Skip to main content
Top
Published in: Digestive Diseases and Sciences 1/2021

01-01-2021 | Streptococci | MENTORED REVIEW

Microbiome of the Aerodigestive Tract in Health and Esophageal Disease

Authors: Aws Hasan, Laith K. Hasan, Bernd Schnabl, Madeline Greytak, Rena Yadlapati

Published in: Digestive Diseases and Sciences | Issue 1/2021

Login to get access

Abstract

The diverse human gut microbiome is comprised of approximately 40 trillion microorganisms representing up to 1000 different bacterial species. The human microbiome plays a critical role in gut epithelial health and disease susceptibility. While the interaction between gut microbiome and gastrointestinal pathology is increasingly understood, less is known about the interaction between the microbiome and the aerodigestive tract. This review of the microbiome of the aerodigestive tract in health, and alterations in microbiome across esophageal pathologies highlights important findings and areas for future research. First, microbiome profiles are distinct along the aerodigestive tract, spanning the oral cavity to the stomach. In patients with reflux-related disease such as gastro-esophageal reflux disease, Barrett’s esophagus, and esophageal adenocarcinoma, investigators have observed an overall increase in gram negative bacteria in the esophageal microbiome compared to healthy individuals. However, whether differences in microbiome promote disease development, or if these shifts are a consequence of disease remains unknown. Interestingly, use of proton pump inhibitor therapy is also associated with shifts in the microbiome, with distinct shifts and patterns along the aerodigestive tract. The relationship between the human gut microbiome and esophageal pathology is a ripe area for investigation, and further understanding of these pathways may promote development of novel targets in prevention and therapy for esophageal diseases.
Literature
1.
go back to reference Lacy BE, Spiegel B. Introduction to the gut microbiome special issue. Am J Gastroenterol. 2019;114. Lacy BE, Spiegel B. Introduction to the gut microbiome special issue. Am J Gastroenterol. 2019;114.
2.
go back to reference Human Microbiome Project C. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–214.CrossRef Human Microbiome Project C. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–214.CrossRef
3.
go back to reference Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489:220–230.PubMedPubMedCentralCrossRef Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489:220–230.PubMedPubMedCentralCrossRef
4.
go back to reference Nicholson JK, Holmes E, Kinross J, et al. Host-gut microbiota metabolic interactions. Science. 2012;336:1262–1267.PubMedCrossRef Nicholson JK, Holmes E, Kinross J, et al. Host-gut microbiota metabolic interactions. Science. 2012;336:1262–1267.PubMedCrossRef
5.
go back to reference Vindigni SM, Zisman TL, Suskind DL, Damman CJ. The intestinal microbiome, barrier function, and immune system in inflammatory bowel disease: a tripartite pathophysiological circuit with implications for new therapeutic directions. Therap Adv Gastroenterol. 2016;9:606–625.PubMedPubMedCentralCrossRef Vindigni SM, Zisman TL, Suskind DL, Damman CJ. The intestinal microbiome, barrier function, and immune system in inflammatory bowel disease: a tripartite pathophysiological circuit with implications for new therapeutic directions. Therap Adv Gastroenterol. 2016;9:606–625.PubMedPubMedCentralCrossRef
6.
go back to reference Andrews ML. Manual of voice treatment: pediatrics through geriatrics. San Diego: Singular Pub. Group; 1999. Andrews ML. Manual of voice treatment: pediatrics through geriatrics. San Diego: Singular Pub. Group; 1999.
7.
go back to reference Verma D, Garg PK, Dubey AK. Insights into the human oral microbiome. Arch Microbiol. 2018;200:525–540.PubMedCrossRef Verma D, Garg PK, Dubey AK. Insights into the human oral microbiome. Arch Microbiol. 2018;200:525–540.PubMedCrossRef
8.
go back to reference Bik EM, Long CD, Armitage GC, et al. Bacterial diversity in the oral cavity of 10 healthy individuals. ISME J. 2010;4:962–974.PubMedCrossRef Bik EM, Long CD, Armitage GC, et al. Bacterial diversity in the oral cavity of 10 healthy individuals. ISME J. 2010;4:962–974.PubMedCrossRef
9.
go back to reference Krishnan K, Chen T, Paster BJ. A practical guide to the oral microbiome and its relation to health and disease. Oral Dis. 2017;23:276–286.PubMedCrossRef Krishnan K, Chen T, Paster BJ. A practical guide to the oral microbiome and its relation to health and disease. Oral Dis. 2017;23:276–286.PubMedCrossRef
11.
12.
go back to reference Norder Grusell E, Dahlén G, Ruth M, et al. Bacterial flora of the human oral cavity, and the upper and lower esophagus. Dis Esophagus. 2013;26:84–90.PubMedCrossRef Norder Grusell E, Dahlén G, Ruth M, et al. Bacterial flora of the human oral cavity, and the upper and lower esophagus. Dis Esophagus. 2013;26:84–90.PubMedCrossRef
13.
go back to reference De Gaetano GV, Pietrocola G, Romeo L, et al. The Streptococcus agalactiae cell wall-anchored protein PbsP mediates adhesion to and invasion of epithelial cells by exploiting the host vitronectin/α(v) integrin axis. Mol Microbiol. 2018;110:82–94.PubMedCrossRef De Gaetano GV, Pietrocola G, Romeo L, et al. The Streptococcus agalactiae cell wall-anchored protein PbsP mediates adhesion to and invasion of epithelial cells by exploiting the host vitronectin/α(v) integrin axis. Mol Microbiol. 2018;110:82–94.PubMedCrossRef
14.
go back to reference Corning B, Copland AP, Frye JW. The esophageal microbiome in health and disease. Curr Gastroenterol Rep. 2018;20:39.PubMedCrossRef Corning B, Copland AP, Frye JW. The esophageal microbiome in health and disease. Curr Gastroenterol Rep. 2018;20:39.PubMedCrossRef
15.
go back to reference Hunt RH, Yaghoobi M. The esophageal and gastric microbiome in health and disease. Gastroenterol Clin North Am. 2017;46:121–141.PubMedCrossRef Hunt RH, Yaghoobi M. The esophageal and gastric microbiome in health and disease. Gastroenterol Clin North Am. 2017;46:121–141.PubMedCrossRef
16.
go back to reference Shi YC, Cai ST, Tian YP, et al. Effects of proton pump inhibitors on the gastrointestinal microbiota in gastroesophageal reflux disease. Genomics Proteomics Bioinform. 2019;17:52–63.CrossRef Shi YC, Cai ST, Tian YP, et al. Effects of proton pump inhibitors on the gastrointestinal microbiota in gastroesophageal reflux disease. Genomics Proteomics Bioinform. 2019;17:52–63.CrossRef
17.
go back to reference Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar Reddy D. Role of the normal gut microbiota. World J Gastroenterol. 2015;21:8787–8803.PubMedPubMedCentralCrossRef Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar Reddy D. Role of the normal gut microbiota. World J Gastroenterol. 2015;21:8787–8803.PubMedPubMedCentralCrossRef
18.
go back to reference Andersson AF, Lindberg M, Jakobsson H, Backhed F, Nyren P, Engstrand L. Comparative analysis of human gut microbiota by barcoded pyrosequencing. PLoS One. 2008;3:e2836.PubMedPubMedCentralCrossRef Andersson AF, Lindberg M, Jakobsson H, Backhed F, Nyren P, Engstrand L. Comparative analysis of human gut microbiota by barcoded pyrosequencing. PLoS One. 2008;3:e2836.PubMedPubMedCentralCrossRef
19.
20.
go back to reference Heintz-Buschart A, Wilmes P. Human gut microbiome: function matters. Trends Microbiol. 2018;26:563–574.PubMedCrossRef Heintz-Buschart A, Wilmes P. Human gut microbiome: function matters. Trends Microbiol. 2018;26:563–574.PubMedCrossRef
22.
go back to reference Deshpande NP, Riordan SM, Castaño-Rodríguez N, Wilkins MR, Kaakoush NO. Signatures within the esophageal microbiome are associated with host genetics, age, and disease. Microbiome. 2018;6:227.PubMedPubMedCentralCrossRef Deshpande NP, Riordan SM, Castaño-Rodríguez N, Wilkins MR, Kaakoush NO. Signatures within the esophageal microbiome are associated with host genetics, age, and disease. Microbiome. 2018;6:227.PubMedPubMedCentralCrossRef
23.
go back to reference Ferreira RDS, Mendonça L, Ribeiro CFA, et al. Relationship between intestinal microbiota, diet and biological systems: an integrated view. Crit Rev Food Sci Nutr. 2020:1–21. Ferreira RDS, Mendonça L, Ribeiro CFA, et al. Relationship between intestinal microbiota, diet and biological systems: an integrated view. Crit Rev Food Sci Nutr. 2020:1–21.
24.
go back to reference De Filippo C, Cavalieri D, Di Paola M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A. 2010;107:14691–14696.PubMedPubMedCentralCrossRef De Filippo C, Cavalieri D, Di Paola M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A. 2010;107:14691–14696.PubMedPubMedCentralCrossRef
25.
go back to reference Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. Bacterial community variation in human body habitats across space and time. Science. 2009;326:1694–1697.PubMedPubMedCentralCrossRef Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. Bacterial community variation in human body habitats across space and time. Science. 2009;326:1694–1697.PubMedPubMedCentralCrossRef
28.
29.
go back to reference Ege MJ. The Hygiene hypothesis in the age of the microbiome. Ann Am Thorac Soc. 2017;14:S348–s353. Ege MJ. The Hygiene hypothesis in the age of the microbiome. Ann Am Thorac Soc. 2017;14:S348–s353.
31.
32.
go back to reference Gall A, Fero J, McCoy C, et al. Bacterial composition of the human upper gastrointestinal tract microbiome is dynamic and associated with genomic instability in a Barrett’s esophagus cohort. PloS one. 2015;10. Gall A, Fero J, McCoy C, et al. Bacterial composition of the human upper gastrointestinal tract microbiome is dynamic and associated with genomic instability in a Barrett’s esophagus cohort. PloS one. 2015;10.
33.
go back to reference Blackett KL, Siddhi SS, Cleary S, et al. Oesophageal bacterial biofilm changes in gastro-oesophageal reflux disease, Barrett’s and oesophageal carcinoma: association or causality? Alimen Pharmacol Therap. 2013;37:1084–1092.CrossRef Blackett KL, Siddhi SS, Cleary S, et al. Oesophageal bacterial biofilm changes in gastro-oesophageal reflux disease, Barrett’s and oesophageal carcinoma: association or causality? Alimen Pharmacol Therap. 2013;37:1084–1092.CrossRef
34.
go back to reference Yang L, Lu X, Nossa CW, Francois F, Peek RM, Pei Z. Inflammation and intestinal metaplasia of the distal esophagus are associated with alterations in the microbiome. Gastroenterology. 2009;137:588–597.PubMedCrossRef Yang L, Lu X, Nossa CW, Francois F, Peek RM, Pei Z. Inflammation and intestinal metaplasia of the distal esophagus are associated with alterations in the microbiome. Gastroenterology. 2009;137:588–597.PubMedCrossRef
36.
go back to reference Whiteman DC, Sadeghi S, Pandeya N, et al. Combined effects of obesity, acid reflux and smoking on the risk of adenocarcinomas of the oesophagus. Gut. 2008;57:173–180.PubMedCrossRef Whiteman DC, Sadeghi S, Pandeya N, et al. Combined effects of obesity, acid reflux and smoking on the risk of adenocarcinomas of the oesophagus. Gut. 2008;57:173–180.PubMedCrossRef
37.
go back to reference Hoyo C, Cook MB, Kamangar F, et al. Body mass index in relation to oesophageal and oesophagogastric junction adenocarcinomas: a pooled analysis from the International BEACON Consortium. Int J Epidemiol. 2012;41:1706–1718.PubMedPubMedCentralCrossRef Hoyo C, Cook MB, Kamangar F, et al. Body mass index in relation to oesophageal and oesophagogastric junction adenocarcinomas: a pooled analysis from the International BEACON Consortium. Int J Epidemiol. 2012;41:1706–1718.PubMedPubMedCentralCrossRef
38.
go back to reference Turati F, Tramacere I, La Vecchia C, Negri E. A meta-analysis of body mass index and esophageal and gastric cardia adenocarcinoma. Ann Oncol. 2013;24:609–617.PubMedCrossRef Turati F, Tramacere I, La Vecchia C, Negri E. A meta-analysis of body mass index and esophageal and gastric cardia adenocarcinoma. Ann Oncol. 2013;24:609–617.PubMedCrossRef
39.
go back to reference Petrick JL, Kelly SP, Liao LM, Freedman ND, Graubard BI, Cook MB. Body weight trajectories and risk of oesophageal and gastric cardia adenocarcinomas: a pooled analysis of NIH-AARP and PLCO Studies. Br J Cancer. 2017;116:951–959.PubMedPubMedCentralCrossRef Petrick JL, Kelly SP, Liao LM, Freedman ND, Graubard BI, Cook MB. Body weight trajectories and risk of oesophageal and gastric cardia adenocarcinomas: a pooled analysis of NIH-AARP and PLCO Studies. Br J Cancer. 2017;116:951–959.PubMedPubMedCentralCrossRef
40.
go back to reference Singh S, Sharma AN, Murad MH, et al. Central adiposity is associated with increased risk of esophageal inflammation, metaplasia, and adenocarcinoma: a systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2013;11:1399–1412.e1397.PubMedCrossRef Singh S, Sharma AN, Murad MH, et al. Central adiposity is associated with increased risk of esophageal inflammation, metaplasia, and adenocarcinoma: a systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2013;11:1399–1412.e1397.PubMedCrossRef
41.
go back to reference Coleman HG, Xie SH, Lagergren J. The epidemiology of esophageal adenocarcinoma. Gastroenterology. 2018;154:390–405.PubMedCrossRef Coleman HG, Xie SH, Lagergren J. The epidemiology of esophageal adenocarcinoma. Gastroenterology. 2018;154:390–405.PubMedCrossRef
42.
go back to reference Neto AG, Whitaker A, Pei Z. Microbiome and potential targets for chemoprevention of esophageal adenocarcinoma. Semin Oncol. 2016;43:86–96.PubMedCrossRef Neto AG, Whitaker A, Pei Z. Microbiome and potential targets for chemoprevention of esophageal adenocarcinoma. Semin Oncol. 2016;43:86–96.PubMedCrossRef
43.
go back to reference Lagergren J. Influence of obesity on the risk of esophageal disorders. Nat Rev Gastroenterol Hepatol. 2011;8:340–347.PubMedCrossRef Lagergren J. Influence of obesity on the risk of esophageal disorders. Nat Rev Gastroenterol Hepatol. 2011;8:340–347.PubMedCrossRef
44.
go back to reference Alemán JO, Eusebi LH, Ricciardiello L, Patidar K, Sanyal AJ, Holt PR. Mechanisms of obesity-induced gastrointestinal neoplasia. Gastroenterology. 2014;146:357–373.PubMedCrossRef Alemán JO, Eusebi LH, Ricciardiello L, Patidar K, Sanyal AJ, Holt PR. Mechanisms of obesity-induced gastrointestinal neoplasia. Gastroenterology. 2014;146:357–373.PubMedCrossRef
45.
go back to reference Gall A, Fero J, McCoy C, et al. Bacterial composition of the human upper gastrointestinal tract microbiome is dynamic and associated with genomic instability in a Barrett’s esophagus cohort. PLoS One. 2015;10:e0129055.PubMedPubMedCentralCrossRef Gall A, Fero J, McCoy C, et al. Bacterial composition of the human upper gastrointestinal tract microbiome is dynamic and associated with genomic instability in a Barrett’s esophagus cohort. PLoS One. 2015;10:e0129055.PubMedPubMedCentralCrossRef
46.
go back to reference Martínez-González D, Franco J, Navarro-Ortega D, Muñoz C, Martí-Obiol R, Borrás-Salvador R. Achalasia and Mycobacterium goodii pulmonary infection. Pediatr Infect Dis J. 2011;30:447–448.PubMedCrossRef Martínez-González D, Franco J, Navarro-Ortega D, Muñoz C, Martí-Obiol R, Borrás-Salvador R. Achalasia and Mycobacterium goodii pulmonary infection. Pediatr Infect Dis J. 2011;30:447–448.PubMedCrossRef
47.
go back to reference Wang AJ, Tu LX, Yu C, Zheng XL, Hong JB, Lu NH. Achalasia secondary to cardial tuberculosis caused by AIDS. J Dig Dis. 2015;16:752–753.PubMedCrossRef Wang AJ, Tu LX, Yu C, Zheng XL, Hong JB, Lu NH. Achalasia secondary to cardial tuberculosis caused by AIDS. J Dig Dis. 2015;16:752–753.PubMedCrossRef
49.
go back to reference Dellon ES, Peery AF, Shaheen NJ, et al. Inverse association of esophageal eosinophilia with Helicobacter pylori based on analysis of a US pathology database. Gastroenterology. 2011;141:1586–1592.PubMedCrossRef Dellon ES, Peery AF, Shaheen NJ, et al. Inverse association of esophageal eosinophilia with Helicobacter pylori based on analysis of a US pathology database. Gastroenterology. 2011;141:1586–1592.PubMedCrossRef
50.
go back to reference Kashyap PC, Johnson S, Geno DM, et al. A decreased abundance of clostridia characterizes the gut microbiota in eosinophilic esophagitis. Physiol Rep. 2019;7:e14261.PubMedPubMedCentralCrossRef Kashyap PC, Johnson S, Geno DM, et al. A decreased abundance of clostridia characterizes the gut microbiota in eosinophilic esophagitis. Physiol Rep. 2019;7:e14261.PubMedPubMedCentralCrossRef
51.
go back to reference Vesper BJ, Jawdi A, Altman KW, Haines GK 3rd, Tao L, Radosevich JA. The effect of proton pump inhibitors on the human microbiota. Curr Drug Metab. 2009;10:84–89.PubMedCrossRef Vesper BJ, Jawdi A, Altman KW, Haines GK 3rd, Tao L, Radosevich JA. The effect of proton pump inhibitors on the human microbiota. Curr Drug Metab. 2009;10:84–89.PubMedCrossRef
52.
go back to reference Castellani C, Singer G, Kashofer K, et al. The influence of proton pump inhibitors on the fecal microbiome of infants with gastroesophageal reflux—a prospective longitudinal interventional study. Front Cell Infect Microbiol. 2017;7:444.PubMedPubMedCentralCrossRef Castellani C, Singer G, Kashofer K, et al. The influence of proton pump inhibitors on the fecal microbiome of infants with gastroesophageal reflux—a prospective longitudinal interventional study. Front Cell Infect Microbiol. 2017;7:444.PubMedPubMedCentralCrossRef
53.
go back to reference Martinsen TC, Bergh K, Waldum HL. Gastric juice: a barrier against infectious diseases. Basic Clin Pharmacol Toxicol. 2005;96:94–102.CrossRefPubMed Martinsen TC, Bergh K, Waldum HL. Gastric juice: a barrier against infectious diseases. Basic Clin Pharmacol Toxicol. 2005;96:94–102.CrossRefPubMed
54.
go back to reference Mishiro T, Oka K, Kuroki Y, et al. Oral microbiome alterations of healthy volunteers with proton pump inhibitor. J Gastroenterol Hepatol. 2018;33:1059–1066.PubMedCrossRef Mishiro T, Oka K, Kuroki Y, et al. Oral microbiome alterations of healthy volunteers with proton pump inhibitor. J Gastroenterol Hepatol. 2018;33:1059–1066.PubMedCrossRef
55.
go back to reference Amir I, Konikoff FM, Oppenheim M, Gophna U, Half EE. Gastric microbiota is altered in oesophagitis and Barrett’s oesophagus and further modified by proton pump inhibitors. Environ Microbiol. 2014;16:2905–2914.PubMedCrossRef Amir I, Konikoff FM, Oppenheim M, Gophna U, Half EE. Gastric microbiota is altered in oesophagitis and Barrett’s oesophagus and further modified by proton pump inhibitors. Environ Microbiol. 2014;16:2905–2914.PubMedCrossRef
56.
go back to reference Bruno G, Zaccari P, Rocco G, et al. Proton pump inhibitors and dysbiosis: current knowledge and aspects to be clarified. World journal of gastroenterology. 2019;25:2706–2719.PubMedPubMedCentralCrossRef Bruno G, Zaccari P, Rocco G, et al. Proton pump inhibitors and dysbiosis: current knowledge and aspects to be clarified. World journal of gastroenterology. 2019;25:2706–2719.PubMedPubMedCentralCrossRef
57.
58.
go back to reference Ghoshal UC, Shukla R, Ghoshal U, Gwee KA, Ng SC, Quigley EM. The gut microbiota and irritable bowel syndrome: friend or foe? Int J Inflam. 2012;2012:151085.PubMedPubMedCentralCrossRef Ghoshal UC, Shukla R, Ghoshal U, Gwee KA, Ng SC, Quigley EM. The gut microbiota and irritable bowel syndrome: friend or foe? Int J Inflam. 2012;2012:151085.PubMedPubMedCentralCrossRef
59.
go back to reference Chumpitazi BP, Hollister EB, Oezguen N, et al. Gut microbiota influences low fermentable substrate diet efficacy in children with irritable bowel syndrome. Gut Microbes. 2014;5:165–175.PubMedPubMedCentralCrossRef Chumpitazi BP, Hollister EB, Oezguen N, et al. Gut microbiota influences low fermentable substrate diet efficacy in children with irritable bowel syndrome. Gut Microbes. 2014;5:165–175.PubMedPubMedCentralCrossRef
60.
go back to reference Münch NS, Fang HY, Ingermann J, et al. High-fat diet accelerates carcinogenesis in a mouse model of Barrett’s esophagus via interleukin 8 and alterations to the gut microbiome. Gastroenterology. 2019;157:492–506.e492.PubMedCrossRef Münch NS, Fang HY, Ingermann J, et al. High-fat diet accelerates carcinogenesis in a mouse model of Barrett’s esophagus via interleukin 8 and alterations to the gut microbiome. Gastroenterology. 2019;157:492–506.e492.PubMedCrossRef
61.
go back to reference Chen J, Pitmon E, Wang K. Microbiome, inflammation and colorectal cancer. Semin Immunol. 2017;32:43–53.PubMedCrossRef Chen J, Pitmon E, Wang K. Microbiome, inflammation and colorectal cancer. Semin Immunol. 2017;32:43–53.PubMedCrossRef
62.
go back to reference Jiang Q, Akashi S, Miyake K, Petty HR. Lipopolysaccharide induces physical proximity between CD14 and toll-like receptor 4 (TLR4) prior to nuclear translocation of NF-kappa B. J Immunol. 2000;165:3541–3544.PubMedCrossRef Jiang Q, Akashi S, Miyake K, Petty HR. Lipopolysaccharide induces physical proximity between CD14 and toll-like receptor 4 (TLR4) prior to nuclear translocation of NF-kappa B. J Immunol. 2000;165:3541–3544.PubMedCrossRef
63.
go back to reference O’Riordan JM, Abdel-latif MM, Ravi N, et al. Proinflammatory cytokine and nuclear factor kappa-B expression along the inflammation–metaplasia–dysplasia–adenocarcinoma sequence in the esophagus. Am J Gastroenterol. 2005;100:1257–1264.PubMedCrossRef O’Riordan JM, Abdel-latif MM, Ravi N, et al. Proinflammatory cytokine and nuclear factor kappa-B expression along the inflammation–metaplasia–dysplasia–adenocarcinoma sequence in the esophagus. Am J Gastroenterol. 2005;100:1257–1264.PubMedCrossRef
64.
go back to reference Calatayud S, García-Zaragozá E, Hernández C, et al. Downregulation of nNOS and synthesis of PGs associated with endotoxin-induced delay in gastric emptying. Am J Physiol Gastrointest Liver Physiol. 2002;283:G1360–G1367.PubMedCrossRef Calatayud S, García-Zaragozá E, Hernández C, et al. Downregulation of nNOS and synthesis of PGs associated with endotoxin-induced delay in gastric emptying. Am J Physiol Gastrointest Liver Physiol. 2002;283:G1360–G1367.PubMedCrossRef
65.
go back to reference Fan YP, Chakder S, Gao F, Rattan S. Inducible and neuronal nitric oxide synthase involvement in lipopolysaccharide-induced sphincteric dysfunction. Am J Physiol Gastrointest Liver Physiol. 2001;280:G32–G42.PubMedCrossRef Fan YP, Chakder S, Gao F, Rattan S. Inducible and neuronal nitric oxide synthase involvement in lipopolysaccharide-induced sphincteric dysfunction. Am J Physiol Gastrointest Liver Physiol. 2001;280:G32–G42.PubMedCrossRef
66.
go back to reference Koufman JA, Aviv JE, Casiano RR, Shaw GY. Laryngopharyngeal reflux: position statement of the committee on speech, voice, and swallowing disorders of the American Academy of Otolaryngology-Head and Neck Surgery. Otolaryngol-Head Neck Surg. 2002;127:32–35.PubMedCrossRef Koufman JA, Aviv JE, Casiano RR, Shaw GY. Laryngopharyngeal reflux: position statement of the committee on speech, voice, and swallowing disorders of the American Academy of Otolaryngology-Head and Neck Surgery. Otolaryngol-Head Neck Surg. 2002;127:32–35.PubMedCrossRef
67.
go back to reference Wilson JA. What is the evidence that gastroesophageal reflux is involved in the etiology of laryngeal cancer? Curr Opin Otolaryngol Head Neck Surg. 2005;13:97–100.PubMedCrossRef Wilson JA. What is the evidence that gastroesophageal reflux is involved in the etiology of laryngeal cancer? Curr Opin Otolaryngol Head Neck Surg. 2005;13:97–100.PubMedCrossRef
Metadata
Title
Microbiome of the Aerodigestive Tract in Health and Esophageal Disease
Authors
Aws Hasan
Laith K. Hasan
Bernd Schnabl
Madeline Greytak
Rena Yadlapati
Publication date
01-01-2021
Publisher
Springer US
Published in
Digestive Diseases and Sciences / Issue 1/2021
Print ISSN: 0163-2116
Electronic ISSN: 1573-2568
DOI
https://doi.org/10.1007/s10620-020-06720-6

Other articles of this Issue 1/2021

Digestive Diseases and Sciences 1/2021 Go to the issue