Skip to main content
Top
Published in: Cancer and Metastasis Reviews 2-3/2018

01-09-2018

Targeting cytochrome P450-dependent cancer cell mitochondria: cancer associated CYPs and where to find them

Authors: Zhijun Guo, Veronica Johnson, Jaime Barrera, Mariel Porras, Diego Hinojosa, Irwin Hernández, Patrick McGarrah, David A. Potter

Published in: Cancer and Metastasis Reviews | Issue 2-3/2018

Login to get access

Abstract

While cytochrome P450 (CYP)-mediated biosynthesis of arachidonic acid (AA) epoxides promotes tumor growth by driving angiogenesis, cancer cell intrinsic functions of CYPs are less understood. CYP-derived AA epoxides, called epoxyeicosatrienoic acids (EETs), also promote the growth of tumor epithelia. In cancer cells, CYP AA epoxygenase enzymes are associated with STAT3 and mTOR signaling, but also localize in mitochondria, where they promote the electron transport chain (ETC). Recently, the diabetes drug metformin was found to inhibit CYP AA epoxygenase activity, allowing the design of more potent biguanides to target tumor growth. Biguanide inhibition of EET synthesis suppresses STAT3 and mTOR pathways, as well as the ETC. Convergence of biguanide activity and eicosanoid biology in cancer has shown a new pathway to attack cancer metabolism and provides hope for improved treatments that target this vulnerability. Inhibition of EET-mediated cancer metabolism and angiogenesis therefore provides a dual approach for targeted cancer therapeutics.
Literature
2.
go back to reference Capdevila, J., Chacos, N., Werringloer, J., Prough, R. A., & Estabrook, R. W. (1981). Liver microsomal cytochrome P-450 and the oxidative metabolism of arachidonic acid. Proceedings of the National Academy of Sciences of the United States of America, 78(9), 5362–5366.PubMedPubMedCentralCrossRef Capdevila, J., Chacos, N., Werringloer, J., Prough, R. A., & Estabrook, R. W. (1981). Liver microsomal cytochrome P-450 and the oxidative metabolism of arachidonic acid. Proceedings of the National Academy of Sciences of the United States of America, 78(9), 5362–5366.PubMedPubMedCentralCrossRef
3.
go back to reference Capdevila, J., Parkhill, L., Chacos, N., Okita, R., Masters, B. S., & Estabrook, R. W. (1981). The oxidative metabolism of arachidonic acid by purified cytochromes P-450. Biochemical and Biophysical Research Communications, 101(4), 1357–1363.PubMedCrossRef Capdevila, J., Parkhill, L., Chacos, N., Okita, R., Masters, B. S., & Estabrook, R. W. (1981). The oxidative metabolism of arachidonic acid by purified cytochromes P-450. Biochemical and Biophysical Research Communications, 101(4), 1357–1363.PubMedCrossRef
4.
go back to reference Chacos, N., Falck, J. R., Wixtrom, C., & Capdevila, J. (1982). Novel epoxides formed during the liver cytochrome P-450 oxidation of arachidonic acid. Biochemical and Biophysical Research Communications, 104(3), 916–922.PubMedCrossRef Chacos, N., Falck, J. R., Wixtrom, C., & Capdevila, J. (1982). Novel epoxides formed during the liver cytochrome P-450 oxidation of arachidonic acid. Biochemical and Biophysical Research Communications, 104(3), 916–922.PubMedCrossRef
5.
go back to reference Fleming, I. (2007). Epoxyeicosatrienoic acids, cell signaling and angiogenesis. Prostaglandins & Other Lipid Mediators, 82(1–4), 60–67.CrossRef Fleming, I. (2007). Epoxyeicosatrienoic acids, cell signaling and angiogenesis. Prostaglandins & Other Lipid Mediators, 82(1–4), 60–67.CrossRef
12.
go back to reference Nakagawa, K., Holla, V. R., Wei, Y., Wang, W. H., Gatica, A., Wei, S., et al. (2006). Salt-sensitive hypertension is associated with dysfunctional Cyp4a10 gene and kidney epithelial sodium channel. [research support, N.I.H., extramural research support, non-U.S. Gov’t]. The Journal of Clinical Investigation, 116(6), 1696–1702. https://doi.org/10.1172/JCI27546.PubMedPubMedCentralCrossRef Nakagawa, K., Holla, V. R., Wei, Y., Wang, W. H., Gatica, A., Wei, S., et al. (2006). Salt-sensitive hypertension is associated with dysfunctional Cyp4a10 gene and kidney epithelial sodium channel. [research support, N.I.H., extramural research support, non-U.S. Gov’t]. The Journal of Clinical Investigation, 116(6), 1696–1702. https://​doi.​org/​10.​1172/​JCI27546.PubMedPubMedCentralCrossRef
13.
go back to reference Jiang, J. G., Chen, C. L., Card, J. W., Yang, S., Chen, J. X., Fu, X. N., Ning, Y. G., Xiao, X., Zeldin, D. C., & Wang, D. W. (2005). Cytochrome P450 2J2 promotes the neoplastic phenotype of carcinoma cells and is up-regulated in human tumors. Cancer Research, 65(11), 4707–4715.PubMedCrossRef Jiang, J. G., Chen, C. L., Card, J. W., Yang, S., Chen, J. X., Fu, X. N., Ning, Y. G., Xiao, X., Zeldin, D. C., & Wang, D. W. (2005). Cytochrome P450 2J2 promotes the neoplastic phenotype of carcinoma cells and is up-regulated in human tumors. Cancer Research, 65(11), 4707–4715.PubMedCrossRef
14.
go back to reference Jiang, J. G., Ning, Y. G., Chen, C., Ma, D., Liu, Z. J., Yang, S., Zhou, J., Xiao, X., Zhang, X. A., Edin, M. L., Card, J. W., Wang, J., Zeldin, D. C., & Wang, D. W. (2007). Cytochrome p450 epoxygenase promotes human cancer metastasis. Cancer Research, 67(14), 6665–6674.PubMedCrossRef Jiang, J. G., Ning, Y. G., Chen, C., Ma, D., Liu, Z. J., Yang, S., Zhou, J., Xiao, X., Zhang, X. A., Edin, M. L., Card, J. W., Wang, J., Zeldin, D. C., & Wang, D. W. (2007). Cytochrome p450 epoxygenase promotes human cancer metastasis. Cancer Research, 67(14), 6665–6674.PubMedCrossRef
15.
go back to reference Yang, S., Wei, S., Pozzi, A., & Capdevila, J. H. (2009). The arachidonic acid epoxygenase is a component of the signaling mechanisms responsible for VEGF-stimulated angiogenesis. Archives of Biochemistry and Biophysics, 489(1–2), 82–91.PubMedPubMedCentralCrossRef Yang, S., Wei, S., Pozzi, A., & Capdevila, J. H. (2009). The arachidonic acid epoxygenase is a component of the signaling mechanisms responsible for VEGF-stimulated angiogenesis. Archives of Biochemistry and Biophysics, 489(1–2), 82–91.PubMedPubMedCentralCrossRef
17.
go back to reference Pozzi, A., Ibanez, M. R., Gatica, A. E., Yang, S., Wei, S., Mei, S., Falck, J. R., & Capdevila, J. H. (2007). Peroxisomal proliferator-activated receptor-alpha-dependent inhibition of endothelial cell proliferation and tumorigenesis. The Journal of Biological Chemistry, 282(24), 17685–17695.PubMedCrossRef Pozzi, A., Ibanez, M. R., Gatica, A. E., Yang, S., Wei, S., Mei, S., Falck, J. R., & Capdevila, J. H. (2007). Peroxisomal proliferator-activated receptor-alpha-dependent inhibition of endothelial cell proliferation and tumorigenesis. The Journal of Biological Chemistry, 282(24), 17685–17695.PubMedCrossRef
18.
go back to reference Mitra, R., Guo, Z., Milani, M., Mesaros, C., Rodriguez, M., Nguyen, J., Luo, X., Clarke, D., Lamba, J., Schuetz, E., Donner, D. B., Puli, N., Falck, J. R., Capdevila, J., Gupta, K., Blair, I. A., & Potter, D. A. (2011). CYP3A4 mediates growth of estrogen receptor-positive breast cancer cells in part by inducing nuclear translocation of phospho-Stat3 through biosynthesis of (+/−)-14,15-epoxyeicosatrienoic acid (EET). The Journal of Biological Chemistry, 286(20), 17543–17559. https://doi.org/10.1074/jbc.M110.198515.PubMedPubMedCentralCrossRef Mitra, R., Guo, Z., Milani, M., Mesaros, C., Rodriguez, M., Nguyen, J., Luo, X., Clarke, D., Lamba, J., Schuetz, E., Donner, D. B., Puli, N., Falck, J. R., Capdevila, J., Gupta, K., Blair, I. A., & Potter, D. A. (2011). CYP3A4 mediates growth of estrogen receptor-positive breast cancer cells in part by inducing nuclear translocation of phospho-Stat3 through biosynthesis of (+/−)-14,15-epoxyeicosatrienoic acid (EET). The Journal of Biological Chemistry, 286(20), 17543–17559. https://​doi.​org/​10.​1074/​jbc.​M110.​198515.PubMedPubMedCentralCrossRef
19.
go back to reference Panigrahy, D., Edin, M. L., Lee, C. R., Huang, S., Bielenberg, D. R., Butterfield, C. E., Barnés, C. M., Mammoto, A., Mammoto, T., Luria, A., Benny, O., Chaponis, D. M., Dudley, A. C., Greene, E. R., Vergilio, J. A., Pietramaggiori, G., Scherer-Pietramaggiori, S. S., Short, S. M., Seth, M., Lih, F. B., Tomer, K. B., Yang, J., Schwendener, R. A., Hammock, B. D., Falck, J. R., Manthati, V. L., Ingber, D. E., Kaipainen, A., D’Amore, P. A., Kieran, M. W., & Zeldin, D. C. (2012). Epoxyeicosanoids stimulate multiorgan metastasis and tumor dormancy escape in mice. The Journal of Clinical Investigation, 122(1), 178–191. https://doi.org/10.1172/JCI58128.PubMedCrossRef Panigrahy, D., Edin, M. L., Lee, C. R., Huang, S., Bielenberg, D. R., Butterfield, C. E., Barnés, C. M., Mammoto, A., Mammoto, T., Luria, A., Benny, O., Chaponis, D. M., Dudley, A. C., Greene, E. R., Vergilio, J. A., Pietramaggiori, G., Scherer-Pietramaggiori, S. S., Short, S. M., Seth, M., Lih, F. B., Tomer, K. B., Yang, J., Schwendener, R. A., Hammock, B. D., Falck, J. R., Manthati, V. L., Ingber, D. E., Kaipainen, A., D’Amore, P. A., Kieran, M. W., & Zeldin, D. C. (2012). Epoxyeicosanoids stimulate multiorgan metastasis and tumor dormancy escape in mice. The Journal of Clinical Investigation, 122(1), 178–191. https://​doi.​org/​10.​1172/​JCI58128.PubMedCrossRef
21.
go back to reference Campbell, W. B., & Harder, D. R. (1999). Endothelium-derived hyperpolarizing factors and vascular cytochrome P450 metabolites of arachidonic acid in the regulation of tone. Circulation Research, 84(4), 484–488.PubMedCrossRef Campbell, W. B., & Harder, D. R. (1999). Endothelium-derived hyperpolarizing factors and vascular cytochrome P450 metabolites of arachidonic acid in the regulation of tone. Circulation Research, 84(4), 484–488.PubMedCrossRef
22.
go back to reference Li, P. L., & Campbell, W. B. (1997). Epoxyeicosatrienoic acids activate K+ channels in coronary smooth muscle through a guanine nucleotide binding protein. Circulation Research, 80(6), 877–884.PubMedCrossRef Li, P. L., & Campbell, W. B. (1997). Epoxyeicosatrienoic acids activate K+ channels in coronary smooth muscle through a guanine nucleotide binding protein. Circulation Research, 80(6), 877–884.PubMedCrossRef
24.
go back to reference Pozzi, A., Popescu, V., Yang, S., Mei, S., Shi, M., Puolitaival, S. M., Caprioli, R. M., & Capdevila, J. H. (2010). The anti-tumorigenic properties of peroxisomal proliferator-activated receptor alpha are arachidonic acid epoxygenase-mediated. The Journal of Biological Chemistry, 285(17), 12840–12850.PubMedPubMedCentralCrossRef Pozzi, A., Popescu, V., Yang, S., Mei, S., Shi, M., Puolitaival, S. M., Caprioli, R. M., & Capdevila, J. H. (2010). The anti-tumorigenic properties of peroxisomal proliferator-activated receptor alpha are arachidonic acid epoxygenase-mediated. The Journal of Biological Chemistry, 285(17), 12840–12850.PubMedPubMedCentralCrossRef
26.
go back to reference Guo, Z., Sevrioukova, I. F., Denisov, I. G., Zhang, X., Chiu, T.-L., Thomas, D. G., Hanse, E. A., Cuellar, R. A. D., Grinkova, Y. V., Langenfeld, V. W., Swedien, D. S., Stamschror, J. D., Alvarez, J., Luna, F., Galván, A., Bae, Y. K., Wulfkuhle, J. D., Gallagher, R. I., Petricoin 3rd, E. F., Norris, B., Flory, C. M., Schumacher, R. J., O'Sullivan, M. G., Cao, Q., Chu, H., Lipscomb, J. D., Atkins, W. M., Gupta, K., Kelekar, A., Blair, I. A., Capdevila, J. H., Falck, J. R., Sligar, S. G., Poulos, T. L., Georg, G. I., Ambrose, E., & Potter, D. A. (2017). Heme binding biguanides target cytochrome P450-dependent cancer cell mitochondria. Cell Chemical Biology, 24(10), 1259–1275. https://doi.org/10.1016/j.chembiol.2017.08.009.PubMedCrossRef Guo, Z., Sevrioukova, I. F., Denisov, I. G., Zhang, X., Chiu, T.-L., Thomas, D. G., Hanse, E. A., Cuellar, R. A. D., Grinkova, Y. V., Langenfeld, V. W., Swedien, D. S., Stamschror, J. D., Alvarez, J., Luna, F., Galván, A., Bae, Y. K., Wulfkuhle, J. D., Gallagher, R. I., Petricoin 3rd, E. F., Norris, B., Flory, C. M., Schumacher, R. J., O'Sullivan, M. G., Cao, Q., Chu, H., Lipscomb, J. D., Atkins, W. M., Gupta, K., Kelekar, A., Blair, I. A., Capdevila, J. H., Falck, J. R., Sligar, S. G., Poulos, T. L., Georg, G. I., Ambrose, E., & Potter, D. A. (2017). Heme binding biguanides target cytochrome P450-dependent cancer cell mitochondria. Cell Chemical Biology, 24(10), 1259–1275. https://​doi.​org/​10.​1016/​j.​chembiol.​2017.​08.​009.PubMedCrossRef
28.
go back to reference Cheranov, S. Y., Karpurapu, M., Wang, D., Zhang, B., Venema, R. C., & Rao, G. N. (2008). An essential role for SRC-activated STAT-3 in 14,15-EET-induced VEGF expression and angiogenesis. Blood, 111(12), 5581–5591.PubMedPubMedCentralCrossRef Cheranov, S. Y., Karpurapu, M., Wang, D., Zhang, B., Venema, R. C., & Rao, G. N. (2008). An essential role for SRC-activated STAT-3 in 14,15-EET-induced VEGF expression and angiogenesis. Blood, 111(12), 5581–5591.PubMedPubMedCentralCrossRef
29.
go back to reference Webler, A. C., Michaelis, U. R., Popp, R., Barbosa-Sicard, E., Murugan, A., Falck, J. R., Fisslthaler, B., & Fleming, I. (2008). Epoxyeicosatrienoic acids are part of the VEGF-activated signaling cascade leading to angiogenesis. American journal of physiology. Cell Physiology, 295(5), C1292–C1301.PubMedPubMedCentralCrossRef Webler, A. C., Michaelis, U. R., Popp, R., Barbosa-Sicard, E., Murugan, A., Falck, J. R., Fisslthaler, B., & Fleming, I. (2008). Epoxyeicosatrienoic acids are part of the VEGF-activated signaling cascade leading to angiogenesis. American journal of physiology. Cell Physiology, 295(5), C1292–C1301.PubMedPubMedCentralCrossRef
31.
go back to reference Murray, G. I., Patimalla, S., Stewart, K. N., Miller, I. D., & Heys, S. D. (2010). Profiling the expression of cytochrome P450 in breast cancer. Histopathology, 57(2), 202–211.PubMedCrossRef Murray, G. I., Patimalla, S., Stewart, K. N., Miller, I. D., & Heys, S. D. (2010). Profiling the expression of cytochrome P450 in breast cancer. Histopathology, 57(2), 202–211.PubMedCrossRef
32.
go back to reference Rifkind, A. B., Lee, C., Chang, T. K., & Waxman, D. J. (1995). Arachidonic acid metabolism by human cytochrome P450s 2C8, 2C9, 2E1, and 1A2: regioselective oxygenation and evidence for a role for CYP2C enzymes in arachidonic acid epoxygenation in human liver microsomes. Archives of Biochemistry and Biophysics, 320(2), 380–389.PubMedCrossRef Rifkind, A. B., Lee, C., Chang, T. K., & Waxman, D. J. (1995). Arachidonic acid metabolism by human cytochrome P450s 2C8, 2C9, 2E1, and 1A2: regioselective oxygenation and evidence for a role for CYP2C enzymes in arachidonic acid epoxygenation in human liver microsomes. Archives of Biochemistry and Biophysics, 320(2), 380–389.PubMedCrossRef
33.
go back to reference Mesaros, C., Lee, S. H., & Blair, I. A. (2010). Analysis of epoxyeicosatrienoic acids by chiral liquid chromatography/electron capture atmospheric pressure chemical ionization mass spectrometry using [13C]-analog internal standards. [Research Support, N.I.H., Extramural]. Rapid Communications in Mass Spectrometry : RCM, 24(22), 3237–3247. https://doi.org/10.1002/rcm.4760.PubMedCrossRef Mesaros, C., Lee, S. H., & Blair, I. A. (2010). Analysis of epoxyeicosatrienoic acids by chiral liquid chromatography/electron capture atmospheric pressure chemical ionization mass spectrometry using [13C]-analog internal standards. [Research Support, N.I.H., Extramural]. Rapid Communications in Mass Spectrometry : RCM, 24(22), 3237–3247. https://​doi.​org/​10.​1002/​rcm.​4760.PubMedCrossRef
34.
go back to reference Zeldin, D. C., DuBois, R. N., Falck, J. R., & Capdevila, J. H. (1995). Molecular cloning, expression and characterization of an endogenous human cytochrome P450 arachidonic acid epoxygenase isoform. Archives of Biochemistry and Biophysics, 322(1), 76–86.PubMedCrossRef Zeldin, D. C., DuBois, R. N., Falck, J. R., & Capdevila, J. H. (1995). Molecular cloning, expression and characterization of an endogenous human cytochrome P450 arachidonic acid epoxygenase isoform. Archives of Biochemistry and Biophysics, 322(1), 76–86.PubMedCrossRef
35.
go back to reference Zeldin, D. C., Moomaw, C. R., Jesse, N., Tomer, K. B., Beetham, J., Hammock, B. D., & Wu, S. (1996). Biochemical characterization of the human liver cytochrome P450 arachidonic acid epoxygenase pathway. [Comparative Study Research Support, U.S. Gov’t, P.H.S.]. Archives of Biochemistry and Biophysics, 330(1), 87–96. https://doi.org/10.1006/abbi.1996.0229.PubMedCrossRef Zeldin, D. C., Moomaw, C. R., Jesse, N., Tomer, K. B., Beetham, J., Hammock, B. D., & Wu, S. (1996). Biochemical characterization of the human liver cytochrome P450 arachidonic acid epoxygenase pathway. [Comparative Study Research Support, U.S. Gov’t, P.H.S.]. Archives of Biochemistry and Biophysics, 330(1), 87–96. https://​doi.​org/​10.​1006/​abbi.​1996.​0229.PubMedCrossRef
36.
go back to reference Zeldin, D. C., Foley, J., Ma, J., Boyle, J. E., Pascual, J. M., Moomaw, C. R., et al. (1996). CYP2J subfamily P450s in the lung: expression, localization, and potential functional significance. Molecular Pharmacology, 50(5), 1111–1117.PubMed Zeldin, D. C., Foley, J., Ma, J., Boyle, J. E., Pascual, J. M., Moomaw, C. R., et al. (1996). CYP2J subfamily P450s in the lung: expression, localization, and potential functional significance. Molecular Pharmacology, 50(5), 1111–1117.PubMed
39.
go back to reference Michaelis, U. R., Fisslthaler, B., Barbosa-Sicard, E., Falck, J. R., Fleming, I., & Busse, R. (2005). Cytochrome P450 epoxygenases 2C8 and 2C9 are implicated in hypoxia-induced endothelial cell migration and angiogenesis. Journal of Cell Science, 118(Pt 23), 5489–5498.PubMedCrossRef Michaelis, U. R., Fisslthaler, B., Barbosa-Sicard, E., Falck, J. R., Fleming, I., & Busse, R. (2005). Cytochrome P450 epoxygenases 2C8 and 2C9 are implicated in hypoxia-induced endothelial cell migration and angiogenesis. Journal of Cell Science, 118(Pt 23), 5489–5498.PubMedCrossRef
41.
go back to reference Siest, G., Jeannesson, E., Marteau, J. B., Samara, A., Marie, B., Pfister, M., & Visvikis-Siest, S. (2008). Transcription factor and drug-metabolizing enzyme gene expression in lymphocytes from healthy human subjects. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 36(1), 182–189. https://doi.org/10.1124/dmd.107.017228.CrossRef Siest, G., Jeannesson, E., Marteau, J. B., Samara, A., Marie, B., Pfister, M., & Visvikis-Siest, S. (2008). Transcription factor and drug-metabolizing enzyme gene expression in lymphocytes from healthy human subjects. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 36(1), 182–189. https://​doi.​org/​10.​1124/​dmd.​107.​017228.CrossRef
42.
go back to reference Lee, S. H., Williams, M. V., DuBois, R. N., & Blair, I. A. (2003). Targeted lipidomics using electron capture atmospheric pressure chemical ionization mass spectrometry. Rapid Communications in Mass Spectrometry : RCM, 17(19), 2168–2176.PubMedCrossRef Lee, S. H., Williams, M. V., DuBois, R. N., & Blair, I. A. (2003). Targeted lipidomics using electron capture atmospheric pressure chemical ionization mass spectrometry. Rapid Communications in Mass Spectrometry : RCM, 17(19), 2168–2176.PubMedCrossRef
43.
go back to reference Mesaros, C., Lee, S. H., & Blair, I. A. (2009). Targeted quantitative analysis of eicosanoid lipids in biological samples using liquid chromatography-tandem mass spectrometry. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 877(26), 2736–2745.PubMedPubMedCentralCrossRef Mesaros, C., Lee, S. H., & Blair, I. A. (2009). Targeted quantitative analysis of eicosanoid lipids in biological samples using liquid chromatography-tandem mass spectrometry. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 877(26), 2736–2745.PubMedPubMedCentralCrossRef
44.
go back to reference Chacos, N., Capdevila, J., Falck, J. R., Manna, S., Martin-Wixtrom, C., Gill, S. S., Hammock, B. D., & Estabrook, R. W. (1983). The reaction of arachidonic acid epoxides (epoxyeicosatrienoic acids) with a cytosolic epoxide hydrolase. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. Archives of Biochemistry and Biophysics, 223(2), 639–648.PubMedCrossRef Chacos, N., Capdevila, J., Falck, J. R., Manna, S., Martin-Wixtrom, C., Gill, S. S., Hammock, B. D., & Estabrook, R. W. (1983). The reaction of arachidonic acid epoxides (epoxyeicosatrienoic acids) with a cytosolic epoxide hydrolase. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. Archives of Biochemistry and Biophysics, 223(2), 639–648.PubMedCrossRef
45.
go back to reference Zeldin, D. C., Wei, S., Falck, J. R., Hammock, B. D., Snapper, J. R., & Capdevila, J. H. (1995). Metabolism of epoxyeicosatrienoic acids by cytosolic epoxide hydrolase: substrate structural determinants of asymmetric catalysis. Archives of Biochemistry and Biophysics, 316(1), 443–451.PubMedCrossRef Zeldin, D. C., Wei, S., Falck, J. R., Hammock, B. D., Snapper, J. R., & Capdevila, J. H. (1995). Metabolism of epoxyeicosatrienoic acids by cytosolic epoxide hydrolase: substrate structural determinants of asymmetric catalysis. Archives of Biochemistry and Biophysics, 316(1), 443–451.PubMedCrossRef
47.
go back to reference Zhang, G., Panigrahy, D., Mahakian, L. M., Yang, J., Liu, J. Y., Stephen Lee, K. S., Wettersten, H. I., Ulu, A., Hu, X., Tam, S., Hwang, S. H., Ingham, E. S., Kieran, M. W., Weiss, R. H., Ferrara, K. W., & Hammock, B. D. (2013). Epoxy metabolites of docosahexaenoic acid (DHA) inhibit angiogenesis, tumor growth, and metastasis. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. Proceedings of the National Academy of Sciences of the United States of America, 110(16), 6530–6535. https://doi.org/10.1073/pnas.1304321110.PubMedPubMedCentralCrossRef Zhang, G., Panigrahy, D., Mahakian, L. M., Yang, J., Liu, J. Y., Stephen Lee, K. S., Wettersten, H. I., Ulu, A., Hu, X., Tam, S., Hwang, S. H., Ingham, E. S., Kieran, M. W., Weiss, R. H., Ferrara, K. W., & Hammock, B. D. (2013). Epoxy metabolites of docosahexaenoic acid (DHA) inhibit angiogenesis, tumor growth, and metastasis. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. Proceedings of the National Academy of Sciences of the United States of America, 110(16), 6530–6535. https://​doi.​org/​10.​1073/​pnas.​1304321110.PubMedPubMedCentralCrossRef
49.
go back to reference Michaelis, U. R., Fisslthaler, B., Medhora, M., Harder, D., Fleming, I., & Busse, R. (2003). Cytochrome P450 2C9-derived epoxyeicosatrienoic acids induce angiogenesis via cross-talk with the epidermal growth factor receptor (EGFR). FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 17(6), 770–772. https://doi.org/10.1096/fj.02-0640fje.CrossRef Michaelis, U. R., Fisslthaler, B., Medhora, M., Harder, D., Fleming, I., & Busse, R. (2003). Cytochrome P450 2C9-derived epoxyeicosatrienoic acids induce angiogenesis via cross-talk with the epidermal growth factor receptor (EGFR). FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 17(6), 770–772. https://​doi.​org/​10.​1096/​fj.​02-0640fje.CrossRef
54.
go back to reference Borzelleca, J. F. (2000). Paracelsus: herald of modern toxicology. Toxicological Sciences : an Official Journal of the Society of Toxicology, 53(1), 2–4.CrossRef Borzelleca, J. F. (2000). Paracelsus: herald of modern toxicology. Toxicological Sciences : an Official Journal of the Society of Toxicology, 53(1), 2–4.CrossRef
56.
go back to reference Rose, T. E., Morisseau, C., Liu, J. Y., Inceoglu, B., Jones, P. D., Sanborn, J. R., & Hammock, B. D. (2010). 1-Aryl-3-(1-acylpiperidin-4-yl)urea inhibitors of human and murine soluble epoxide hydrolase: structure-activity relationships, pharmacokinetics, and reduction of inflammatory pain. Journal of Medicinal Chemistry, 53(19), 7067–7075. https://doi.org/10.1021/jm100691c.PubMedPubMedCentralCrossRef Rose, T. E., Morisseau, C., Liu, J. Y., Inceoglu, B., Jones, P. D., Sanborn, J. R., & Hammock, B. D. (2010). 1-Aryl-3-(1-acylpiperidin-4-yl)urea inhibitors of human and murine soluble epoxide hydrolase: structure-activity relationships, pharmacokinetics, and reduction of inflammatory pain. Journal of Medicinal Chemistry, 53(19), 7067–7075. https://​doi.​org/​10.​1021/​jm100691c.PubMedPubMedCentralCrossRef
58.
go back to reference Enayetallah, A. E., French, R. A., & Grant, D. F. (2006). Distribution of soluble epoxide hydrolase, cytochrome P450 2C8, 2C9 and 2J2 in human malignant neoplasms. Journal of Molecular Histology, 37(3–4), 133–141.PubMedCrossRef Enayetallah, A. E., French, R. A., & Grant, D. F. (2006). Distribution of soluble epoxide hydrolase, cytochrome P450 2C8, 2C9 and 2J2 in human malignant neoplasms. Journal of Molecular Histology, 37(3–4), 133–141.PubMedCrossRef
59.
go back to reference Pozzi, A., Macias-Perez, I., Abair, T., Wei, S., Su, Y., Zent, R., Falck, J. R., & Capdevila, J. H. (2005). Characterization of 5,6- and 8,9-epoxyeicosatrienoic acids (5,6- and 8,9-EET) as potent in vivo angiogenic lipids. The Journal of Biological Chemistry, 280(29), 27138–27146.PubMedCrossRef Pozzi, A., Macias-Perez, I., Abair, T., Wei, S., Su, Y., Zent, R., Falck, J. R., & Capdevila, J. H. (2005). Characterization of 5,6- and 8,9-epoxyeicosatrienoic acids (5,6- and 8,9-EET) as potent in vivo angiogenic lipids. The Journal of Biological Chemistry, 280(29), 27138–27146.PubMedCrossRef
61.
go back to reference Schmelzle, M., Dizdar, L., Matthaei, H., Baldus, S. E., Wolters, J., Lindenlauf, N., Bruns, I., Cadeddu, R. P., Kröpil, F., Topp, S. A., Schulte am Esch II, J., Eisenberger, C. F., Knoefel, W. T., & Stoecklein, N. H. (2011). Esophageal cancer proliferation is mediated by cytochrome P450 2C9 (CYP2C9). Prostaglandins & Other Lipid Mediators, 94(1–2), 25–33. https://doi.org/10.1016/j.prostaglandins.2010.12.001.CrossRef Schmelzle, M., Dizdar, L., Matthaei, H., Baldus, S. E., Wolters, J., Lindenlauf, N., Bruns, I., Cadeddu, R. P., Kröpil, F., Topp, S. A., Schulte am Esch II, J., Eisenberger, C. F., Knoefel, W. T., & Stoecklein, N. H. (2011). Esophageal cancer proliferation is mediated by cytochrome P450 2C9 (CYP2C9). Prostaglandins & Other Lipid Mediators, 94(1–2), 25–33. https://​doi.​org/​10.​1016/​j.​prostaglandins.​2010.​12.​001.CrossRef
62.
go back to reference Oguro, A., Sakamoto, K., Funae, Y., & Imaoka, S. (2011). Overexpression of CYP3A4, but not CYP2D6, promotes hypoxic response and cell growth of Hep3B cells. Drug metabolism and Pharmacokinetics, 26, 407–415.PubMedCrossRef Oguro, A., Sakamoto, K., Funae, Y., & Imaoka, S. (2011). Overexpression of CYP3A4, but not CYP2D6, promotes hypoxic response and cell growth of Hep3B cells. Drug metabolism and Pharmacokinetics, 26, 407–415.PubMedCrossRef
63.
go back to reference Shao, J., Li, Q., Wang, H., Liu, F., Jiang, J., Zhu, X., Chen, Z., & Zou, P. (2011). P-450-dependent epoxygenase pathway of arachidonic acid is involved in myeloma-induced angiogenesis of endothelial cells. Journal of Huazhong University of Science and Technology. Medical Sciences, 31(5), 596–601. https://doi.org/10.1007/s11596-011-0567-0.CrossRef Shao, J., Li, Q., Wang, H., Liu, F., Jiang, J., Zhu, X., Chen, Z., & Zou, P. (2011). P-450-dependent epoxygenase pathway of arachidonic acid is involved in myeloma-induced angiogenesis of endothelial cells. Journal of Huazhong University of Science and Technology. Medical Sciences, 31(5), 596–601. https://​doi.​org/​10.​1007/​s11596-011-0567-0.CrossRef
66.
go back to reference Floriano-Sanchez, E., Rodriguez, N. C., Bandala, C., Coballase-Urrutia, E., & Lopez-Cruz, J. (2014). CYP3A4 expression in breast cancer and its association with risk factors in Mexican women. [Research Support, Non-U.S. Gov’t]. Asian Pacific Journal of Cancer Prevention : APJCP, 15(8), 3805–3809.PubMedCrossRef Floriano-Sanchez, E., Rodriguez, N. C., Bandala, C., Coballase-Urrutia, E., & Lopez-Cruz, J. (2014). CYP3A4 expression in breast cancer and its association with risk factors in Mexican women. [Research Support, Non-U.S. Gov’t]. Asian Pacific Journal of Cancer Prevention : APJCP, 15(8), 3805–3809.PubMedCrossRef
68.
go back to reference Zou, A. P., Ma, Y. H., Sui, Z. H., Ortiz de Montellano, P. R., Clark, J. E., Masters, B. S., et al. (1994). Effects of 17-octadecynoic acid, a suicide-substrate inhibitor of cytochrome P450 fatty acid omega-hydroxylase, on renal function in rats. The Journal of Pharmacology and Experimental Therapeutics, 268(1), 474–481.PubMed Zou, A. P., Ma, Y. H., Sui, Z. H., Ortiz de Montellano, P. R., Clark, J. E., Masters, B. S., et al. (1994). Effects of 17-octadecynoic acid, a suicide-substrate inhibitor of cytochrome P450 fatty acid omega-hydroxylase, on renal function in rats. The Journal of Pharmacology and Experimental Therapeutics, 268(1), 474–481.PubMed
69.
go back to reference Wang, M. H., Brand-Schieber, E., Zand, B. A., Nguyen, X., Falck, J. R., Balu, N., et al. (1998). Cytochrome P450-derived arachidonic acid metabolism in the rat kidney: characterization of selective inhibitors. The Journal of Pharmacology and Experimental Therapeutics, 284(3), 966–973.PubMed Wang, M. H., Brand-Schieber, E., Zand, B. A., Nguyen, X., Falck, J. R., Balu, N., et al. (1998). Cytochrome P450-derived arachidonic acid metabolism in the rat kidney: characterization of selective inhibitors. The Journal of Pharmacology and Experimental Therapeutics, 284(3), 966–973.PubMed
71.
go back to reference Brand-Schieber, E., Falck, J. F., & Schwartzman, M. (2000). Selective inhibition of arachidonic acid epoxidation in vivo. Journal of Physiology and Pharmacology, 51(4 Pt 1), 655–672.PubMed Brand-Schieber, E., Falck, J. F., & Schwartzman, M. (2000). Selective inhibition of arachidonic acid epoxidation in vivo. Journal of Physiology and Pharmacology, 51(4 Pt 1), 655–672.PubMed
72.
go back to reference Lin, H.-l., Zhang, H., Walker, V. J., D’Agostino, J., & Hollenberg, P. F. (2017). Heme modification contributes to the mechanism-based inactivation of human cytochrome P450 2J2 by two terminal acetylenic compounds. Drug Metabolism and Disposition, 45(9), 990.PubMedPubMedCentralCrossRef Lin, H.-l., Zhang, H., Walker, V. J., D’Agostino, J., & Hollenberg, P. F. (2017). Heme modification contributes to the mechanism-based inactivation of human cytochrome P450 2J2 by two terminal acetylenic compounds. Drug Metabolism and Disposition, 45(9), 990.PubMedPubMedCentralCrossRef
73.
go back to reference Arrowsmith, C. H., Audia, J. E., Austin, C., Baell, J., Bennett, J., Blagg, J., Bountra, C., Brennan, P. E., Brown, P. J., Bunnage, M. E., Buser-Doepner, C., Campbell, R. M., Carter, A. J., Cohen, P., Copeland, R. A., Cravatt, B., Dahlin, J. L., Dhanak, D., Edwards, A. M., Frederiksen, M., Frye, S. V., Gray, N., Grimshaw, C. E., Hepworth, D., Howe, T., Huber, K. V. M., Jin, J., Knapp, S., Kotz, J. D., Kruger, R. G., Lowe, D., Mader, M. M., Marsden, B., Mueller-Fahrnow, A., Müller, S., O'Hagan, R. C., Overington, J. P., Owen, D. R., Rosenberg, S. H., Ross, R., Roth, B., Schapira, M., Schreiber, S. L., Shoichet, B., Sundström, M., Superti-Furga, G., Taunton, J., Toledo-Sherman, L., Walpole, C., Walters, M. A., Willson, T. M., Workman, P., Young, R. N., & Zuercher, W. J. (2015). The promise and peril of chemical probes. Nature Chemical Biology, 11(8), 536–541. https://doi.org/10.1038/nchembio.1867.PubMedPubMedCentralCrossRef Arrowsmith, C. H., Audia, J. E., Austin, C., Baell, J., Bennett, J., Blagg, J., Bountra, C., Brennan, P. E., Brown, P. J., Bunnage, M. E., Buser-Doepner, C., Campbell, R. M., Carter, A. J., Cohen, P., Copeland, R. A., Cravatt, B., Dahlin, J. L., Dhanak, D., Edwards, A. M., Frederiksen, M., Frye, S. V., Gray, N., Grimshaw, C. E., Hepworth, D., Howe, T., Huber, K. V. M., Jin, J., Knapp, S., Kotz, J. D., Kruger, R. G., Lowe, D., Mader, M. M., Marsden, B., Mueller-Fahrnow, A., Müller, S., O'Hagan, R. C., Overington, J. P., Owen, D. R., Rosenberg, S. H., Ross, R., Roth, B., Schapira, M., Schreiber, S. L., Shoichet, B., Sundström, M., Superti-Furga, G., Taunton, J., Toledo-Sherman, L., Walpole, C., Walters, M. A., Willson, T. M., Workman, P., Young, R. N., & Zuercher, W. J. (2015). The promise and peril of chemical probes. Nature Chemical Biology, 11(8), 536–541. https://​doi.​org/​10.​1038/​nchembio.​1867.PubMedPubMedCentralCrossRef
74.
go back to reference Sisignano, M., Angioni, C., Park, C. K., Meyer Dos Santos, S., Jordan, H., Kuzikov, M., Liu, D., Zinn, S., Hohman, S. W., Schreiber, Y., Zimmer, B., Schmidt, M., Lu, R., Suo, J., Zhang, D. D., Schäfer, S. M. G., Hofmann, M., Yekkirala, A. S., de Bruin, N., Parnham, M. J., Woolf, C. J., Ji, R. R., Scholich, K., & Geisslinger, G. (2016). Targeting CYP2J to reduce paclitaxel-induced peripheral neuropathic pain. Proceedings of the National Academy of Sciences of the United States of America, 113(44), 12544–12549. https://doi.org/10.1073/pnas.1613246113.PubMedPubMedCentralCrossRef Sisignano, M., Angioni, C., Park, C. K., Meyer Dos Santos, S., Jordan, H., Kuzikov, M., Liu, D., Zinn, S., Hohman, S. W., Schreiber, Y., Zimmer, B., Schmidt, M., Lu, R., Suo, J., Zhang, D. D., Schäfer, S. M. G., Hofmann, M., Yekkirala, A. S., de Bruin, N., Parnham, M. J., Woolf, C. J., Ji, R. R., Scholich, K., & Geisslinger, G. (2016). Targeting CYP2J to reduce paclitaxel-induced peripheral neuropathic pain. Proceedings of the National Academy of Sciences of the United States of America, 113(44), 12544–12549. https://​doi.​org/​10.​1073/​pnas.​1613246113.PubMedPubMedCentralCrossRef
75.
go back to reference Chen, C., Li, G., Liao, W., Wu, J., Liu, L., Ma, D., Zhou, J., Elbekai, R. H., Edin, M. L., Zeldin, D. C., & Wang, D. W. (2009). Selective inhibitors of CYP2J2 related to terfenadine exhibit strong activity against human cancers in vitro and in vivo. The Journal of Pharmacology and Experimental Therapeutics, 329(3), 908–918.PubMedPubMedCentralCrossRef Chen, C., Li, G., Liao, W., Wu, J., Liu, L., Ma, D., Zhou, J., Elbekai, R. H., Edin, M. L., Zeldin, D. C., & Wang, D. W. (2009). Selective inhibitors of CYP2J2 related to terfenadine exhibit strong activity against human cancers in vitro and in vivo. The Journal of Pharmacology and Experimental Therapeutics, 329(3), 908–918.PubMedPubMedCentralCrossRef
79.
go back to reference Ernest 2nd, C. S., Hall, S. D., & Jones, D. R. (2005). Mechanism-based inactivation of CYP3A by HIV protease inhibitors. The Journal of Pharmacology and Experimental Therapeutics, 312(2), 583–591.PubMedCrossRef Ernest 2nd, C. S., Hall, S. D., & Jones, D. R. (2005). Mechanism-based inactivation of CYP3A by HIV protease inhibitors. The Journal of Pharmacology and Experimental Therapeutics, 312(2), 583–591.PubMedCrossRef
80.
go back to reference Gaedicke, S., Firat-Geier, E., Constantiniu, O., Lucchiari-Hartz, M., Freudenberg, M., Galanos, C., et al. (2002). Antitumor effect of the human immunodeficiency virus protease inhibitor ritonavir: induction of tumor-cell apoptosis associated with perturbation of proteasomal proteolysis. Cancer Research, 62(23), 6901–6908.PubMed Gaedicke, S., Firat-Geier, E., Constantiniu, O., Lucchiari-Hartz, M., Freudenberg, M., Galanos, C., et al. (2002). Antitumor effect of the human immunodeficiency virus protease inhibitor ritonavir: induction of tumor-cell apoptosis associated with perturbation of proteasomal proteolysis. Cancer Research, 62(23), 6901–6908.PubMed
82.
go back to reference Liu, L., Chen, C., Gong, W., Li, Y., Edin, M. L., Zeldin, D. C., & Wang, D. W. (2011). Epoxyeicosatrienoic acids attenuate reactive oxygen species level, mitochondrial dysfunction, caspase activation, and apoptosis in carcinoma cells treated with arsenic trioxide. [Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov’t]. The Journal of Pharmacology and Experimental Therapeutics, 339(2), 451–463. https://doi.org/10.1124/jpet.111.180505.PubMedPubMedCentralCrossRef Liu, L., Chen, C., Gong, W., Li, Y., Edin, M. L., Zeldin, D. C., & Wang, D. W. (2011). Epoxyeicosatrienoic acids attenuate reactive oxygen species level, mitochondrial dysfunction, caspase activation, and apoptosis in carcinoma cells treated with arsenic trioxide. [Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov’t]. The Journal of Pharmacology and Experimental Therapeutics, 339(2), 451–463. https://​doi.​org/​10.​1124/​jpet.​111.​180505.PubMedPubMedCentralCrossRef
83.
go back to reference Ghersi-Egea, J. F., Perrin, R., Leininger-Muller, B., Grassiot, M. C., Jeandel, C., Floquet, J., Cuny, G., Siest, G., & Minn, A. (1993). Subcellular localization of cytochrome P450, and activities of several enzymes responsible for drug metabolism in the human brain. Biochemical Pharmacology, 45(3), 647–658.PubMedCrossRef Ghersi-Egea, J. F., Perrin, R., Leininger-Muller, B., Grassiot, M. C., Jeandel, C., Floquet, J., Cuny, G., Siest, G., & Minn, A. (1993). Subcellular localization of cytochrome P450, and activities of several enzymes responsible for drug metabolism in the human brain. Biochemical Pharmacology, 45(3), 647–658.PubMedCrossRef
84.
go back to reference Su, P., Rennert, H., Shayiq, R. M., Yamamoto, R., Zheng, Y. M., Addya, S., et al. (1990). A cDNA encoding a rat mitochondrial cytochrome P450 catalyzing both the 26-hydroxylation of cholesterol and 25-hydroxylation of vitamin D3: gonadotropic regulation of the cognate mRNA in ovaries. DNA and Cell Biology, 9(9), 657–667. https://doi.org/10.1089/dna.1990.9.657.PubMedCrossRef Su, P., Rennert, H., Shayiq, R. M., Yamamoto, R., Zheng, Y. M., Addya, S., et al. (1990). A cDNA encoding a rat mitochondrial cytochrome P450 catalyzing both the 26-hydroxylation of cholesterol and 25-hydroxylation of vitamin D3: gonadotropic regulation of the cognate mRNA in ovaries. DNA and Cell Biology, 9(9), 657–667. https://​doi.​org/​10.​1089/​dna.​1990.​9.​657.PubMedCrossRef
87.
go back to reference Addya, S., Anandatheerthavarada, H. K., Biswas, G., Bhagwat, S. V., Mullick, J., & Avadhani, N. G. (1997). Targeting of NH2-terminal-processed microsomal protein to mitochondria: a novel pathway for the biogenesis of hepatic mitochondrial P450MT2. The Journal of Cell Biology, 139(3), 589–599.PubMedPubMedCentralCrossRef Addya, S., Anandatheerthavarada, H. K., Biswas, G., Bhagwat, S. V., Mullick, J., & Avadhani, N. G. (1997). Targeting of NH2-terminal-processed microsomal protein to mitochondria: a novel pathway for the biogenesis of hepatic mitochondrial P450MT2. The Journal of Cell Biology, 139(3), 589–599.PubMedPubMedCentralCrossRef
88.
go back to reference Robin, M. A., Anandatheerthavarada, H. K., Fang, J. K., Cudic, M., Otvos, L., & Avadhani, N. G. (2001). Mitochondrial targeted cytochrome P450 2E1 (P450 MT5) contains an intact N terminus and requires mitochondrial specific electron transfer proteins for activity. The Journal of Biological Chemistry, 276(27), 24680–24689. https://doi.org/10.1074/jbc.M100363200.PubMedCrossRef Robin, M. A., Anandatheerthavarada, H. K., Fang, J. K., Cudic, M., Otvos, L., & Avadhani, N. G. (2001). Mitochondrial targeted cytochrome P450 2E1 (P450 MT5) contains an intact N terminus and requires mitochondrial specific electron transfer proteins for activity. The Journal of Biological Chemistry, 276(27), 24680–24689. https://​doi.​org/​10.​1074/​jbc.​M100363200.PubMedCrossRef
90.
go back to reference Srirangam, A., Mitra, R., Wang, M., Gorski, J. C., Badve, S., Baldridge, L., et al. (2006). Effects of HIV protease inhibitor ritonavir on Akt-regulated cell proliferation in breast cancer. Clinical Cancer Research : an Official Journal of the American Association for Cancer Research, 12(6), 1883–1896.CrossRef Srirangam, A., Mitra, R., Wang, M., Gorski, J. C., Badve, S., Baldridge, L., et al. (2006). Effects of HIV protease inhibitor ritonavir on Akt-regulated cell proliferation in breast cancer. Clinical Cancer Research : an Official Journal of the American Association for Cancer Research, 12(6), 1883–1896.CrossRef
91.
go back to reference Srirangam, A., Milani, M., Mitra, R., Guo, Z., Rodriguez, M., Kathuria, H., Fukuda, S., Rizzardi, A., Schmechel, S., Skalnik, D. G., Pelus, L. M., & Potter, D. A. (2011). The human immunodeficiency virus protease inhibitor ritonavir inhibits lung cancer cells, in part, by inhibition of survivin. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Journal of Thoracic Cncology : Official Publication of the International Association for the Study of Lung Cancer, 6(4), 661–670. https://doi.org/10.1097/JTO.0b013e31820c9e3c.CrossRef Srirangam, A., Milani, M., Mitra, R., Guo, Z., Rodriguez, M., Kathuria, H., Fukuda, S., Rizzardi, A., Schmechel, S., Skalnik, D. G., Pelus, L. M., & Potter, D. A. (2011). The human immunodeficiency virus protease inhibitor ritonavir inhibits lung cancer cells, in part, by inhibition of survivin. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Journal of Thoracic Cncology : Official Publication of the International Association for the Study of Lung Cancer, 6(4), 661–670. https://​doi.​org/​10.​1097/​JTO.​0b013e31820c9e3c​.CrossRef
94.
go back to reference Phuong, N. T. T., Kim, J. W., Kim, J.-A., Jeon, J. S., Lee, J.-Y., Xu, W. J., et al. (2017). Role of the CYP3A4-mediated 11,12-epoxyeicosatrienoic acid pathway in the development of tamoxifen-resistant breast cancer. Oncotarget, 8(41), doi: 10.18632/oncotarget.20329. Phuong, N. T. T., Kim, J. W., Kim, J.-A., Jeon, J. S., Lee, J.-Y., Xu, W. J., et al. (2017). Role of the CYP3A4-mediated 11,12-epoxyeicosatrienoic acid pathway in the development of tamoxifen-resistant breast cancer. Oncotarget, 8(41), doi: 10.18632/oncotarget.20329.
95.
go back to reference Forgue-Lafitte, M. E., Coudray, A. M., Fagot, D., & Mester, J. (1992). Effects of ketoconazole on the proliferation and cell cycle of human cancer cell lines. Cancer Research, 52(24), 6827–6831.PubMed Forgue-Lafitte, M. E., Coudray, A. M., Fagot, D., & Mester, J. (1992). Effects of ketoconazole on the proliferation and cell cycle of human cancer cell lines. Cancer Research, 52(24), 6827–6831.PubMed
96.
103.
go back to reference Kim, S. W., Jun, S. S., Min, C. H., Kim, Y. W., Kang, M., S, Oh, B. K., et al. (2011). Biguanide derivative, a preparation method thereof and a pharmaceutical composition containing the biguanide derivative as an active ingredient. . In U. S. P. a. T. Office (Ed.), Patent application WO 2011083998 (Vol. A1, pp. 1–14). Korea: Hanall Biopharma Co., Ltd. Kim, S. W., Jun, S. S., Min, C. H., Kim, Y. W., Kang, M., S, Oh, B. K., et al. (2011). Biguanide derivative, a preparation method thereof and a pharmaceutical composition containing the biguanide derivative as an active ingredient. . In U. S. P. a. T. Office (Ed.), Patent application WO 2011083998 (Vol. A1, pp. 1–14). Korea: Hanall Biopharma Co., Ltd.
104.
go back to reference Eagling, V. A., Back, D. J., & Barry, M. G. (1997). Differential inhibition of cytochrome P450 isoforms by the protease inhibitors, ritonavir, saquinavir and indinavir. British Journal of Clinical Pharmacology, 44(2), 190–194.PubMedPubMedCentralCrossRef Eagling, V. A., Back, D. J., & Barry, M. G. (1997). Differential inhibition of cytochrome P450 isoforms by the protease inhibitors, ritonavir, saquinavir and indinavir. British Journal of Clinical Pharmacology, 44(2), 190–194.PubMedPubMedCentralCrossRef
105.
go back to reference Akiyoshi, T., Saito, T., Murase, S., Miyazaki, M., Murayama, N., Yamazaki, H., Guengerich, F. P., Nakamura, K., Yamamoto, K., & Ohtani, H. (2011). Comparison of the inhibitory profiles of itraconazole and cimetidine in cytochrome P450 3A4 genetic variants. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 39(4), 724–728. https://doi.org/10.1124/dmd.110.036780.CrossRef Akiyoshi, T., Saito, T., Murase, S., Miyazaki, M., Murayama, N., Yamazaki, H., Guengerich, F. P., Nakamura, K., Yamamoto, K., & Ohtani, H. (2011). Comparison of the inhibitory profiles of itraconazole and cimetidine in cytochrome P450 3A4 genetic variants. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 39(4), 724–728. https://​doi.​org/​10.​1124/​dmd.​110.​036780.CrossRef
106.
go back to reference Ikezoe, T., Saito, T., Bandobashi, K., Yang, Y., Koeffler, H. P., & Taguchi, H. (2004). HIV-1 protease inhibitor induces growth arrest and apoptosis of human multiple myeloma cells via inactivation of signal transducer and activator of transcription 3 and extracellular signal-regulated kinase 1/2. Molecular Cancer Therapeutics, 3(4), 473–479.PubMed Ikezoe, T., Saito, T., Bandobashi, K., Yang, Y., Koeffler, H. P., & Taguchi, H. (2004). HIV-1 protease inhibitor induces growth arrest and apoptosis of human multiple myeloma cells via inactivation of signal transducer and activator of transcription 3 and extracellular signal-regulated kinase 1/2. Molecular Cancer Therapeutics, 3(4), 473–479.PubMed
108.
109.
go back to reference Cristofanilli, M., Turner, N. C., Bondarenko, I., Ro, J., Im, S. A., Masuda, N., Colleoni, M., DeMichele, A., Loi, S., Verma, S., Iwata, H., Harbeck, N., Zhang, K., Theall, K. P., Jiang, Y., Bartlett, C. H., Koehler, M., & Slamon, D. (2016). Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): final analysis of the multicentre, double-blind, phase 3 randomised controlled trial. The Lancet Oncology, 17(4), 425–439. https://doi.org/10.1016/S1470-2045(15)00613-0.PubMedCrossRef Cristofanilli, M., Turner, N. C., Bondarenko, I., Ro, J., Im, S. A., Masuda, N., Colleoni, M., DeMichele, A., Loi, S., Verma, S., Iwata, H., Harbeck, N., Zhang, K., Theall, K. P., Jiang, Y., Bartlett, C. H., Koehler, M., & Slamon, D. (2016). Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): final analysis of the multicentre, double-blind, phase 3 randomised controlled trial. The Lancet Oncology, 17(4), 425–439. https://​doi.​org/​10.​1016/​S1470-2045(15)00613-0.PubMedCrossRef
110.
go back to reference Sledge Jr., G. W., Toi, M., Neven, P., Sohn, J., Inoue, K., Pivot, X., Burdaeva, O., Okera, M., Masuda, N., Kaufman, P. A., Koh, H., Grischke, E. M., Frenzel, M., Lin, Y., Barriga, S., Smith, I. C., Bourayou, N., & Llombart-Cussac, A. (2017). MONARCH 2: abemaciclib in combination with fulvestrant in women with HR+/HER2- advanced breast cancer who had progressed while receiving endocrine therapy. Journal of Clinical Oncology : Official Journal of the American Society of Clinical Oncology, 35(25), 2875–2884. https://doi.org/10.1200/JCO.2017.73.7585.CrossRef Sledge Jr., G. W., Toi, M., Neven, P., Sohn, J., Inoue, K., Pivot, X., Burdaeva, O., Okera, M., Masuda, N., Kaufman, P. A., Koh, H., Grischke, E. M., Frenzel, M., Lin, Y., Barriga, S., Smith, I. C., Bourayou, N., & Llombart-Cussac, A. (2017). MONARCH 2: abemaciclib in combination with fulvestrant in women with HR+/HER2- advanced breast cancer who had progressed while receiving endocrine therapy. Journal of Clinical Oncology : Official Journal of the American Society of Clinical Oncology, 35(25), 2875–2884. https://​doi.​org/​10.​1200/​JCO.​2017.​73.​7585.CrossRef
Metadata
Title
Targeting cytochrome P450-dependent cancer cell mitochondria: cancer associated CYPs and where to find them
Authors
Zhijun Guo
Veronica Johnson
Jaime Barrera
Mariel Porras
Diego Hinojosa
Irwin Hernández
Patrick McGarrah
David A. Potter
Publication date
01-09-2018
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 2-3/2018
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-018-9749-6

Other articles of this Issue 2-3/2018

Cancer and Metastasis Reviews 2-3/2018 Go to the issue

EditorialNotes

Preface

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine