Skip to main content
Top
Published in: Cancer and Metastasis Reviews 2-3/2018

01-09-2018

The lipid products of phosphoinositide 3-kinase isoforms in cancer and thrombosis

Authors: Typhaine Anquetil, Bernard Payrastre, Marie-Pierre Gratacap, Julien Viaud

Published in: Cancer and Metastasis Reviews | Issue 2-3/2018

Login to get access

Abstract

Our knowledge on the role of the different lipid messengers produced by phosphoinositide 3-kinases (PI3Ks) in normal and cancer cells as well as in platelets during arterial thrombosis has greatly expanded these last 15 years. PI3Ks are a family of lipid kinases that catalyze the phosphorylation of the D3 position of the inositol ring of phosphoinositides to produce phosphatidylinositol 3-phosphate (PtdIns3P), phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2), and phosphatidylinositol-3,4,5 trisphosphate (PtdIns(3,4,5)P3). These D3-phosphoinositides act as intracellular messengers recruiting effector proteins involved in the control of diverse cellular functions including survival, proliferation, migration, membrane trafficking, and cytoskeleton dynamics. The current idea is that the different isoforms of PI3Ks produce specific pools of lipids that regulate in time and space, at the membrane/cytosol interface, the formation of appropriate functional protein complexes. Dysregulation of PI3K-dependent pathways is directly involved in the etiology of several pathologies including cancers where the PI3K/AKT/mTORC1 axis is frequently aberrantly activated. Moreover, PtdIns(3,4,5)P3 production has been shown to play an essential role in platelet functions, particularly in the formation of a stable platelet thrombus at high shear rate. Therefore, PI3Ks are attractive therapeutic targets in the treatment of cancer and arterial thrombosis. In this review, we will discuss the role of the different lipid products of PI3K isoforms in the context of cancer and thrombosis and the development of selective PI3Ks inhibitors in the treatment of these diseases.
Literature
3.
go back to reference Choy, C. H., Han, B. K., & Botelho, R. J. (2017). Phosphoinositide diversity, distribution, and effector function: stepping out of the box. Bioessays, 39(12), doi: 10.1002/bies.201700121. Choy, C. H., Han, B. K., & Botelho, R. J. (2017). Phosphoinositide diversity, distribution, and effector function: stepping out of the box. Bioessays, 39(12), doi: 10.1002/bies.201700121.
12.
go back to reference Krugmann, S., Anderson, K. E., Ridley, S. H., Risso, N., McGregor, A., Coadwell, J., et al. (2002). Identification of ARAP3, a novel PI3K effector regulating both Arf and Rho GTPases, by selective capture on phosphoinositide affinity matrices. Molecular Cell, 9(1), 95–108.PubMedCrossRef Krugmann, S., Anderson, K. E., Ridley, S. H., Risso, N., McGregor, A., Coadwell, J., et al. (2002). Identification of ARAP3, a novel PI3K effector regulating both Arf and Rho GTPases, by selective capture on phosphoinositide affinity matrices. Molecular Cell, 9(1), 95–108.PubMedCrossRef
17.
go back to reference Cullen, P. J., & Venkateswarlu, K. (1999). Potential regulation of ADP-ribosylation factor 6 signalling by phosphatidylinositol 3,4,5-trisphosphate. Biochemical Society Transactions, 27(4), 683–689.PubMedCrossRef Cullen, P. J., & Venkateswarlu, K. (1999). Potential regulation of ADP-ribosylation factor 6 signalling by phosphatidylinositol 3,4,5-trisphosphate. Biochemical Society Transactions, 27(4), 683–689.PubMedCrossRef
19.
20.
go back to reference Miura, K., Jacques, K. M., Stauffer, S., Kubosaki, A., Zhu, K., Hirsch, D. S., et al. (2002). ARAP1: a point of convergence for Arf and Rho signaling. Molecular Cell, 9(1), 109–119.PubMedCrossRef Miura, K., Jacques, K. M., Stauffer, S., Kubosaki, A., Zhu, K., Hirsch, D. S., et al. (2002). ARAP1: a point of convergence for Arf and Rho signaling. Molecular Cell, 9(1), 109–119.PubMedCrossRef
21.
go back to reference Battram, A. M., Durrant, T. N., Agbani, E. O., Heesom, K. J., Paul, D. S., Piatt, R., et al. (2017). The phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) binder Rasa3 regulates phosphoinositide 3-kinase (PI3K)-dependent integrin alphaIIbbeta3 outside-in signaling. The Journal of Biological Chemistry, 292(5), 1691–1704. https://doi.org/10.1074/jbc.M116.746867.PubMedCrossRef Battram, A. M., Durrant, T. N., Agbani, E. O., Heesom, K. J., Paul, D. S., Piatt, R., et al. (2017). The phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) binder Rasa3 regulates phosphoinositide 3-kinase (PI3K)-dependent integrin alphaIIbbeta3 outside-in signaling. The Journal of Biological Chemistry, 292(5), 1691–1704. https://​doi.​org/​10.​1074/​jbc.​M116.​746867.PubMedCrossRef
39.
go back to reference Kihara, A., Noda, T., Ishihara, N., & Ohsumi, Y. (2001). Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. The Journal of Cell Biology, 152(3), 519–530.PubMedPubMedCentralCrossRef Kihara, A., Noda, T., Ishihara, N., & Ohsumi, Y. (2001). Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. The Journal of Cell Biology, 152(3), 519–530.PubMedPubMedCentralCrossRef
54.
go back to reference Sugimoto, Y., Whitman, M., Cantley, L. C., & Erikson, R. L. (1984). Evidence that the Rous sarcoma virus transforming gene product phosphorylates phosphatidylinositol and diacylglycerol. Proceedings of the National Academy of Sciences of the United States of America, 81(7), 2117–2121.PubMedPubMedCentralCrossRef Sugimoto, Y., Whitman, M., Cantley, L. C., & Erikson, R. L. (1984). Evidence that the Rous sarcoma virus transforming gene product phosphorylates phosphatidylinositol and diacylglycerol. Proceedings of the National Academy of Sciences of the United States of America, 81(7), 2117–2121.PubMedPubMedCentralCrossRef
55.
go back to reference Whitman, M., Kaplan, D. R., Schaffhausen, B., Cantley, L., & Roberts, T. M. (1985). Association of phosphatidylinositol kinase activity with polyoma middle-T competent for transformation. Nature, 315(6016), 239–242.PubMedCrossRef Whitman, M., Kaplan, D. R., Schaffhausen, B., Cantley, L., & Roberts, T. M. (1985). Association of phosphatidylinositol kinase activity with polyoma middle-T competent for transformation. Nature, 315(6016), 239–242.PubMedCrossRef
56.
go back to reference Auger, K. R., Serunian, L. A., Soltoff, S. P., Libby, P., & Cantley, L. C. (1989). PDGF-dependent tyrosine phosphorylation stimulates production of novel polyphosphoinositides in intact cells. Cell, 57(1), 167–175.PubMedCrossRef Auger, K. R., Serunian, L. A., Soltoff, S. P., Libby, P., & Cantley, L. C. (1989). PDGF-dependent tyrosine phosphorylation stimulates production of novel polyphosphoinositides in intact cells. Cell, 57(1), 167–175.PubMedCrossRef
82.
go back to reference Pasquier, B., El-Ahmad, Y., Filoche-Romme, B., Dureuil, C., Fassy, F., Abecassis, P. Y., et al. (2015). Discovery of (2S)-8-[(3R)-3-methylmorpholin-4-yl]-1-(3-methyl-2-oxobutyl)-2-(trifluoromethyl)- 3,4-dihydro-2H-pyrimido[1,2-a]pyrimidin-6-one: a novel potent and selective inhibitor of Vps34 for the treatment of solid tumors. Journal of Medicinal Chemistry, 58(1), 376–400. https://doi.org/10.1021/jm5013352.PubMedCrossRef Pasquier, B., El-Ahmad, Y., Filoche-Romme, B., Dureuil, C., Fassy, F., Abecassis, P. Y., et al. (2015). Discovery of (2S)-8-[(3R)-3-methylmorpholin-4-yl]-1-(3-methyl-2-oxobutyl)-2-(trifluoromethyl)- 3,4-dihydro-2H-pyrimido[1,2-a]pyrimidin-6-one: a novel potent and selective inhibitor of Vps34 for the treatment of solid tumors. Journal of Medicinal Chemistry, 58(1), 376–400. https://​doi.​org/​10.​1021/​jm5013352.PubMedCrossRef
84.
go back to reference Dowdle, W. E., Nyfeler, B., Nagel, J., Elling, R. A., Liu, S., Triantafellow, E., et al. (2014). Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nature Cell Biology, 16(11), 1069–1079. https://doi.org/10.1038/ncb3053.PubMedCrossRef Dowdle, W. E., Nyfeler, B., Nagel, J., Elling, R. A., Liu, S., Triantafellow, E., et al. (2014). Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nature Cell Biology, 16(11), 1069–1079. https://​doi.​org/​10.​1038/​ncb3053.PubMedCrossRef
85.
go back to reference Gratacap, M. P., Payrastre, B., Viala, C., Mauco, G., Plantavid, M., & Chap, H. (1998). Phosphatidylinositol 3,4,5-trisphosphate-dependent stimulation of phospholipase C-gamma2 is an early key event in FcgammaRIIA-mediated activation of human platelets. The Journal of Biological Chemistry, 273(38), 24314–24321.PubMedCrossRef Gratacap, M. P., Payrastre, B., Viala, C., Mauco, G., Plantavid, M., & Chap, H. (1998). Phosphatidylinositol 3,4,5-trisphosphate-dependent stimulation of phospholipase C-gamma2 is an early key event in FcgammaRIIA-mediated activation of human platelets. The Journal of Biological Chemistry, 273(38), 24314–24321.PubMedCrossRef
86.
go back to reference Pasquet, J. M., Bobe, R., Gross, B., Gratacap, M. P., Tomlinson, M. G., Payrastre, B., et al. (1999). A collagen-related peptide regulates phospholipase Cgamma2 via phosphatidylinositol 3-kinase in human platelets. The Biochemical Journal, 342(Pt 1), 171–177.PubMedPubMedCentralCrossRef Pasquet, J. M., Bobe, R., Gross, B., Gratacap, M. P., Tomlinson, M. G., Payrastre, B., et al. (1999). A collagen-related peptide regulates phospholipase Cgamma2 via phosphatidylinositol 3-kinase in human platelets. The Biochemical Journal, 342(Pt 1), 171–177.PubMedPubMedCentralCrossRef
87.
go back to reference Trumel, C., Payrastre, B., Plantavid, M., Hechler, B., Viala, C., Presek, P., et al. (1999). A key role of adenosine diphosphate in the irreversible platelet aggregation induced by the PAR1-activating peptide through the late activation of phosphoinositide 3-kinase. Blood, 94(12), 4156–4165.PubMed Trumel, C., Payrastre, B., Plantavid, M., Hechler, B., Viala, C., Presek, P., et al. (1999). A key role of adenosine diphosphate in the irreversible platelet aggregation induced by the PAR1-activating peptide through the late activation of phosphoinositide 3-kinase. Blood, 94(12), 4156–4165.PubMed
88.
go back to reference Sultan, C., Plantavid, M., Bachelot, C., Grondin, P., Breton, M., Mauco, G., et al. (1991). Involvement of platelet glycoprotein IIb-IIIa (alpha IIb-beta 3 integrin) in thrombin-induced synthesis of phosphatidylinositol 3′,4′-bisphosphate. The Journal of Biological Chemistry, 266(35), 23554–23557.PubMed Sultan, C., Plantavid, M., Bachelot, C., Grondin, P., Breton, M., Mauco, G., et al. (1991). Involvement of platelet glycoprotein IIb-IIIa (alpha IIb-beta 3 integrin) in thrombin-induced synthesis of phosphatidylinositol 3′,4′-bisphosphate. The Journal of Biological Chemistry, 266(35), 23554–23557.PubMed
89.
go back to reference Kurosu, H., Maehama, T., Okada, T., Yamamoto, T., Hoshino, S., Fukui, Y., et al. (1997). Heterodimeric phosphoinositide 3-kinase consisting of p85 and p110beta is synergistically activated by the betagamma subunits of G proteins and phosphotyrosyl peptide. The Journal of Biological Chemistry, 272(39), 24252–24256.PubMedCrossRef Kurosu, H., Maehama, T., Okada, T., Yamamoto, T., Hoshino, S., Fukui, Y., et al. (1997). Heterodimeric phosphoinositide 3-kinase consisting of p85 and p110beta is synergistically activated by the betagamma subunits of G proteins and phosphotyrosyl peptide. The Journal of Biological Chemistry, 272(39), 24252–24256.PubMedCrossRef
91.
go back to reference Banfic, H., Downes, C. P., & Rittenhouse, S. E. (1998). Biphasic activation of PKBalpha/Akt in platelets. Evidence for stimulation both by phosphatidylinositol 3,4-bisphosphate, produced via a novel pathway, and by phosphatidylinositol 3,4,5-trisphosphate. The Journal of Biological Chemistry, 273(19), 11630–11637.PubMedCrossRef Banfic, H., Downes, C. P., & Rittenhouse, S. E. (1998). Biphasic activation of PKBalpha/Akt in platelets. Evidence for stimulation both by phosphatidylinositol 3,4-bisphosphate, produced via a novel pathway, and by phosphatidylinositol 3,4,5-trisphosphate. The Journal of Biological Chemistry, 273(19), 11630–11637.PubMedCrossRef
92.
go back to reference Woulfe, D., Jiang, H., Morgans, A., Monks, R., Birnbaum, M., & Brass, L. F. (2004). Defects in secretion, aggregation, and thrombus formation in platelets from mice lacking Akt2. The Journal of Clinical Investigation, 113(3), 441–450.PubMedPubMedCentralCrossRef Woulfe, D., Jiang, H., Morgans, A., Monks, R., Birnbaum, M., & Brass, L. F. (2004). Defects in secretion, aggregation, and thrombus formation in platelets from mice lacking Akt2. The Journal of Clinical Investigation, 113(3), 441–450.PubMedPubMedCentralCrossRef
94.
go back to reference Moore, S. F., van den Bosch, M. T., Hunter, R. W., Sakamoto, K., Poole, A. W., & Hers, I. (2013). Dual regulation of glycogen synthase kinase 3 (GSK3)alpha/beta by protein kinase C (PKC)alpha and Akt promotes thrombin-mediated integrin alphaIIbbeta3 activation and granule secretion in platelets. The Journal of Biological Chemistry, 288(6), 3918–3928. https://doi.org/10.1074/jbc.M112.429936.PubMedCrossRef Moore, S. F., van den Bosch, M. T., Hunter, R. W., Sakamoto, K., Poole, A. W., & Hers, I. (2013). Dual regulation of glycogen synthase kinase 3 (GSK3)alpha/beta by protein kinase C (PKC)alpha and Akt promotes thrombin-mediated integrin alphaIIbbeta3 activation and granule secretion in platelets. The Journal of Biological Chemistry, 288(6), 3918–3928. https://​doi.​org/​10.​1074/​jbc.​M112.​429936.PubMedCrossRef
95.
go back to reference Gratacap, M. P., Herault, J. P., Viala, C., Ragab, A., Savi, P., Herbert, J. M., et al. (2000). FcgammaRIIA requires a Gi-dependent pathway for an efficient stimulation of phosphoinositide 3-kinase, calcium mobilization, and platelet aggregation. Blood, 96(10), 3439–3446.PubMed Gratacap, M. P., Herault, J. P., Viala, C., Ragab, A., Savi, P., Herbert, J. M., et al. (2000). FcgammaRIIA requires a Gi-dependent pathway for an efficient stimulation of phosphoinositide 3-kinase, calcium mobilization, and platelet aggregation. Blood, 96(10), 3439–3446.PubMed
96.
go back to reference Ragab, A., Severin, S., Gratacap, M. P., Aguado, E., Malissen, M., Jandrot-Perrus, M., et al. (2007). Roles of the C-terminal tyrosine residues of LAT in GPVI-induced platelet activation: Insights into the mechanism of PLC gamma 2 activation. Blood, 110(7), 2466–2474.PubMedCrossRef Ragab, A., Severin, S., Gratacap, M. P., Aguado, E., Malissen, M., Jandrot-Perrus, M., et al. (2007). Roles of the C-terminal tyrosine residues of LAT in GPVI-induced platelet activation: Insights into the mechanism of PLC gamma 2 activation. Blood, 110(7), 2466–2474.PubMedCrossRef
98.
go back to reference Bae, Y. S., Cantley, L. G., Chen, C. S., Kim, S. R., Kwon, K. S., & Rhee, S. G. (1998). Activation of phospholipase C-gamma by phosphatidylinositol 3,4,5-trisphosphate. The Journal of Biological Chemistry, 273(8), 4465–4469.PubMedCrossRef Bae, Y. S., Cantley, L. G., Chen, C. S., Kim, S. R., Kwon, K. S., & Rhee, S. G. (1998). Activation of phospholipase C-gamma by phosphatidylinositol 3,4,5-trisphosphate. The Journal of Biological Chemistry, 273(8), 4465–4469.PubMedCrossRef
99.
go back to reference Wang, Y., & Wang, Z. (2003). Regulation of EGF-induced phospholipase C-gamma1 translocation and activation by its SH2 and PH domains. Traffic, 4(9), 618–630.PubMedCrossRef Wang, Y., & Wang, Z. (2003). Regulation of EGF-induced phospholipase C-gamma1 translocation and activation by its SH2 and PH domains. Traffic, 4(9), 618–630.PubMedCrossRef
106.
go back to reference Quek, L. S., Bolen, J., & Watson, S. P. (1998). A role for Bruton’s tyrosine kinase (Btk) in platelet activation by collagen. Current Biology, 8(20), 1137–1140.PubMedCrossRef Quek, L. S., Bolen, J., & Watson, S. P. (1998). A role for Bruton’s tyrosine kinase (Btk) in platelet activation by collagen. Current Biology, 8(20), 1137–1140.PubMedCrossRef
108.
go back to reference Dowler, S., Currie, R. A., Downes, C. P., & Alessi, D. R. (1999). DAPP1: a dual adaptor for phosphotyrosine and 3-phosphoinositides. The Biochemical Journal, 342(Pt 1), 7–12.PubMedPubMedCentralCrossRef Dowler, S., Currie, R. A., Downes, C. P., & Alessi, D. R. (1999). DAPP1: a dual adaptor for phosphotyrosine and 3-phosphoinositides. The Biochemical Journal, 342(Pt 1), 7–12.PubMedPubMedCentralCrossRef
113.
114.
go back to reference Giuriato, S., Payrastre, B., Drayer, A. L., Plantavid, M., Woscholski, R., Parker, P., et al. (1997). Tyrosine phosphorylation and relocation of SHIP are integrin-mediated in thrombin-stimulated human blood platelets. The Journal of Biological Chemistry, 272(43), 26857–26863.PubMedCrossRef Giuriato, S., Payrastre, B., Drayer, A. L., Plantavid, M., Woscholski, R., Parker, P., et al. (1997). Tyrosine phosphorylation and relocation of SHIP are integrin-mediated in thrombin-stimulated human blood platelets. The Journal of Biological Chemistry, 272(43), 26857–26863.PubMedCrossRef
115.
go back to reference Giuriato, S., Bodin, S., Erneux, C., Woscholski, R., Plantavid, M., Chap, H., et al. (2000). pp60c-src associates with the SH2-containing inositol-5-phosphatase SHIP1 and is involved in its tyrosine phosphorylation downstream of alphaIIbbeta3 integrin in human platelets. The Biochemical Journal, 348(Pt 1), 107–112.PubMedPubMedCentralCrossRef Giuriato, S., Bodin, S., Erneux, C., Woscholski, R., Plantavid, M., Chap, H., et al. (2000). pp60c-src associates with the SH2-containing inositol-5-phosphatase SHIP1 and is involved in its tyrosine phosphorylation downstream of alphaIIbbeta3 integrin in human platelets. The Biochemical Journal, 348(Pt 1), 107–112.PubMedPubMedCentralCrossRef
116.
go back to reference Severin, S., Gratacap, M. P., Lenain, N., Alvarez, L., Hollande, E., Penninger, J. M., et al. (2007). Deficiency of Src homology 2 domain-containing inositol 5-phosphatase 1 affects platelet responses and thrombus growth. The Journal of Clinical Investigation, 117(4), 944–952.PubMedPubMedCentralCrossRef Severin, S., Gratacap, M. P., Lenain, N., Alvarez, L., Hollande, E., Penninger, J. M., et al. (2007). Deficiency of Src homology 2 domain-containing inositol 5-phosphatase 1 affects platelet responses and thrombus growth. The Journal of Clinical Investigation, 117(4), 944–952.PubMedPubMedCentralCrossRef
120.
go back to reference Mountford, J. K., Petitjean, C., Putra, H. W., McCafferty, J. A., Setiabakti, N. M., Lee, H., et al. (2015). The class II PI 3-kinase, PI3KC2alpha, links platelet internal membrane structure to shear-dependent adhesive function. Nature Communications, 6, 653/5. https://doi.org/10.1038/ncomms7535.CrossRef Mountford, J. K., Petitjean, C., Putra, H. W., McCafferty, J. A., Setiabakti, N. M., Lee, H., et al. (2015). The class II PI 3-kinase, PI3KC2alpha, links platelet internal membrane structure to shear-dependent adhesive function. Nature Communications, 6, 653/5. https://​doi.​org/​10.​1038/​ncomms7535.CrossRef
121.
go back to reference Zhang, J., Banfic, H., Straforini, F., Tosi, L., Volinia, S., & Rittenhouse, S. E. (1998). A type II phosphoinositide 3-kinase is stimulated via activated integrin in platelets. A source of phosphatidylinositol 3-phosphate. The Journal of Biological Chemistry, 273(23), 14081–14084.PubMedCrossRef Zhang, J., Banfic, H., Straforini, F., Tosi, L., Volinia, S., & Rittenhouse, S. E. (1998). A type II phosphoinositide 3-kinase is stimulated via activated integrin in platelets. A source of phosphatidylinositol 3-phosphate. The Journal of Biological Chemistry, 273(23), 14081–14084.PubMedCrossRef
Metadata
Title
The lipid products of phosphoinositide 3-kinase isoforms in cancer and thrombosis
Authors
Typhaine Anquetil
Bernard Payrastre
Marie-Pierre Gratacap
Julien Viaud
Publication date
01-09-2018
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 2-3/2018
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-018-9735-z

Other articles of this Issue 2-3/2018

Cancer and Metastasis Reviews 2-3/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine