by nuclear translocation of CD44. J Cell Biol 185(6):949–957CrossRefPubMed Lee JL, Wang MJ, Chen JY (2009) Acetylation and activation of STAT3 mediated by nuclear translocation of CD44. J Cell Biol 185(6):949–957CrossRefPubMed
68.
go back to reference Heo H, Yoo L, Shin KS, Kang J (2009) Suppression of caspase-11 expression by histone deacetylase inhibitors. Biochem Biophys Res Commun 378(1):79–83CrossRefPubMed Heo H, Yoo L, Shin KS, Kang J (2009) Suppression of caspase-11 expression by histone deacetylase inhibitors. Biochem Biophys Res Commun 378(1):79–83CrossRefPubMed
69.
go back to reference Rochais F, Mesbah K, Kelly RG (2009) Signaling pathways controlling second heart field development. Circ Res 104(8):933–942CrossRefPubMed Rochais F, Mesbah K, Kelly RG (2009) Signaling pathways controlling second heart field development. Circ Res 104(8):933–942CrossRefPubMed
70.
go back to reference Engel FB, Hsieh PC, Lee RT, Keating MT (2006) FGF1/p38 MAP kinase inhibitor therapy induces cardiomyocyte mitosis, reduces scarring, and rescues function after myocardial infarction. Proc Natl Acad Sci USA 103:15546–15551CrossRefPubMed Engel FB, Hsieh PC, Lee RT, Keating MT (2006) FGF1/p38 MAP kinase inhibitor therapy induces cardiomyocyte mitosis, reduces scarring, and rescues function after myocardial infarction. Proc Natl Acad Sci USA 103:15546–15551CrossRefPubMed
71.
go back to reference Fuller SJ, Sivarajah K, Sugden PH (2008) ErbB receptors, their ligands, and the consequences of their activation and inhibition in the myocardium. J Mol Cell Cardiol 44:831–854CrossRefPubMed Fuller SJ, Sivarajah K, Sugden PH (2008) ErbB receptors, their ligands, and the consequences of their activation and inhibition in the myocardium. J Mol Cell Cardiol 44:831–854CrossRefPubMed
72.
go back to reference Crisan M, Yap S, Casteilla L et al (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3:301–313CrossRefPubMed Crisan M, Yap S, Casteilla L et al (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3:301–313CrossRefPubMed
73.
go back to reference Popescu LM, Gherghiceanu M, Manole CG, Faussone-Pellegrini MS (2000) Cardiac renewing: interstitial Cajal-like cells nurse cardiomyocyte progenitors in epicardial stem cell niches. J Cell Mol Med 13:866CrossRef Popescu LM, Gherghiceanu M, Manole CG, Faussone-Pellegrini MS (2000) Cardiac renewing: interstitial Cajal-like cells nurse cardiomyocyte progenitors in epicardial stem cell niches. J Cell Mol Med 13:866CrossRef
74.
go back to reference Son BR, Marquez-Curtis LA, Kucia M et al (2006) Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases. Stem Cells 24:1254–1264CrossRefPubMed Son BR, Marquez-Curtis LA, Kucia M et al (2006) Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases. Stem Cells 24:1254–1264CrossRefPubMed
75.
go back to reference Napoli C, Maione C, Schiano C, Fiorito C, Ignarro LJ (2007) Bone marrow cell-mediated cardiovascular repair: potential of combined therapies. Trends Mol Med 13:278–286CrossRefPubMed Napoli C, Maione C, Schiano C, Fiorito C, Ignarro LJ (2007) Bone marrow cell-mediated cardiovascular repair: potential of combined therapies. Trends Mol Med 13:278–286CrossRefPubMed
76.
go back to reference Kawakami M, Tsutsumi H, Kumakawa T et al (1990) Levels of serum granulocyte colony stimulating factor in patients with infections. Blood 76:1962–1964PubMed Kawakami M, Tsutsumi H, Kumakawa T et al (1990) Levels of serum granulocyte colony stimulating factor in patients with infections. Blood 76:1962–1964PubMed
77.
go back to reference Leone AM, Rutella S, Bonanno G et al (2006) Endogenous G-CSF and CD34(+) cell mobilization after acute myocardial infarction. Int J Cardiol 111:202–208CrossRefPubMed Leone AM, Rutella S, Bonanno G et al (2006) Endogenous G-CSF and CD34(+) cell mobilization after acute myocardial infarction. Int J Cardiol 111:202–208CrossRefPubMed
78.
go back to reference Wojakowski W, Tendera M, Michalowska A et al (2004) Mobilization of CD34/CXCR4+, CD34/CD117+, c-met+ stem cells, and mononuclear cells expressing early cardiac, muscle, and endothelial markers into peripheral blood in patients with acute myocardial infarction. Circulation 110:3213–3220CrossRefPubMed Wojakowski W, Tendera M, Michalowska A et al (2004) Mobilization of CD34/CXCR4+, CD34/CD117+, c-met+ stem cells, and mononuclear cells expressing early cardiac, muscle, and endothelial markers into peripheral blood in patients with acute myocardial infarction. Circulation 110:3213–3220CrossRefPubMed
79.
go back to reference Bussolino F, Wang JM, Defilippi P et al (1989) Granulocyte- and granulocyte macrophage-colony stimulating factors induce human endothelial cells to migrate and proliferate. Nature 337:471–473CrossRefPubMed Bussolino F, Wang JM, Defilippi P et al (1989) Granulocyte- and granulocyte macrophage-colony stimulating factors induce human endothelial cells to migrate and proliferate. Nature 337:471–473CrossRefPubMed
80.
go back to reference Bussolino F, Ziche M, Wang JM et al (1991) In vitro and in vivo activation of endothelial cells by colony-stimulating factors. J Clin Invest 87:986–995CrossRefPubMed Bussolino F, Ziche M, Wang JM et al (1991) In vitro and in vivo activation of endothelial cells by colony-stimulating factors. J Clin Invest 87:986–995CrossRefPubMed
81.
go back to reference Pelletier L, Regnard J, Fellmann D, Charbord P (2000) An in vitro model for the study of human bone marrow angiogenesis: role of hematopoietic cytokines. Lab Invest 80:501–511PubMed Pelletier L, Regnard J, Fellmann D, Charbord P (2000) An in vitro model for the study of human bone marrow angiogenesis: role of hematopoietic cytokines. Lab Invest 80:501–511PubMed
82.
go back to reference Chen X, Kelemen SE, Autieri MV (2004) AIF-1 expression modulates proliferation of human vascular smooth muscle cells by autocrine expression of G-CSF. Arterioscler Thromb Vasc Biol 24:1217–1222CrossRefPubMed Chen X, Kelemen SE, Autieri MV (2004) AIF-1 expression modulates proliferation of human vascular smooth muscle cells by autocrine expression of G-CSF. Arterioscler Thromb Vasc Biol 24:1217–1222CrossRefPubMed
83.
go back to reference Lee M, Aoki M, Kondo T, Kobayashi K et al (2005) Therapeutic angiogenesis with intramuscular injection of low-dose recombinant granulocyte-colony stimulating factor. Arterioscler Thromb Vasc Biol 25:2535–2541CrossRefPubMed Lee M, Aoki M, Kondo T, Kobayashi K et al (2005) Therapeutic angiogenesis with intramuscular injection of low-dose recombinant granulocyte-colony stimulating factor. Arterioscler Thromb Vasc Biol 25:2535–2541CrossRefPubMed
84.
go back to reference Buschmann IR, Hoefer IE, van Royen N et al (2001) GM-CSF: a strong arteriogenic factor acting by amplification of monocyte function. Atherosclerosis 159:343–356CrossRefPubMed Buschmann IR, Hoefer IE, van Royen N et al (2001) GM-CSF: a strong arteriogenic factor acting by amplification of monocyte function. Atherosclerosis 159:343–356CrossRefPubMed
85.
go back to reference Anghelina M, Krishnan P, Moldovan L, Moldovan NI (2006) Monocytes/macrophages cooperate with progenitor cells during neovascularization and tissue repair: conversion of cell columns into fibrovascular bundles. Am J Pathol 168:529–541CrossRefPubMed Anghelina M, Krishnan P, Moldovan L, Moldovan NI (2006) Monocytes/macrophages cooperate with progenitor cells during neovascularization and tissue repair: conversion of cell columns into fibrovascular bundles. Am J Pathol 168:529–541CrossRefPubMed
86.
go back to reference Harada M, Qin Y, Takano H et al (2005) G-CSF prevents cardiac remodeling after myocardial infarction by activating the Jak-Stat pathway in cardiomyocytes. Nat Med 11:305–311CrossRefPubMed Harada M, Qin Y, Takano H et al (2005) G-CSF prevents cardiac remodeling after myocardial infarction by activating the Jak-Stat pathway in cardiomyocytes. Nat Med 11:305–311CrossRefPubMed
87.
go back to reference Ueda K, Takano H, Hasegawa H et al (2006) Granulocyte colony stimulating factor directly inhibits myocardial ischemia–reperfusion injury through Akt-endothelial NO synthase pathway. Arterioscler Thromb Vasc Biol 26:e108–e113CrossRefPubMed Ueda K, Takano H, Hasegawa H et al (2006) Granulocyte colony stimulating factor directly inhibits myocardial ischemia–reperfusion injury through Akt-endothelial NO synthase pathway. Arterioscler Thromb Vasc Biol 26:e108–e113CrossRefPubMed
88.
go back to reference Kuhlmann MT, Kirchhof P, Klocke R et al (2006) G-CSF/SCF reduces inducible arrhythmias in the infarcted heart potentially via increased connexin43 expression and arteriogenesis. J Exp Med 203:87–97CrossRefPubMed Kuhlmann MT, Kirchhof P, Klocke R et al (2006) G-CSF/SCF reduces inducible arrhythmias in the infarcted heart potentially via increased connexin43 expression and arteriogenesis. J Exp Med 203:87–97CrossRefPubMed
89.
go back to reference Miyata S, Takemura G, Kawase Y et al (2006) Autophagic cardiomyocyte death in cardiomyopathic hamsters and its prevention by granulocyte colony-stimulating factor. Am J Pathol 168:386–397CrossRefPubMed Miyata S, Takemura G, Kawase Y et al (2006) Autophagic cardiomyocyte death in cardiomyopathic hamsters and its prevention by granulocyte colony-stimulating factor. Am J Pathol 168:386–397CrossRefPubMed
90.
go back to reference Shimoji K, Yuasa S, Onizuka T et al (2010) G-CSF promotes the proliferation of developing cardiomyocytes in vivo and in derivation from ESCs and iPSCs. Cell Stem Cell 6:227–237CrossRefPubMed Shimoji K, Yuasa S, Onizuka T et al (2010) G-CSF promotes the proliferation of developing cardiomyocytes in vivo and in derivation from ESCs and iPSCs. Cell Stem Cell 6:227–237CrossRefPubMed
91.
go back to reference Ausoni S, Sartore S (2009) The cardiovascular unit as a dynamic player in disease and regeneration. Trends Mol Med 15:543–552CrossRefPubMed Ausoni S, Sartore S (2009) The cardiovascular unit as a dynamic player in disease and regeneration. Trends Mol Med 15:543–552CrossRefPubMed
92.
go back to reference Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858CrossRefPubMed Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858CrossRefPubMed
93.
go back to reference Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP (2008) The impact of microRNAs on protein output. Nature 455:64–71CrossRefPubMed Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP (2008) The impact of microRNAs on protein output. Nature 455:64–71CrossRefPubMed
94.
go back to reference Terentyev D, Belevych AE, Terentyeva R et al (2009) miR-1 overexpression enhances Ca2+ release and promotes cardiac arrhythmogenesis by targeting PP2A regulatory subunit B56{alpha} and causing CaMKII-dependent hyperphosphorylation of RyR2. Circ Res 104:514–521CrossRefPubMed Terentyev D, Belevych AE, Terentyeva R et al (2009) miR-1 overexpression enhances Ca2+ release and promotes cardiac arrhythmogenesis by targeting PP2A regulatory subunit B56{alpha} and causing CaMKII-dependent hyperphosphorylation of RyR2. Circ Res 104:514–521CrossRefPubMed
95.
go back to reference van Rooij E, Sutherland LB, Liu N et al (2006) A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci USA 103:18255–18260CrossRefPubMed van Rooij E, Sutherland LB, Liu N et al (2006) A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci USA 103:18255–18260CrossRefPubMed
96.
go back to reference Wang S, Aurora AB, Johnson BA et al (2008) The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell 15(2):261–271CrossRefPubMed Wang S, Aurora AB, Johnson BA et al (2008) The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell 15(2):261–271CrossRefPubMed
97.
go back to reference Bonauer A, Carmona G, Iwasaki M et al (2009) MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 324(5935):1710–1713CrossRefPubMed Bonauer A, Carmona G, Iwasaki M et al (2009) MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 324(5935):1710–1713CrossRefPubMed
98.
go back to reference Cordes KR, Sheehy NT, White MP et al (2009) miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature 460(7256):705–710PubMed Cordes KR, Sheehy NT, White MP et al (2009) miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature 460(7256):705–710PubMed
Metadata
Title
Control of autocrine and paracrine myocardial signals: an emerging therapeutic strategy in heart failure
Authors
Vincenzo Lionetti
Giacomo Bianchi
Fabio A. Recchia
Carlo Ventura
Publication date
01-11-2010
Publisher
Springer US
Published in
Heart Failure Reviews / Issue 6/2010
Print ISSN: 1382-4147
Electronic ISSN: 1573-7322
DOI
https://doi.org/10.1007/s10741-010-9165-7

Other articles of this Issue 6/2010

Heart Failure Reviews 6/2010 Go to the issue