Skip to main content
Top
Published in: Documenta Ophthalmologica 1/2010

01-08-2010 | Original research article

Influence of pupil size and other test variables on visual function assessment using visual evoked potentials in normal subjects

Authors: Sarwat Salim, Kevin Childers, Alvaro P. C. Lupinacci, George Z. Hu, Vance Zemon, Peter A. Netland

Published in: Documenta Ophthalmologica | Issue 1/2010

Login to get access

Abstract

The purpose of this study was to assess the influence of pupil size and optical blur on measurements obtained with isolated-check visual evoked potential (icVEP). Two stimulus conditions of icVEP, +15 and −15% contrasts, were studied in normal subjects with normal (N), miotic (M), and dilated (D) pupils. The effects of optical blur were studied in subjects with normal pupil. Response to visual stimuli was quantified by a signal-to-noise (SNR) ratio. In 30 normal subjects, the mean age was 26.0 ± 3.4 years. Mean pupil diameters were N = 4.2 ± 0.6 mm, M = 2.7 ± 0.6 mm, and D = 7.3 ± 0.9 mm. For both +15 and −15% contrast levels, mean SNR values were reduced for dilated and constricted pupils when compared with normal pupils. Mean SNR values for optical blur with a +2 or +3 diopter lens placed over the distance correction were reduced when compared with SNR measurements obtained with best-corrected visual acuity under both +15 and −15% contrast levels. Statistical significance was found in comparisons of N versus M (P < 0.001) and N versus D (P = 0.002) for +15 and −15% contrast conditions, respectively. No statistical difference was seen for M versus D (P = −0.435). The effect of optical blur was statistically significant when compared to the normal pupils with best-corrected vision (P < 0.001). No statistically significant difference was found comparing +2 and +3 diopters lenses for optical blur testing. Visual evoked potential values are influenced by pupillary constriction and dilation, as well as optical blur. When obtaining icVEP measurements, the influence of pupil size and optical blur should be kept in mind for accurate interpretations.
Literature
1.
go back to reference Delgado MF, Nguyen NTA, Cox TA, Singh K, Lee DA, Dueker DK, Fechtner RD, Juzych MS, Lin SC, Netland PA, Pastor SA, Schuman JS, Samples JR, American Academy of Ophthalmology, Ophthalmic Technology Assessment Committee 2001–2002 Glaucoma Panel (2002) Automated perimetry. A report by the American academy of ophthalmology. Ophthalmology 109:2362–2374CrossRefPubMed Delgado MF, Nguyen NTA, Cox TA, Singh K, Lee DA, Dueker DK, Fechtner RD, Juzych MS, Lin SC, Netland PA, Pastor SA, Schuman JS, Samples JR, American Academy of Ophthalmology, Ophthalmic Technology Assessment Committee 2001–2002 Glaucoma Panel (2002) Automated perimetry. A report by the American academy of ophthalmology. Ophthalmology 109:2362–2374CrossRefPubMed
2.
3.
go back to reference Frankhauser F, Enoch JM (1962) The effects of blur upon perimetric thresholds. Arch Ophthalmol 68:240–251 Frankhauser F, Enoch JM (1962) The effects of blur upon perimetric thresholds. Arch Ophthalmol 68:240–251
4.
go back to reference Martin DD, Vonthein R, Wilhelm H, Schjiefer U (2005) Pupil size and perimetry-a pharmacological model using increment and decrement stimuli. Graefe’s Arch Clin Exp Ophthalmol 243:1091–1097CrossRef Martin DD, Vonthein R, Wilhelm H, Schjiefer U (2005) Pupil size and perimetry-a pharmacological model using increment and decrement stimuli. Graefe’s Arch Clin Exp Ophthalmol 243:1091–1097CrossRef
5.
go back to reference Kerrigan-Baumrind LA, Quigley HA, Pease ME, Kerrigan DF, Mitchell RS (2000) Number of ganglion cells in glaucomatous eyes compared with threshold visual field tests in the same persons. Invest Ophthalmol Vis Sci 41:741–748PubMed Kerrigan-Baumrind LA, Quigley HA, Pease ME, Kerrigan DF, Mitchell RS (2000) Number of ganglion cells in glaucomatous eyes compared with threshold visual field tests in the same persons. Invest Ophthalmol Vis Sci 41:741–748PubMed
6.
go back to reference Quigley HA, Dunkelberger GR, Green WR (1988) Chronic human glaucoma causing selectively greater loss of large optic nerve fibers. Ophthalmology 95:357–363PubMed Quigley HA, Dunkelberger GR, Green WR (1988) Chronic human glaucoma causing selectively greater loss of large optic nerve fibers. Ophthalmology 95:357–363PubMed
7.
go back to reference Johnson CA, Adams AJ, Casson EJ, Brandt JD (1993) Progression of early glaucomatous visual field loss for blue-on-yellow and standard white-on-white automated perimetry. Arch Ophthalmol 111:651–656PubMed Johnson CA, Adams AJ, Casson EJ, Brandt JD (1993) Progression of early glaucomatous visual field loss for blue-on-yellow and standard white-on-white automated perimetry. Arch Ophthalmol 111:651–656PubMed
8.
go back to reference Johnson CA, Adams AJ (1993) Blue-on-yellow perimetry can predict the development of glaucomatous visual field loss. Arch Ophthalmol 111:645–650PubMed Johnson CA, Adams AJ (1993) Blue-on-yellow perimetry can predict the development of glaucomatous visual field loss. Arch Ophthalmol 111:645–650PubMed
9.
go back to reference Johnson CA, Samuels SJ (1997) Screening for glaucomatous visual field loss with frequency- doubling perimetry. Invest Ophthalmol Vis Sci 38:413–425PubMed Johnson CA, Samuels SJ (1997) Screening for glaucomatous visual field loss with frequency- doubling perimetry. Invest Ophthalmol Vis Sci 38:413–425PubMed
10.
go back to reference Glovinsky Y, Quigley HA, Dunkelberger GR (1991) Retinal ganglion cell loss is size dependent in experimental glaucoma. Invest Ophthalmol Vis Sci 32:484–491PubMed Glovinsky Y, Quigley HA, Dunkelberger GR (1991) Retinal ganglion cell loss is size dependent in experimental glaucoma. Invest Ophthalmol Vis Sci 32:484–491PubMed
11.
go back to reference Zemon V, Tsai JC, Forbes M, Al-Aswad LA, Chen CM, Gordon J, Greenstein VC, Hu G, Strugstad EC, Dhrami-Gavazi E, Jindra LF (2008) Novel electrophysiological instrument for rapid and objective assessment of magnocellular deficits associated with glaucoma. Doc Ophthalmol 117:233–243CrossRefPubMed Zemon V, Tsai JC, Forbes M, Al-Aswad LA, Chen CM, Gordon J, Greenstein VC, Hu G, Strugstad EC, Dhrami-Gavazi E, Jindra LF (2008) Novel electrophysiological instrument for rapid and objective assessment of magnocellular deficits associated with glaucoma. Doc Ophthalmol 117:233–243CrossRefPubMed
12.
go back to reference Schiller PH, Sandell JH, Maunsell JHR (1986) Functions of the ON and OFF channels of the visual system. Nature 322:824–825CrossRefPubMed Schiller PH, Sandell JH, Maunsell JHR (1986) Functions of the ON and OFF channels of the visual system. Nature 322:824–825CrossRefPubMed
13.
go back to reference Zemon V, Gordon J (2006) Luminance–contrast mechanisms in humans: visual evoked potentials and a nonlinear model. Vision Res 46:4163–4180CrossRefPubMed Zemon V, Gordon J (2006) Luminance–contrast mechanisms in humans: visual evoked potentials and a nonlinear model. Vision Res 46:4163–4180CrossRefPubMed
14.
go back to reference Greenstein VC, Seliger S, Zemon V, Ritch R (1998) Visual evoked potential assessment of the effects of glaucoma on visual subsystems. Vision Res 38:1901–1911CrossRefPubMed Greenstein VC, Seliger S, Zemon V, Ritch R (1998) Visual evoked potential assessment of the effects of glaucoma on visual subsystems. Vision Res 38:1901–1911CrossRefPubMed
15.
go back to reference Jasper HH (1958) The 10–20 electrode system of the international federation. Electroencephalogr Clin Neurophysiol 10:371–375 Jasper HH (1958) The 10–20 electrode system of the international federation. Electroencephalogr Clin Neurophysiol 10:371–375
16.
go back to reference Mast J, Victor JD (1991) Fluctuations of steady-state VEPs: interaction of driven evoked potentials and the EEG. Electroencephalogr Clin Neurophysiol 78:389–401CrossRefPubMed Mast J, Victor JD (1991) Fluctuations of steady-state VEPs: interaction of driven evoked potentials and the EEG. Electroencephalogr Clin Neurophysiol 78:389–401CrossRefPubMed
17.
go back to reference Hood DC, Greenstein VC (2003) Multifocal VEP and ganglion cell damage: applications and limitations for the study of glaucoma. Progr Ret Eye Res 22:201–251CrossRef Hood DC, Greenstein VC (2003) Multifocal VEP and ganglion cell damage: applications and limitations for the study of glaucoma. Progr Ret Eye Res 22:201–251CrossRef
18.
go back to reference Hood DC, Thienprasiddhi P, Greenstein VC, Winn BJ, Ohri N, Liebmann JM, Ritch R (2004) Detecting early to mild glaucomatous damage: a comparison of the multifocal VEP and automated perimetry. Invest Ophthalmol Vis Sci 45:492–498CrossRefPubMed Hood DC, Thienprasiddhi P, Greenstein VC, Winn BJ, Ohri N, Liebmann JM, Ritch R (2004) Detecting early to mild glaucomatous damage: a comparison of the multifocal VEP and automated perimetry. Invest Ophthalmol Vis Sci 45:492–498CrossRefPubMed
19.
go back to reference Forbes M (1966) Influence of miotics on visual fields in glaucoma. Invest Ophthalmol Vis Sci 5:139–145 Forbes M (1966) Influence of miotics on visual fields in glaucoma. Invest Ophthalmol Vis Sci 5:139–145
20.
go back to reference Kee CW, Youn DH (1987) The influence of miotics on the visual field. Kor J Ophthalmol 1:52–58 Kee CW, Youn DH (1987) The influence of miotics on the visual field. Kor J Ophthalmol 1:52–58
21.
go back to reference Jay BS (1962) The effective pupillary area at varying perimetric angles. Vision Res 1:12–131CrossRef Jay BS (1962) The effective pupillary area at varying perimetric angles. Vision Res 1:12–131CrossRef
22.
go back to reference Lindenmuth KA, Skuta GL, Rabbani R, Musch DC, Bergstrom TJ (1990) Effects of pupillary dilation on automated perimetry in normal patients. Ophthalmology 97:367–370PubMed Lindenmuth KA, Skuta GL, Rabbani R, Musch DC, Bergstrom TJ (1990) Effects of pupillary dilation on automated perimetry in normal patients. Ophthalmology 97:367–370PubMed
23.
go back to reference Mendivil A (1997) Influence of a dilated pupil on the visual field in glaucoma. J Glaucoma 6:217–220PubMed Mendivil A (1997) Influence of a dilated pupil on the visual field in glaucoma. J Glaucoma 6:217–220PubMed
24.
go back to reference Sokol S, Moskowitz A (1981) Effect of retinal blur on the peak latency of the pattern evoked potential. Vision Res 21:1279–1286CrossRefPubMed Sokol S, Moskowitz A (1981) Effect of retinal blur on the peak latency of the pattern evoked potential. Vision Res 21:1279–1286CrossRefPubMed
25.
go back to reference Martins A, Balachandran C, Klistorner AI, Graham SL, Billson FA (2003) Effect of pupil size on multifocal pattern visual evoked potentials. Clin Exp Ophthalmol 31:354–356CrossRef Martins A, Balachandran C, Klistorner AI, Graham SL, Billson FA (2003) Effect of pupil size on multifocal pattern visual evoked potentials. Clin Exp Ophthalmol 31:354–356CrossRef
26.
go back to reference Muller W, Kollert A, Zachert C (1988) Pupil size and the steady-state pattern reversal visual evoked cortical potential. Doc Ophthalmol 68:357–361CrossRefPubMed Muller W, Kollert A, Zachert C (1988) Pupil size and the steady-state pattern reversal visual evoked cortical potential. Doc Ophthalmol 68:357–361CrossRefPubMed
27.
go back to reference Hood DC, Greenstein VC, Odel JG, Zhang X, Ritch R, Liebmann JM, Hong JE, Chen CS, Thienprasiddhi P (2002) Visual field defects and multifocal visual evoked potentials: evidence of a linear relationship. Arch Ophthalmol 120:1672–1681PubMed Hood DC, Greenstein VC, Odel JG, Zhang X, Ritch R, Liebmann JM, Hong JE, Chen CS, Thienprasiddhi P (2002) Visual field defects and multifocal visual evoked potentials: evidence of a linear relationship. Arch Ophthalmol 120:1672–1681PubMed
28.
go back to reference Graham SL, Klistorner AI, Goldberg I (2008) Clinical application of objective perimetry using multifocal visual evoked potentials in glaucoma practice. Arch Ophthalmol 123:729–739CrossRef Graham SL, Klistorner AI, Goldberg I (2008) Clinical application of objective perimetry using multifocal visual evoked potentials in glaucoma practice. Arch Ophthalmol 123:729–739CrossRef
Metadata
Title
Influence of pupil size and other test variables on visual function assessment using visual evoked potentials in normal subjects
Authors
Sarwat Salim
Kevin Childers
Alvaro P. C. Lupinacci
George Z. Hu
Vance Zemon
Peter A. Netland
Publication date
01-08-2010
Publisher
Springer-Verlag
Published in
Documenta Ophthalmologica / Issue 1/2010
Print ISSN: 0012-4486
Electronic ISSN: 1573-2622
DOI
https://doi.org/10.1007/s10633-010-9222-5

Other articles of this Issue 1/2010

Documenta Ophthalmologica 1/2010 Go to the issue