Skip to main content
Top
Published in: Documenta Ophthalmologica 3/2008

01-11-2008 | Original Research Article

Novel electrophysiological instrument for rapid and objective assessment of magnocellular deficits associated with glaucoma

Authors: Vance Zemon, James C. Tsai, Max Forbes, Lama A. Al-Aswad, Chi-Ming Chen, James Gordon, Vivienne C. Greenstein, George Hu, Evy C. Strugstad, Elona Dhrami-Gavazi, Lawrence F. Jindra

Published in: Documenta Ophthalmologica | Issue 3/2008

Login to get access

Abstract

Purpose To introduce a rapid and objective electrophysiological technique that can assess visual function in the magnocellular pathway, which is thought to be affected in early-stage glaucoma. Methods Low-contrast bright or dark isolated-checks were luminance-modulated against a static background at 10 Hz in order to drive preferentially the magnocellular ON or OFF pathway. Visual evoked potentials were recorded during 1-s epochs of stimulation and responses at the stimulus frequency were measured. Artifact rejection features ensured that eight valid runs were obtained per eye. Signal-to-noise ratios (SNR) were derived based on a multivariate statistic. In order to demonstrate its functionality, a small group of patients with glaucoma (N = 18, Snellen acuity of 20/30 or better) and control observers (N = 16) were tested. A participant failed the test if either eye yielded an SNR ≤ 1. Receiver-operating-characteristic curve analysis was used to estimate the accuracy of group classification. Results The instrument was found to elicit reliable responses from control observers. For the 15% bright condition, all control observers yielded significant isolated-check VEPs (icVEPs), whereas the majority of patients failed to do so, indicating significant losses in central visual function. This condition produced the highest classification accuracy (94%), followed by the 10% dark condition (91%). Conclusions Both ON and OFF divisions of the magnocellular pathway can be assessed rapidly through the application of the icVEP technique. This measure of central visual function may be of value in the detection of glaucomatous deficits and may complement tests of peripheral function.
Literature
1.
go back to reference Quigley HA, Dunkelberger GR, Green WR (1989) Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol 107:453–464PubMed Quigley HA, Dunkelberger GR, Green WR (1989) Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol 107:453–464PubMed
2.
go back to reference Gupta N, Ang L-C, de Tilly LN, Bidaisee L, Yücel YH (2006) Human glaucoma and neural degeneration in intracranial optic nerve, lateral geniculate nucleus, and visual cortex. Br J Ophthalmol 90:674–678PubMedCrossRef Gupta N, Ang L-C, de Tilly LN, Bidaisee L, Yücel YH (2006) Human glaucoma and neural degeneration in intracranial optic nerve, lateral geniculate nucleus, and visual cortex. Br J Ophthalmol 90:674–678PubMedCrossRef
3.
go back to reference Jung R 1973 Visual perception and neurophysiology. In: Autrum H, Jung R, Loewenstein W, Mackay DM, Teuber HL (eds) Handbook of sensory physiology, VII/3A: central processing of visual information. Springer-Verlag, New York, 1–156 Jung R 1973 Visual perception and neurophysiology. In: Autrum H, Jung R, Loewenstein W, Mackay DM, Teuber HL (eds) Handbook of sensory physiology, VII/3A: central processing of visual information. Springer-Verlag, New York, 1–156
4.
go back to reference Hartline HK (1938) The discharge of impulses in the optic nerve of Pecten in response to illumination of the eye. J Cell Comp Physiol 2:465–478CrossRef Hartline HK (1938) The discharge of impulses in the optic nerve of Pecten in response to illumination of the eye. J Cell Comp Physiol 2:465–478CrossRef
5.
go back to reference Schiller PH, Sandell JH, Maunsell JHR (1986) Functions of the ON and OFF channels of the visual system. Nature 322:824–825PubMedCrossRef Schiller PH, Sandell JH, Maunsell JHR (1986) Functions of the ON and OFF channels of the visual system. Nature 322:824–825PubMedCrossRef
6.
go back to reference Kaplan E, Shapley RM (1986) The primate retina contains two types of ganglion cells, with high and low contrast sensitivity. Proc Natl Acad Sci 83:2755–2757PubMedCrossRef Kaplan E, Shapley RM (1986) The primate retina contains two types of ganglion cells, with high and low contrast sensitivity. Proc Natl Acad Sci 83:2755–2757PubMedCrossRef
7.
go back to reference Kaplan E (1991) The receptive field structure of retinal ganglion cells in cat and monkey. In: Leventhal A (eds) The neural basis of visual function. Macmillan, London, pp 10–40 Kaplan E (1991) The receptive field structure of retinal ganglion cells in cat and monkey. In: Leventhal A (eds) The neural basis of visual function. Macmillan, London, pp 10–40
8.
go back to reference Kaplan E (2003) The M, P and K pathways in the primate visual system. In: Chalupa LM, Werner JS (eds) The visual neurosciences. MIT Press, Cambridge, pp 481–493 Kaplan E (2003) The M, P and K pathways in the primate visual system. In: Chalupa LM, Werner JS (eds) The visual neurosciences. MIT Press, Cambridge, pp 481–493
9.
go back to reference Quigley HA, Gregory R, Dunkelberger GR, Green WR (1988) Chronic human glaucoma causing selectively greater loss of large optic nerve fibers. Ophthalmology 95:357–363PubMed Quigley HA, Gregory R, Dunkelberger GR, Green WR (1988) Chronic human glaucoma causing selectively greater loss of large optic nerve fibers. Ophthalmology 95:357–363PubMed
10.
go back to reference Kerrigan-Baumrind LA, Quigley HA, Pease ME, Kerrigan DF, Mitchell RS (2000) Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Invest Ophthalmol Vis Sci 41:741–748PubMed Kerrigan-Baumrind LA, Quigley HA, Pease ME, Kerrigan DF, Mitchell RS (2000) Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Invest Ophthalmol Vis Sci 41:741–748PubMed
11.
go back to reference Yucel YH, Zhang Q, Weinreb RN, Kaufman PL, Gupta N (2003) Effects of retinal ganglion cell loss on magno-, parvo-, koniocellular pathways in the lateral geniculate nucleus and visual cortex in glaucoma. Prog Retin Eye Res 22:465–481PubMedCrossRef Yucel YH, Zhang Q, Weinreb RN, Kaufman PL, Gupta N (2003) Effects of retinal ganglion cell loss on magno-, parvo-, koniocellular pathways in the lateral geniculate nucleus and visual cortex in glaucoma. Prog Retin Eye Res 22:465–481PubMedCrossRef
12.
go back to reference Kelly DH (1966) Frequency doubling in visual responses. J Opt Soc Am 56:1628–1633CrossRef Kelly DH (1966) Frequency doubling in visual responses. J Opt Soc Am 56:1628–1633CrossRef
13.
go back to reference White AJR, Sun H, Swanson WH, Lee BB (2002) An examination of physiological mechanisms underlying the frequency-doubling illusion. Invest Ophthalmol Vis Sci 43:3590–3599PubMed White AJR, Sun H, Swanson WH, Lee BB (2002) An examination of physiological mechanisms underlying the frequency-doubling illusion. Invest Ophthalmol Vis Sci 43:3590–3599PubMed
14.
go back to reference Turpin A, McKendrick AM, Johnson CA, Vingrys AJ (2002) Performance of efficient test procedures for frequency-doubling technology perimetry in normal and glaucomatous eyes. Invest Ophthalmol Vis Sci 43:709–715PubMed Turpin A, McKendrick AM, Johnson CA, Vingrys AJ (2002) Performance of efficient test procedures for frequency-doubling technology perimetry in normal and glaucomatous eyes. Invest Ophthalmol Vis Sci 43:709–715PubMed
15.
go back to reference Trible JR, Schultz RO, Robinson JC, Rothe TL (2000) Accuracy of glaucoma detection with frequency-doubling perimetry. Am J Ophthalmol 129:740–745PubMedCrossRef Trible JR, Schultz RO, Robinson JC, Rothe TL (2000) Accuracy of glaucoma detection with frequency-doubling perimetry. Am J Ophthalmol 129:740–745PubMedCrossRef
16.
go back to reference Bjerre A, Grigg JR, Parry NRA, Henson DB (2004) Test-retest variability of multifocal visual evoked potential and SITA standard perimetry in glaucoma. Invest Ophthalmol Vis Sci 45:4035–4040PubMedCrossRef Bjerre A, Grigg JR, Parry NRA, Henson DB (2004) Test-retest variability of multifocal visual evoked potential and SITA standard perimetry in glaucoma. Invest Ophthalmol Vis Sci 45:4035–4040PubMedCrossRef
17.
go back to reference Hood DC, Zhang X, Greenstein VC et al (2000) An interocular comparison of the multifocal VEP: a possible technique for detecting local damage to the optic nerve. Invest Ophthalmol Vis Sci 41:1580–1587PubMed Hood DC, Zhang X, Greenstein VC et al (2000) An interocular comparison of the multifocal VEP: a possible technique for detecting local damage to the optic nerve. Invest Ophthalmol Vis Sci 41:1580–1587PubMed
18.
go back to reference Klistorner AI, Graham SL (2000) Objective perimetry in glaucoma. Ophthalmology 107:2299CrossRef Klistorner AI, Graham SL (2000) Objective perimetry in glaucoma. Ophthalmology 107:2299CrossRef
19.
go back to reference Graham SL, Klistorner AI, Goldberg I (2005) Clinical application of objective perimetry using multifocal visual evoked potentials in glaucoma practice. Arch Opthalmol 123:729–739CrossRef Graham SL, Klistorner AI, Goldberg I (2005) Clinical application of objective perimetry using multifocal visual evoked potentials in glaucoma practice. Arch Opthalmol 123:729–739CrossRef
20.
go back to reference Porciatti V, Ventura LM (2004) Normative data for a user-friendly paradigm for pattern electroretinogram recording. Ophthalmology 111:161–168PubMedCrossRef Porciatti V, Ventura LM (2004) Normative data for a user-friendly paradigm for pattern electroretinogram recording. Ophthalmology 111:161–168PubMedCrossRef
21.
go back to reference Ventura LM, Porciatti V, Ishida K, Feuer WJ, Parrish RK (2005) Pattern electroretinogram abnormality and glaucoma. Ophthalmology 112:10–19PubMedCrossRef Ventura LM, Porciatti V, Ishida K, Feuer WJ, Parrish RK (2005) Pattern electroretinogram abnormality and glaucoma. Ophthalmology 112:10–19PubMedCrossRef
22.
go back to reference Zemon V, Gordon J, Welch J (1988) Asymmetries in ON and OFF visual pathways of humans revealed using contrast-evoked cortical potentials. Vis Neurosci 1:145–150PubMed Zemon V, Gordon J, Welch J (1988) Asymmetries in ON and OFF visual pathways of humans revealed using contrast-evoked cortical potentials. Vis Neurosci 1:145–150PubMed
23.
go back to reference Zemon V, Gordon J (1988) Spatial tuning characteristics of functional subsystems in the visual pathways of humans. Suppl Invest Ophthalmol Vis Sci 29:297 Zemon V, Gordon J (1988) Spatial tuning characteristics of functional subsystems in the visual pathways of humans. Suppl Invest Ophthalmol Vis Sci 29:297
24.
go back to reference Zemon V, Siegfried J, Gordon J (1991) Magno and Parvo pathways in humans studied using VEPs to luminance and chromatic contrast. Invest Ophthalmol Vis Sci 32:1033 Zemon V, Siegfried J, Gordon J (1991) Magno and Parvo pathways in humans studied using VEPs to luminance and chromatic contrast. Invest Ophthalmol Vis Sci 32:1033
25.
go back to reference Zemon V, Eisner W, Gordon J, Grose-Fifer J, Tenedios F, Shoup H (1995) Contrast-dependent responses in the human visual system: childhood through adulthood. Int J Neurosci 80:181–201PubMedCrossRef Zemon V, Eisner W, Gordon J, Grose-Fifer J, Tenedios F, Shoup H (1995) Contrast-dependent responses in the human visual system: childhood through adulthood. Int J Neurosci 80:181–201PubMedCrossRef
26.
go back to reference Greenstein VC, Seliger S, Zemon V, Ritch R (1998) Visual evoked potential assessment of the effects of glaucoma on visual subsystems. Vis Res 38:1901–1911PubMedCrossRef Greenstein VC, Seliger S, Zemon V, Ritch R (1998) Visual evoked potential assessment of the effects of glaucoma on visual subsystems. Vis Res 38:1901–1911PubMedCrossRef
27.
go back to reference Zemon V, Gordon J (2006) Luminance contrast mechanisms in humans: visual evoked potentials and a nonlinear model. Vis Res 46:4163–4180PubMedCrossRef Zemon V, Gordon J (2006) Luminance contrast mechanisms in humans: visual evoked potentials and a nonlinear model. Vis Res 46:4163–4180PubMedCrossRef
28.
go back to reference Badr AA, Zemon VM, Greenstein VC, Clemens CJ, Holopigian K, Seiple W (2003) M- versus P-function: Relationship to visual field loss in patients with open angle glaucoma. Invest Ophthalmol Vis Sci 44 Badr AA, Zemon VM, Greenstein VC, Clemens CJ, Holopigian K, Seiple W (2003) M- versus P-function: Relationship to visual field loss in patients with open angle glaucoma. Invest Ophthalmol Vis Sci 44
29.
go back to reference Jasper HH (1958) The 10–20 electrode system of the International Federation. Electroencephalogr Clin Neurophysiol 10:371–375 Jasper HH (1958) The 10–20 electrode system of the International Federation. Electroencephalogr Clin Neurophysiol 10:371–375
30.
go back to reference Victor JD, Mast J (1991) A new statistic for steady-state evoked potentials. Electroencephalogr Clin Neurophysiol 78:378–388PubMedCrossRef Victor JD, Mast J (1991) A new statistic for steady-state evoked potentials. Electroencephalogr Clin Neurophysiol 78:378–388PubMedCrossRef
31.
go back to reference Pollack I, Norman DA (1964) A non-parametric analysis of experiments. Psychon Sci 1:125–126 Pollack I, Norman DA (1964) A non-parametric analysis of experiments. Psychon Sci 1:125–126
32.
go back to reference Purpura K, Tranchina D, Kaplan E, Shapley RM (1990) Light adaptation in the primate retina: analysis of changes in gain and dynamics of monkey retinal ganglion cells. Vis Neurosci 4:75–93PubMed Purpura K, Tranchina D, Kaplan E, Shapley RM (1990) Light adaptation in the primate retina: analysis of changes in gain and dynamics of monkey retinal ganglion cells. Vis Neurosci 4:75–93PubMed
33.
go back to reference Swanson WH, Dul MW, Fischer SE (2005) Quantifying effects of retinal illuminance on frequency doubling perimetry. Invest Ophthalmol Vis Sci 46:235–240PubMedCrossRef Swanson WH, Dul MW, Fischer SE (2005) Quantifying effects of retinal illuminance on frequency doubling perimetry. Invest Ophthalmol Vis Sci 46:235–240PubMedCrossRef
34.
go back to reference Dacey DM, Petersen MR (1992) Dendritic field size and morphology of midget and parasol ganglion cells of the human retina. PNAS 89:9666–9670PubMedCrossRef Dacey DM, Petersen MR (1992) Dendritic field size and morphology of midget and parasol ganglion cells of the human retina. PNAS 89:9666–9670PubMedCrossRef
35.
go back to reference Sample PA, Medeiros FA, Racette L et al (2006) Identifying glaucomatous vision loss with visual-function-specific perimetry in the diagnostic innovations in glaucoma study. Invest Ophthalmol Vis Sci 47:3381–3389PubMedCrossRef Sample PA, Medeiros FA, Racette L et al (2006) Identifying glaucomatous vision loss with visual-function-specific perimetry in the diagnostic innovations in glaucoma study. Invest Ophthalmol Vis Sci 47:3381–3389PubMedCrossRef
36.
go back to reference Harsymowycz P, Fansi AK, Papamatheakis D (2005) Screening for primary open-angle glaucoma in the developed world: are we there yet? Can J Ophthalmol 40:477–486 Harsymowycz P, Fansi AK, Papamatheakis D (2005) Screening for primary open-angle glaucoma in the developed world: are we there yet? Can J Ophthalmol 40:477–486
Metadata
Title
Novel electrophysiological instrument for rapid and objective assessment of magnocellular deficits associated with glaucoma
Authors
Vance Zemon
James C. Tsai
Max Forbes
Lama A. Al-Aswad
Chi-Ming Chen
James Gordon
Vivienne C. Greenstein
George Hu
Evy C. Strugstad
Elona Dhrami-Gavazi
Lawrence F. Jindra
Publication date
01-11-2008
Publisher
Springer-Verlag
Published in
Documenta Ophthalmologica / Issue 3/2008
Print ISSN: 0012-4486
Electronic ISSN: 1573-2622
DOI
https://doi.org/10.1007/s10633-008-9129-6

Other articles of this Issue 3/2008

Documenta Ophthalmologica 3/2008 Go to the issue