Skip to main content
Top
Published in: Digestive Diseases and Sciences 8/2022

Open Access 20-11-2021 | Hepatic Encephalopathy | Original Article

Duodenal Microbiome and Serum Metabolites Predict Hepatocellular Carcinoma in a Multicenter Cohort of Patients with Cirrhosis

Authors: Tien S. Dong, Jonathan P. Jacobs, Vatche Agopian, Joseph R. Pisegna, Walid Ayoub, Francisco Durazo, Pedram Enayati, Vinay Sundaram, Jihane N. Benhammou, Mazen Noureddin, Gina Choi, Venu Lagishetty, Oliver Fiehn, Marc T. Goodman, David Elashoff, Shehnaz K. Hussain

Published in: Digestive Diseases and Sciences | Issue 8/2022

Login to get access

Abstract

Background

Hepatocellular carcinoma (HCC) is rapidly increasing in the U.S. and is a leading cause of mortality for patients with cirrhosis. Discovering novel biomarkers for risk stratification of HCC is paramount. We examined biomarkers of the gut-liver axis in a prospective multicenter cohort.

Methods

Patients with cirrhosis without a history of HCC were recruited between May 2015 and March 2020 and prospectively followed at 3 tertiary care hospitals in Los Angeles. Microbiome analysis was performed on duodenal biopsies and metabolomic analysis was performed on serum samples, collected at the time of enrollment. Optimal microbiome-based survival analysis and Cox proportional hazards regression analysis were used to determine microbiota and metabolite associations with HCC development, respectively.

Results

A total of 227 participants with liver cirrhosis contributed a total of 459.58 person-years of follow-up, with 14 incident HCC diagnoses. Male sex (HR = 7.06, 95% CI = 1.02–54.86) and baseline hepatic encephalopathy (HE, HR = 4.65, 95% CI = 1.60–13.52) were associated with developing HCC over follow-up. Adjusting for age, sex, baseline HE, and alkaline phosphatase, an increased risk of HCC were observed for participants with the highest versus lowest three quartiles for duodenal Alloprevotella (HR = 3.22, 95% CI = 1.06–9.73) and serum taurocholic acid (HR = 6.87, 95% CI = 2.32–20.27), methionine (HR = 9.97, 95% CI = 3.02–32.94), and methioninesulfoxide (HR = 5.60, 95% CI = 1.84–17.10). Being in the highest quartile for Alloprevotella or methionine had a sensitivity and specificity for developing HCC of 85.71% and 60.56%, respectively, with an odds ratio of 10.92 (95% CI = 2.23–53.48).

Conclusion

Alloprevotella and methionine, methioninesulfoxide, and taurocholic acid predicted future HCC development in a high-risk population of participants with liver cirrhosis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69:7–34.CrossRef Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69:7–34.CrossRef
2.
go back to reference Howlader N, Noone A, Krapcho M, et al. SEER Cancer Statistics Review, 1975–2014. National Cancer Institute. 2018:posted to the SEER web site, April 2017. Howlader N, Noone A, Krapcho M, et al. SEER Cancer Statistics Review, 1975–2014. National Cancer Institute. 2018:posted to the SEER web site, April 2017.
3.
go back to reference Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma. Lancet (Lond Engl) 2003;362:1907–1917.CrossRef Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma. Lancet (Lond Engl) 2003;362:1907–1917.CrossRef
4.
go back to reference Singal AG, Pillai A, Tiro J. Early detection, curative treatment, and survival rates for hepatocellular carcinoma surveillance in patients with cirrhosis: a meta-analysis. PLoS Med 2014;11:e1001624.CrossRef Singal AG, Pillai A, Tiro J. Early detection, curative treatment, and survival rates for hepatocellular carcinoma surveillance in patients with cirrhosis: a meta-analysis. PLoS Med 2014;11:e1001624.CrossRef
5.
go back to reference Albhaisi S, Shamsaddini A, Fagan A, et al. Gut microbial signature of hepatocellular cancer in men with cirrhosis. Liver Transpl 2021;27:629–640.CrossRef Albhaisi S, Shamsaddini A, Fagan A, et al. Gut microbial signature of hepatocellular cancer in men with cirrhosis. Liver Transpl 2021;27:629–640.CrossRef
6.
go back to reference Yu LX, Schwabe RF. The gut microbiome and liver cancer: mechanisms and clinical translation. Nat Rev Gastroenterol Hepatol 2017;14:527–539.CrossRef Yu LX, Schwabe RF. The gut microbiome and liver cancer: mechanisms and clinical translation. Nat Rev Gastroenterol Hepatol 2017;14:527–539.CrossRef
7.
go back to reference Yu LX, Yan HX, Liu Q et al. Endotoxin accumulation prevents carcinogen-induced apoptosis and promotes liver tumorigenesis in rodents. Hepatology 2010;52:1322–1333.CrossRef Yu LX, Yan HX, Liu Q et al. Endotoxin accumulation prevents carcinogen-induced apoptosis and promotes liver tumorigenesis in rodents. Hepatology 2010;52:1322–1333.CrossRef
8.
go back to reference Zoetendal EG, Raes J, van den Bogert B et al. The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates. ISME J 2012;6:1415–1426.CrossRef Zoetendal EG, Raes J, van den Bogert B et al. The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates. ISME J 2012;6:1415–1426.CrossRef
9.
go back to reference Martinez-Augustin O, Sanchez de Medina F. Intestinal bile acid physiology and pathophysiology. World J Gastroenterol 2008;14:5630–5640.CrossRef Martinez-Augustin O, Sanchez de Medina F. Intestinal bile acid physiology and pathophysiology. World J Gastroenterol 2008;14:5630–5640.CrossRef
10.
go back to reference Romero-Gomez M, Jover M, Galan JJ, Ruiz A. Gut ammonia production and its modulation. Metab Brain Dis 2009;24:147–157.CrossRef Romero-Gomez M, Jover M, Galan JJ, Ruiz A. Gut ammonia production and its modulation. Metab Brain Dis 2009;24:147–157.CrossRef
11.
go back to reference Angelakis E, Armougom F, Carrière F et al. A metagenomic investigation of the duodenal microbiota reveals links with obesity. PLoS ONE 2015;10:e0137784.CrossRef Angelakis E, Armougom F, Carrière F et al. A metagenomic investigation of the duodenal microbiota reveals links with obesity. PLoS ONE 2015;10:e0137784.CrossRef
12.
go back to reference Raja G, Jung Y, Jung SH, Kim T-J. 1H-NMR-based metabolomics for cancer targeting and metabolic engineering—a review. Process Biochem 2020;99:112–122.CrossRef Raja G, Jung Y, Jung SH, Kim T-J. 1H-NMR-based metabolomics for cancer targeting and metabolic engineering—a review. Process Biochem 2020;99:112–122.CrossRef
13.
go back to reference Raja G, Gupta H, Gebru YA, et al. Recent advances of microbiome-associated metabolomics profiling in liver disease: Principles, mechanisms, and applications. Int J Mol Sci 2021;22. Raja G, Gupta H, Gebru YA, et al. Recent advances of microbiome-associated metabolomics profiling in liver disease: Principles, mechanisms, and applications. Int J Mol Sci 2021;22.
14.
go back to reference Schwabe RF, Greten TF. Gut microbiome in HCC—mechanisms, diagnosis and therapy. J Hepatol 2020;72:230–238.CrossRef Schwabe RF, Greten TF. Gut microbiome in HCC—mechanisms, diagnosis and therapy. J Hepatol 2020;72:230–238.CrossRef
15.
go back to reference Yu L-X, Schwabe RF. The gut microbiome and liver cancer: mechanisms and clinical translation. Nat Rev Gastroenterol Hepatol 2017;14:527–539.CrossRef Yu L-X, Schwabe RF. The gut microbiome and liver cancer: mechanisms and clinical translation. Nat Rev Gastroenterol Hepatol 2017;14:527–539.CrossRef
16.
go back to reference Martino C, Morton JT, Marotz CA, et al. A novel sparse compositional technique reveals microbial perturbations. mSystems 2019;4:e00016-19.CrossRef Martino C, Morton JT, Marotz CA, et al. A novel sparse compositional technique reveals microbial perturbations. mSystems 2019;4:e00016-19.CrossRef
17.
go back to reference Lozupone CA, Knight R. Species divergence and the measurement of microbial diversity. FEMS Microbiol Rev 2008;32:557–578.CrossRef Lozupone CA, Knight R. Species divergence and the measurement of microbial diversity. FEMS Microbiol Rev 2008;32:557–578.CrossRef
18.
go back to reference Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014;15:550.CrossRef Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014;15:550.CrossRef
19.
go back to reference Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci U S A 2003;100:9440–9445.CrossRef Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci U S A 2003;100:9440–9445.CrossRef
20.
go back to reference Benjamini Y, Hochberg Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodol) 1995;57:289–300. Benjamini Y, Hochberg Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodol) 1995;57:289–300.
21.
go back to reference Koh H, Livanos AE, Blaser MJ, Li H. A highly adaptive microbiome-based association test for survival traits. BMC Genom 2018;19:210.CrossRef Koh H, Livanos AE, Blaser MJ, Li H. A highly adaptive microbiome-based association test for survival traits. BMC Genom 2018;19:210.CrossRef
22.
go back to reference Keng VW, Largaespada DA, Villanueva A. Why men are at higher risk for hepatocellular carcinoma? J Hepatol 2012;57:453–454.CrossRef Keng VW, Largaespada DA, Villanueva A. Why men are at higher risk for hepatocellular carcinoma? J Hepatol 2012;57:453–454.CrossRef
23.
go back to reference El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 2007;132:2557–2576.CrossRef El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 2007;132:2557–2576.CrossRef
24.
go back to reference Chen CL, Kuo MJ, Yen AM et al. Gender difference in the association between metabolic factors and hepatocellular carcinoma. JNCI Cancer Spectr 2020;4:pkaa036.CrossRef Chen CL, Kuo MJ, Yen AM et al. Gender difference in the association between metabolic factors and hepatocellular carcinoma. JNCI Cancer Spectr 2020;4:pkaa036.CrossRef
25.
go back to reference Liu Q, Li F, Zhuang Y et al. Alteration in gut microbiota associated with hepatitis B and non-hepatitis virus related hepatocellular carcinoma. Gut Pathog 2019;11:1.CrossRef Liu Q, Li F, Zhuang Y et al. Alteration in gut microbiota associated with hepatitis B and non-hepatitis virus related hepatocellular carcinoma. Gut Pathog 2019;11:1.CrossRef
26.
go back to reference Downes J, Dewhirst FE, Tanner ACR, Wade WG. Description of Alloprevotella rava gen. nov., sp. nov., isolated from the human oral cavity, and reclassification of Prevotella tannerae Moore et al. 1994 as Alloprevotella tannerae gen. nov., comb. nov. Int J Syst Evol Microbiol. 2013;63:1214–1218.CrossRef Downes J, Dewhirst FE, Tanner ACR, Wade WG. Description of Alloprevotella rava gen. nov., sp. nov., isolated from the human oral cavity, and reclassification of Prevotella tannerae Moore et al. 1994 as Alloprevotella tannerae gen. nov., comb. nov. Int J Syst Evol Microbiol. 2013;63:1214–1218.CrossRef
27.
go back to reference Cavuoto P, Fenech MF. A review of methionine dependency and the role of methionine restriction in cancer growth control and life-span extension. Cancer Treat Rev 2012;38:726–736.CrossRef Cavuoto P, Fenech MF. A review of methionine dependency and the role of methionine restriction in cancer growth control and life-span extension. Cancer Treat Rev 2012;38:726–736.CrossRef
28.
go back to reference Guo H, Lishko VK, Herrera H, Groce A, Kubota T, Hoffman RM. Therapeutic tumor-specific cell cycle block induced by methionine starvation in vivo. Cancer Res 1993;53:5676–5679.PubMed Guo H, Lishko VK, Herrera H, Groce A, Kubota T, Hoffman RM. Therapeutic tumor-specific cell cycle block induced by methionine starvation in vivo. Cancer Res 1993;53:5676–5679.PubMed
29.
go back to reference Pascale RM, Peitta G, Simile MM, Feo F. Alterations of methionine metabolism as potential targets for the prevention and therapy of hepatocellular carcinoma. Medicina (Kaunas) 2019;55:296.CrossRef Pascale RM, Peitta G, Simile MM, Feo F. Alterations of methionine metabolism as potential targets for the prevention and therapy of hepatocellular carcinoma. Medicina (Kaunas) 2019;55:296.CrossRef
30.
go back to reference Raja G, Cao S, Kim D-H, Kim T-J. Mechanoregulation of titanium dioxide nanoparticles in cancer therapy. Mater Sci Eng C 2020;107:110303.CrossRef Raja G, Cao S, Kim D-H, Kim T-J. Mechanoregulation of titanium dioxide nanoparticles in cancer therapy. Mater Sci Eng C 2020;107:110303.CrossRef
31.
go back to reference Mahmood N, Cheishvili D, Arakelian A et al. Methyl donor S-adenosylmethionine (SAM) supplementation attenuates breast cancer growth, invasion, and metastasis in vivo; therapeutic and chemopreventive applications. Oncotarget. 2018;9:5169–5183.CrossRef Mahmood N, Cheishvili D, Arakelian A et al. Methyl donor S-adenosylmethionine (SAM) supplementation attenuates breast cancer growth, invasion, and metastasis in vivo; therapeutic and chemopreventive applications. Oncotarget. 2018;9:5169–5183.CrossRef
32.
go back to reference Zhang W, Xiang YB, Li HL et al. Vegetable-based dietary pattern and liver cancer risk: results from the Shanghai women’s and men’s health studies. Cancer Sci. 2013;104:1353–1361.CrossRef Zhang W, Xiang YB, Li HL et al. Vegetable-based dietary pattern and liver cancer risk: results from the Shanghai women’s and men’s health studies. Cancer Sci. 2013;104:1353–1361.CrossRef
33.
go back to reference Wang X, Fu X, Van Ness C, Meng Z, Ma X, Huang W. Bile Acid Receptors and Liver Cancer. Curr Pathobiol Rep. 2013;1:29–35.CrossRef Wang X, Fu X, Van Ness C, Meng Z, Ma X, Huang W. Bile Acid Receptors and Liver Cancer. Curr Pathobiol Rep. 2013;1:29–35.CrossRef
34.
go back to reference Ridlon JM, Wolf PG, Gaskins HR. Taurocholic acid metabolism by gut microbes and colon cancer. Gut Microbes. 2016;7:201–215.CrossRef Ridlon JM, Wolf PG, Gaskins HR. Taurocholic acid metabolism by gut microbes and colon cancer. Gut Microbes. 2016;7:201–215.CrossRef
35.
go back to reference Wolf PG, Gaskins HR, Ridlon JM et al. Effects of taurocholic acid metabolism by gut bacteria: A controlled feeding trial in adult African American subjects at elevated risk for colorectal cancer. Contemp Clin Trials Commun 2020;19:100611.CrossRef Wolf PG, Gaskins HR, Ridlon JM et al. Effects of taurocholic acid metabolism by gut bacteria: A controlled feeding trial in adult African American subjects at elevated risk for colorectal cancer. Contemp Clin Trials Commun 2020;19:100611.CrossRef
36.
go back to reference Liu Z, Zhang Z, Huang M et al. Taurocholic acid is an active promoting factor, not just a biomarker of progression of liver cirrhosis: evidence from a human metabolomic study and in vitro experiments. BMC Gastroenterol. 2018;18:112.CrossRef Liu Z, Zhang Z, Huang M et al. Taurocholic acid is an active promoting factor, not just a biomarker of progression of liver cirrhosis: evidence from a human metabolomic study and in vitro experiments. BMC Gastroenterol. 2018;18:112.CrossRef
37.
go back to reference Gu S, Chen D, Zhang JN et al. Bacterial community mapping of the mouse gastrointestinal tract. PLoS ONE 2013;8:e74957.CrossRef Gu S, Chen D, Zhang JN et al. Bacterial community mapping of the mouse gastrointestinal tract. PLoS ONE 2013;8:e74957.CrossRef
Metadata
Title
Duodenal Microbiome and Serum Metabolites Predict Hepatocellular Carcinoma in a Multicenter Cohort of Patients with Cirrhosis
Authors
Tien S. Dong
Jonathan P. Jacobs
Vatche Agopian
Joseph R. Pisegna
Walid Ayoub
Francisco Durazo
Pedram Enayati
Vinay Sundaram
Jihane N. Benhammou
Mazen Noureddin
Gina Choi
Venu Lagishetty
Oliver Fiehn
Marc T. Goodman
David Elashoff
Shehnaz K. Hussain
Publication date
20-11-2021
Publisher
Springer US
Published in
Digestive Diseases and Sciences / Issue 8/2022
Print ISSN: 0163-2116
Electronic ISSN: 1573-2568
DOI
https://doi.org/10.1007/s10620-021-07299-2

Other articles of this Issue 8/2022

Digestive Diseases and Sciences 8/2022 Go to the issue