Skip to main content
Top
Published in: Cancer and Metastasis Reviews 4/2018

01-12-2018 | NON-THEMATIC REVIEW

Pro-survival autophagy and cancer cell resistance to therapy

Authors: Chandan Kanta Das, Mahitosh Mandal, Donat Kögel

Published in: Cancer and Metastasis Reviews | Issue 4/2018

Login to get access

Abstract

Resistance to therapy is one of the prime causes for treatment failure in cancer and recurrent disease. In recent years, autophagy has emerged as an important cell survival mechanism in response to different stress conditions that are associated with cancer treatment and aging. Autophagy is an evolutionary conserved catabolic process through which damaged cellular contents are degraded after uptake into autophagosomes that subsequently fuse with lysosomes for cargo degradation, thereby alleviating stress. In addition, autophagy serves to maintain cellular homeostasis by enriching nutrient pools. Although autophagy can act as a double-edged sword at the interface of cell survival and cell death, increasing evidence suggest that in the context of cancer therapy-induced stress responses, it predominantly functions as a cell survival mechanism. Here, we provide an up-to-date overview on our current knowledge of the role of pro-survival autophagy in cancer therapy at the preclinical and clinical stages and delineate the molecular mechanisms of autophagy regulation in response to therapy-related stress conditions. A better understanding of the interplay of cancer therapy and autophagy may allow to unveil new targets and avenues for an improved treatment of therapy-resistant tumors in the foreseeable future.
Literature
2.
go back to reference Ahmad, A., Wang, Z., Ali, R., Bitar, B., Logna, F.T., Maitah, M.Y., Bao, B., Ali, S., Kong, D., Li, Y., & Sarkar, F.H. (2012). Cell cycle regulatory proteins in breast cancer: molecular determinants of drug resistance and targets for anticancer therapies. In R. Aft (Ed.), Targeting New Pathways and Cell Death in Breast Cancer, InTech (pp. 113–130). https://doi.org/10.5772/24272. Ahmad, A., Wang, Z., Ali, R., Bitar, B., Logna, F.T., Maitah, M.Y., Bao, B., Ali, S., Kong, D., Li, Y., & Sarkar, F.H. (2012). Cell cycle regulatory proteins in breast cancer: molecular determinants of drug resistance and targets for anticancer therapies. In R. Aft (Ed.), Targeting New Pathways and Cell Death in Breast Cancer, InTech (pp. 113–130). https://​doi.​org/​10.​5772/​24272.
3.
go back to reference Ahmad, A., & Sarkar, F. (2013). Current understanding of drug resistance mechanisms and therapeutic targets in HER2 overexpressing breast cancers. In A. Ahmad (Ed.), Breast Cancer Metastasis and Drug Resistance (pp. 261-274): Springer New York. Ahmad, A., & Sarkar, F. (2013). Current understanding of drug resistance mechanisms and therapeutic targets in HER2 overexpressing breast cancers. In A. Ahmad (Ed.), Breast Cancer Metastasis and Drug Resistance (pp. 261-274): Springer New York.
4.
go back to reference Lehne, G., Elonen, E., Baekelandt, M., Skovsgaard, T., & Peterson, C. (1998). Challenging drug resistance in cancer therapy—review of the first Nordic conference on chemoresistance in cancer treatment, October 9th and 10th, 1997. Acta Oncologica, 37(5), 431–439.CrossRefPubMed Lehne, G., Elonen, E., Baekelandt, M., Skovsgaard, T., & Peterson, C. (1998). Challenging drug resistance in cancer therapy—review of the first Nordic conference on chemoresistance in cancer treatment, October 9th and 10th, 1997. Acta Oncologica, 37(5), 431–439.CrossRefPubMed
5.
go back to reference Ringborg, U., & Platz, A. (1996). Chemotherapy resistance mechanisms. Acta Oncologica, 35(Suppl 5), 76–80.CrossRefPubMed Ringborg, U., & Platz, A. (1996). Chemotherapy resistance mechanisms. Acta Oncologica, 35(Suppl 5), 76–80.CrossRefPubMed
6.
go back to reference Luqmani, Y. A. (2005). Mechanisms of drug resistance in cancer chemotherapy. Med Princ Pract, 14(Suppl 1), 35–48.CrossRefPubMed Luqmani, Y. A. (2005). Mechanisms of drug resistance in cancer chemotherapy. Med Princ Pract, 14(Suppl 1), 35–48.CrossRefPubMed
7.
go back to reference Szakacs, G., Paterson, J. K., Ludwig, J. A., Booth-Genthe, C., & Gottesman, M. M. (2006). Targeting multidrug resistance in cancer. Nat Rev Drug Discov, 5(3), 219–234.CrossRefPubMed Szakacs, G., Paterson, J. K., Ludwig, J. A., Booth-Genthe, C., & Gottesman, M. M. (2006). Targeting multidrug resistance in cancer. Nat Rev Drug Discov, 5(3), 219–234.CrossRefPubMed
9.
go back to reference Aqbi, H. F., Butler, S. E., Keim, R., Idowu, M. O., & Manjili, M. H. (2017). Chemotherapy-induced tumor dormancy and relapse. The Journal of Immunology, 198(1 Supplement), 204.207–204.207. Aqbi, H. F., Butler, S. E., Keim, R., Idowu, M. O., & Manjili, M. H. (2017). Chemotherapy-induced tumor dormancy and relapse. The Journal of Immunology, 198(1 Supplement), 204.207–204.207.
10.
go back to reference Gewirtz, D. A. (2014). Chapter 18-autophagy, stem cells, and tumor dormancy A2-Hayat, M.A. In Autophagy: cancer, other pathologies, inflammation, immunity, infection, and aging (pp. 271–276). Amsterdam: Academic Press.CrossRef Gewirtz, D. A. (2014). Chapter 18-autophagy, stem cells, and tumor dormancy A2-Hayat, M.A. In Autophagy: cancer, other pathologies, inflammation, immunity, infection, and aging (pp. 271–276). Amsterdam: Academic Press.CrossRef
13.
go back to reference Mizushima, N., Ohsumi, Y., & Yoshimori, T. (2002). Autophagosome formation in mammalian cells. Cell Structure and Function, 27(6), 421–429.CrossRefPubMed Mizushima, N., Ohsumi, Y., & Yoshimori, T. (2002). Autophagosome formation in mammalian cells. Cell Structure and Function, 27(6), 421–429.CrossRefPubMed
16.
go back to reference Klionsky, D. J. (2007). Autophagy: from phenomenology to molecular understanding in less than a decade. Nature Reviews Molecular Cell Biology, 8(11), 931–937.CrossRefPubMed Klionsky, D. J. (2007). Autophagy: from phenomenology to molecular understanding in less than a decade. Nature Reviews Molecular Cell Biology, 8(11), 931–937.CrossRefPubMed
27.
go back to reference Saftig, P., Beertsen, W., & Eskelinen, E. L. (2008). LAMP-2: a control step for phagosome and autophagosome maturation. Autophagy, 4(4), 510–512.CrossRefPubMed Saftig, P., Beertsen, W., & Eskelinen, E. L. (2008). LAMP-2: a control step for phagosome and autophagosome maturation. Autophagy, 4(4), 510–512.CrossRefPubMed
28.
go back to reference Bucci, C., Thomsen, P., Nicoziani, P., McCarthy, J., & van Deurs, B. (2000). Rab7: a key to lysosome biogenesis. Molecular Biology of the Cell, 11(2), 467–480.CrossRefPubMedPubMedCentral Bucci, C., Thomsen, P., Nicoziani, P., McCarthy, J., & van Deurs, B. (2000). Rab7: a key to lysosome biogenesis. Molecular Biology of the Cell, 11(2), 467–480.CrossRefPubMedPubMedCentral
34.
go back to reference Qin, L., Wang, Z., Tao, L., & Wang, Y. (2010). ER stress negatively regulates AKT/TSC/mTOR pathway to enhance autophagy. Autophagy, 6(2), 239–247.CrossRefPubMed Qin, L., Wang, Z., Tao, L., & Wang, Y. (2010). ER stress negatively regulates AKT/TSC/mTOR pathway to enhance autophagy. Autophagy, 6(2), 239–247.CrossRefPubMed
35.
go back to reference Hetz, C. (2012). The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nature Reviews Molecular Cell Biology, 13(2), 89–102.CrossRefPubMed Hetz, C. (2012). The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nature Reviews Molecular Cell Biology, 13(2), 89–102.CrossRefPubMed
47.
go back to reference Gomes, L. C., Di Benedetto, G., & Scorrano, L. (2011). During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nature Cell Biology, 13(5), 589–598.CrossRefPubMedPubMedCentral Gomes, L. C., Di Benedetto, G., & Scorrano, L. (2011). During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nature Cell Biology, 13(5), 589–598.CrossRefPubMedPubMedCentral
66.
go back to reference Jin, S., & White, E. (2007). Role of autophagy in cancer: management of metabolic stress. Autophagy, 3(1), 28–31.CrossRefPubMed Jin, S., & White, E. (2007). Role of autophagy in cancer: management of metabolic stress. Autophagy, 3(1), 28–31.CrossRefPubMed
73.
go back to reference Vaupel, P., Briest, S., & Hockel, M. (2002). Hypoxia in breast cancer: pathogenesis, characterization and biological/therapeutic implications. Wiener Medizinische Wochenschrift (1946), 152(13–14), 334–342.CrossRef Vaupel, P., Briest, S., & Hockel, M. (2002). Hypoxia in breast cancer: pathogenesis, characterization and biological/therapeutic implications. Wiener Medizinische Wochenschrift (1946), 152(13–14), 334–342.CrossRef
82.
go back to reference Tasdemir, E., Maiuri, M. C., Galluzzi, L., Vitale, I., Djavaheri-Mergny, M., D'Amelio, M., et al. (2008). Regulation of autophagy by cytoplasmic p53. Nature Cell Biology, 10(6), 676–687.CrossRefPubMedPubMedCentral Tasdemir, E., Maiuri, M. C., Galluzzi, L., Vitale, I., Djavaheri-Mergny, M., D'Amelio, M., et al. (2008). Regulation of autophagy by cytoplasmic p53. Nature Cell Biology, 10(6), 676–687.CrossRefPubMedPubMedCentral
84.
go back to reference Lorin, S., Pierron, G., Ryan, K. M., Codogno, P., & Djavaheri-Mergny, M. (2010). Evidence for the interplay between JNK and p53-DRAM signalling pathways in the regulation of autophagy. Autophagy, 6(1), 153–154.CrossRefPubMed Lorin, S., Pierron, G., Ryan, K. M., Codogno, P., & Djavaheri-Mergny, M. (2010). Evidence for the interplay between JNK and p53-DRAM signalling pathways in the regulation of autophagy. Autophagy, 6(1), 153–154.CrossRefPubMed
103.
go back to reference Choi, C. H., Jung, Y. K., & Oh, S. H. (2010). Autophagy induction by capsaicin in malignant human breast cells is modulated by p38 and extracellular signal-regulated mitogen-activated protein kinases and retards cell death by suppressing endoplasmic reticulum stress-mediated apoptosis. Mol Pharmacol, 78(1), 114–125. https://doi.org/10.1124/mol.110.063495.CrossRefPubMed Choi, C. H., Jung, Y. K., & Oh, S. H. (2010). Autophagy induction by capsaicin in malignant human breast cells is modulated by p38 and extracellular signal-regulated mitogen-activated protein kinases and retards cell death by suppressing endoplasmic reticulum stress-mediated apoptosis. Mol Pharmacol, 78(1), 114–125. https://​doi.​org/​10.​1124/​mol.​110.​063495.CrossRefPubMed
105.
go back to reference Cufi, S., Vazquez-Martin, A., Oliveras-Ferraros, C., Corominas-Faja, B., Urruticoechea, A., Martin-Castillo, B., et al. (2012). Autophagy-related gene 12 (ATG12) is a novel determinant of primary resistance to HER2-targeted therapies: utility of transcriptome analysis of the autophagy interactome to guide breast cancer treatment. Oncotarget, 3(12), 1600–1614. https://doi.org/10.18632/oncotarget.742.CrossRefPubMedPubMedCentral Cufi, S., Vazquez-Martin, A., Oliveras-Ferraros, C., Corominas-Faja, B., Urruticoechea, A., Martin-Castillo, B., et al. (2012). Autophagy-related gene 12 (ATG12) is a novel determinant of primary resistance to HER2-targeted therapies: utility of transcriptome analysis of the autophagy interactome to guide breast cancer treatment. Oncotarget, 3(12), 1600–1614. https://​doi.​org/​10.​18632/​oncotarget.​742.CrossRefPubMedPubMedCentral
106.
go back to reference Sun, W. L., Chen, J., Wang, Y. P., & Zheng, H. (2011). Autophagy protects breast cancer cells from epirubicin-induced apoptosis and facilitates epirubicin-resistance development. Autophagy, 7(9), 1035–1044.CrossRefPubMed Sun, W. L., Chen, J., Wang, Y. P., & Zheng, H. (2011). Autophagy protects breast cancer cells from epirubicin-induced apoptosis and facilitates epirubicin-resistance development. Autophagy, 7(9), 1035–1044.CrossRefPubMed
110.
115.
go back to reference Han, M. W., Lee, J. C., Choi, J. Y., Kim, G. C., Chang, H. W., Nam, H. Y., et al. (2014). Autophagy inhibition can overcome radioresistance in breast cancer cells through suppression of TAK1 activation. Anticancer Res, 34(3), 1449–1455.PubMed Han, M. W., Lee, J. C., Choi, J. Y., Kim, G. C., Chang, H. W., Nam, H. Y., et al. (2014). Autophagy inhibition can overcome radioresistance in breast cancer cells through suppression of TAK1 activation. Anticancer Res, 34(3), 1449–1455.PubMed
116.
go back to reference Wang, S. M., Li, X. H., & Xiu, Z. L. (2014). Over-expression of Beclin-1 facilitates acquired resistance to histone deacetylase inhibitor-induced apoptosis. Asian Pacific Journal of Cancer Prevention, 15(18), 7913–7917.CrossRefPubMed Wang, S. M., Li, X. H., & Xiu, Z. L. (2014). Over-expression of Beclin-1 facilitates acquired resistance to histone deacetylase inhibitor-induced apoptosis. Asian Pacific Journal of Cancer Prevention, 15(18), 7913–7917.CrossRefPubMed
118.
go back to reference Nihira, K., Miki, Y., Iida, S., Narumi, S., Ono, K., Iwabuchi, E., et al. (2014). An activation of LC3A-mediated autophagy contributes to de novo and acquired resistance to EGFR tyrosine kinase inhibitors in lung adenocarcinoma. The Journal of Pathology, 234(2), 277–288. https://doi.org/10.1002/path.4354.CrossRefPubMed Nihira, K., Miki, Y., Iida, S., Narumi, S., Ono, K., Iwabuchi, E., et al. (2014). An activation of LC3A-mediated autophagy contributes to de novo and acquired resistance to EGFR tyrosine kinase inhibitors in lung adenocarcinoma. The Journal of Pathology, 234(2), 277–288. https://​doi.​org/​10.​1002/​path.​4354.CrossRefPubMed
119.
go back to reference Hsieh, M. J., Lin, C. W., Yang, S. F., Sheu, G. T., Yu, Y. Y., Chen, M. K., et al. (2014). A combination of pterostilbene with autophagy inhibitors exerts efficient apoptotic characteristics in both chemosensitive and chemoresistant lung cancer cells. Toxicological Sciences, 137(1), 65–75. https://doi.org/10.1093/toxsci/kft238.CrossRefPubMed Hsieh, M. J., Lin, C. W., Yang, S. F., Sheu, G. T., Yu, Y. Y., Chen, M. K., et al. (2014). A combination of pterostilbene with autophagy inhibitors exerts efficient apoptotic characteristics in both chemosensitive and chemoresistant lung cancer cells. Toxicological Sciences, 137(1), 65–75. https://​doi.​org/​10.​1093/​toxsci/​kft238.CrossRefPubMed
122.
go back to reference Izdebska, M., Klimaszewska-Wisniewska, A., Halas, M., Gagat, M., & Grzanka, A. (2015). Green tea extract induces protective autophagy in A549 non-small lung cancer cell line. Postȩpy Higieny i Medycyny Doświadczalnej (Online), 69, 1478–1484. Izdebska, M., Klimaszewska-Wisniewska, A., Halas, M., Gagat, M., & Grzanka, A. (2015). Green tea extract induces protective autophagy in A549 non-small lung cancer cell line. Postȩpy Higieny i Medycyny Doświadczalnej (Online), 69, 1478–1484.
129.
133.
go back to reference Luo, G. X., Cai, J., Lin, J. Z., Luo, W. S., Luo, H. S., Jiang, Y. Y., et al. (2012). Autophagy inhibition promotes gambogic acid-induced suppression of growth and apoptosis in glioblastoma cells. Asian Pacific Journal of Cancer Prevention, 13(12), 6211–6216.CrossRefPubMed Luo, G. X., Cai, J., Lin, J. Z., Luo, W. S., Luo, H. S., Jiang, Y. Y., et al. (2012). Autophagy inhibition promotes gambogic acid-induced suppression of growth and apoptosis in glioblastoma cells. Asian Pacific Journal of Cancer Prevention, 13(12), 6211–6216.CrossRefPubMed
137.
go back to reference Su, J., Xu, Y., Zhou, L., Yu, H. M., Kang, J. S., Liu, N., et al. (2013). Suppression of chloride channel 3 expression facilitates sensitivity of human glioma U251 cells to cisplatin through concomitant inhibition of Akt and autophagy. Anat Rec (Hoboken), 296(4), 595–603. https://doi.org/10.1002/ar.22665.CrossRef Su, J., Xu, Y., Zhou, L., Yu, H. M., Kang, J. S., Liu, N., et al. (2013). Suppression of chloride channel 3 expression facilitates sensitivity of human glioma U251 cells to cisplatin through concomitant inhibition of Akt and autophagy. Anat Rec (Hoboken), 296(4), 595–603. https://​doi.​org/​10.​1002/​ar.​22665.CrossRef
144.
go back to reference Ding, Z. B., Hui, B., Shi, Y. H., Zhou, J., Peng, Y. F., Gu, C. Y., et al. (2011). Autophagy activation in hepatocellular carcinoma contributes to the tolerance of oxaliplatin via reactive oxygen species modulation. Clinical Cancer Research, 17(19), 6229–6238. https://doi.org/10.1158/1078-0432.CCR-11-0816. Ding, Z. B., Hui, B., Shi, Y. H., Zhou, J., Peng, Y. F., Gu, C. Y., et al. (2011). Autophagy activation in hepatocellular carcinoma contributes to the tolerance of oxaliplatin via reactive oxygen species modulation. Clinical Cancer Research, 17(19), 6229–6238. https://​doi.​org/​10.​1158/​1078-0432.​CCR-11-0816.
151.
go back to reference O'Donovan, T. R., O'Sullivan, G. C., & McKenna, S. L. (2011). Induction of autophagy by drug-resistant esophageal cancer cells promotes their survival and recovery following treatment with chemotherapeutics. Autophagy, 7(5), 509–524.CrossRefPubMedPubMedCentral O'Donovan, T. R., O'Sullivan, G. C., & McKenna, S. L. (2011). Induction of autophagy by drug-resistant esophageal cancer cells promotes their survival and recovery following treatment with chemotherapeutics. Autophagy, 7(5), 509–524.CrossRefPubMedPubMedCentral
157.
go back to reference Song, P., Ye, L., Fan, J., Li, Y., Zeng, X., Wang, Z., et al. (2015). Asparaginase induces apoptosis and cytoprotective autophagy in chronic myeloid leukemia cells. Oncotarget, 6(6), 3861–3873.CrossRefPubMedPubMedCentral Song, P., Ye, L., Fan, J., Li, Y., Zeng, X., Wang, Z., et al. (2015). Asparaginase induces apoptosis and cytoprotective autophagy in chronic myeloid leukemia cells. Oncotarget, 6(6), 3861–3873.CrossRefPubMedPubMedCentral
158.
go back to reference Wang, Z., Zhu, S., Zhang, G., & Liu, S. (2015). Inhibition of autophagy enhances the anticancer activity of bortezomib in B-cell acute lymphoblastic leukemia cells. American Journal of Cancer Research, 5(2), 639–650.PubMedPubMedCentral Wang, Z., Zhu, S., Zhang, G., & Liu, S. (2015). Inhibition of autophagy enhances the anticancer activity of bortezomib in B-cell acute lymphoblastic leukemia cells. American Journal of Cancer Research, 5(2), 639–650.PubMedPubMedCentral
162.
go back to reference Zhuang, W., Qin, Z., & Liang, Z. (2009). The role of autophagy in sensitizing malignant glioma cells to radiation therapy. Acta Biochim Biophys Sin (Shanghai), 41(5), 341–351.CrossRef Zhuang, W., Qin, Z., & Liang, Z. (2009). The role of autophagy in sensitizing malignant glioma cells to radiation therapy. Acta Biochim Biophys Sin (Shanghai), 41(5), 341–351.CrossRef
165.
170.
go back to reference Malet-Martino, M., Jolimaitre, P., & Martino, R. (2002). The prodrugs of 5-fluorouracil. Current Medicinal Chemistry. Anti-Cancer Agents, 2(2), 267–310.CrossRefPubMed Malet-Martino, M., Jolimaitre, P., & Martino, R. (2002). The prodrugs of 5-fluorouracil. Current Medicinal Chemistry. Anti-Cancer Agents, 2(2), 267–310.CrossRefPubMed
173.
go back to reference Sui, X., Kong, N., Wang, X., Fang, Y., Hu, X., Xu, Y., et al. (2014). JNK confers 5-fluorouracil resistance in p53-deficient and mutant p53-expressing colon cancer cells by inducing survival autophagy. Sci Rep, 4, 4694.CrossRefPubMedPubMedCentral Sui, X., Kong, N., Wang, X., Fang, Y., Hu, X., Xu, Y., et al. (2014). JNK confers 5-fluorouracil resistance in p53-deficient and mutant p53-expressing colon cancer cells by inducing survival autophagy. Sci Rep, 4, 4694.CrossRefPubMedPubMedCentral
185.
go back to reference Cheng, C. Y., Liu, J. C., Wang, J. J., Li, Y. H., Pan, J., & Zhang, Y. R. (2017). Autophagy inhibition increased the anti-tumor effect of cisplatin on drug-resistant esophageal cancer cells. Journal of Biological Regulators and Homeostatic Agents, 31(3), 645–652.PubMed Cheng, C. Y., Liu, J. C., Wang, J. J., Li, Y. H., Pan, J., & Zhang, Y. R. (2017). Autophagy inhibition increased the anti-tumor effect of cisplatin on drug-resistant esophageal cancer cells. Journal of Biological Regulators and Homeostatic Agents, 31(3), 645–652.PubMed
194.
go back to reference Salomoni, P., & Calabretta, B. (2009). Targeted therapies and autophagy: new insights from chronic myeloid leukemia. Autophagy, 5(7), 1050–1051.CrossRefPubMed Salomoni, P., & Calabretta, B. (2009). Targeted therapies and autophagy: new insights from chronic myeloid leukemia. Autophagy, 5(7), 1050–1051.CrossRefPubMed
195.
go back to reference Mirzoeva, O. K., Hann, B., Hom, Y. K., Debnath, J., Aftab, D., Shokat, K., et al. (2011). Autophagy suppression promotes apoptotic cell death in response to inhibition of the PI3K-mTOR pathway in pancreatic adenocarcinoma. Journal of Molecular Medicine (Berl), 89(9), 877–889. https://doi.org/10.1007/s00109-011-0774-y.CrossRef Mirzoeva, O. K., Hann, B., Hom, Y. K., Debnath, J., Aftab, D., Shokat, K., et al. (2011). Autophagy suppression promotes apoptotic cell death in response to inhibition of the PI3K-mTOR pathway in pancreatic adenocarcinoma. Journal of Molecular Medicine (Berl), 89(9), 877–889. https://​doi.​org/​10.​1007/​s00109-011-0774-y.CrossRef
196.
go back to reference Zhai, B., Hu, F., Jiang, X., Xu, J., Zhao, D., Liu, B., et al. (2014). Inhibition of Akt reverses the acquired resistance to sorafenib by switching protective autophagy to autophagic cell death in hepatocellular carcinoma. Molecular Cancer Therapeutics, 13(6), 1589–1598 doi:1535–7163.MCT-13-1043.CrossRefPubMed Zhai, B., Hu, F., Jiang, X., Xu, J., Zhao, D., Liu, B., et al. (2014). Inhibition of Akt reverses the acquired resistance to sorafenib by switching protective autophagy to autophagic cell death in hepatocellular carcinoma. Molecular Cancer Therapeutics, 13(6), 1589–1598 doi:1535–7163.MCT-13-1043.CrossRefPubMed
207.
Metadata
Title
Pro-survival autophagy and cancer cell resistance to therapy
Authors
Chandan Kanta Das
Mahitosh Mandal
Donat Kögel
Publication date
01-12-2018
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 4/2018
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-018-9727-z

Other articles of this Issue 4/2018

Cancer and Metastasis Reviews 4/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine