Skip to main content
Top
Published in: Cancer and Metastasis Reviews 4/2016

01-12-2016

Patient-derived xenograft (PDX) models in basic and translational breast cancer research

Authors: Lacey E. Dobrolecki, Susie D. Airhart, Denis G. Alferez, Samuel Aparicio, Fariba Behbod, Mohamed Bentires-Alj, Cathrin Brisken, Carol J. Bult, Shirong Cai, Robert B. Clarke, Heidi Dowst, Matthew J. Ellis, Eva Gonzalez-Suarez, Richard D. Iggo, Peter Kabos, Shunqiang Li, Geoffrey J. Lindeman, Elisabetta Marangoni, Aaron McCoy, Funda Meric-Bernstam, Helen Piwnica-Worms, Marie-France Poupon, Jorge Reis-Filho, Carol A. Sartorius, Valentina Scabia, George Sflomos, Yizheng Tu, François Vaillant, Jane E. Visvader, Alana Welm, Max S. Wicha, Michael T. Lewis

Published in: Cancer and Metastasis Reviews | Issue 4/2016

Login to get access

Abstract

Patient-derived xenograft (PDX) models of a growing spectrum of cancers are rapidly supplanting long-established traditional cell lines as preferred models for conducting basic and translational preclinical research. In breast cancer, to complement the now curated collection of approximately 45 long-established human breast cancer cell lines, a newly formed consortium of academic laboratories, currently from Europe, Australia, and North America, herein summarizes data on over 500 stably transplantable PDX models representing all three clinical subtypes of breast cancer (ER+, HER2+, and “Triple-negative” (TNBC)). Many of these models are well-characterized with respect to genomic, transcriptomic, and proteomic features, metastatic behavior, and treatment response to a variety of standard-of-care and experimental therapeutics. These stably transplantable PDX lines are generally available for dissemination to laboratories conducting translational research, and contact information for each collection is provided. This review summarizes current experiences related to PDX generation across participating groups, efforts to develop data standards for annotation and dissemination of patient clinical information that does not compromise patient privacy, efforts to develop complementary data standards for annotation of PDX characteristics and biology, and progress toward “credentialing” of PDX models as surrogates to represent individual patients for use in preclinical and co-clinical translational research. In addition, this review highlights important unresolved questions, as well as current limitations, that have hampered more efficient generation of PDX lines and more rapid adoption of PDX use in translational breast cancer research.
Literature
1.
3.
go back to reference Allred, D. C., Harvey, J. M., Berardo, M., & Clark, G. M. (1998). Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Modern Pathology, 11(2), 155–168.PubMed Allred, D. C., Harvey, J. M., Berardo, M., & Clark, G. M. (1998). Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Modern Pathology, 11(2), 155–168.PubMed
5.
go back to reference Prat, A., Parker, J. S., Karginova, O., Fan, C., Livasy, C., Herschkowitz, J. I., et al. (2010). Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Research, 12(5), R68. doi:10.1186/bcr2635.PubMedPubMedCentralCrossRef Prat, A., Parker, J. S., Karginova, O., Fan, C., Livasy, C., Herschkowitz, J. I., et al. (2010). Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Research, 12(5), R68. doi:10.​1186/​bcr2635.PubMedPubMedCentralCrossRef
7.
go back to reference Perou, C. M., Sorlie, T., Eisen, M. B., van de Rijn, M., Jeffrey, S. S., Rees, C. A., et al. (2000). Molecular portraits of human breast tumours. Nature, 406(6797), 747–752. doi:10.1038/35021093.PubMedCrossRef Perou, C. M., Sorlie, T., Eisen, M. B., van de Rijn, M., Jeffrey, S. S., Rees, C. A., et al. (2000). Molecular portraits of human breast tumours. Nature, 406(6797), 747–752. doi:10.​1038/​35021093.PubMedCrossRef
9.
go back to reference Marusyk, A., & Polyak, K. (2010). Tumor heterogeneity: causes and consequences. [Research support, N.I.H., extramural research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S. Review]. Biochimica et Biophysica Acta, 1805(1), 105–117. doi:10.1016/j.bbcan.2009.11.002.PubMed Marusyk, A., & Polyak, K. (2010). Tumor heterogeneity: causes and consequences. [Research support, N.I.H., extramural research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S. Review]. Biochimica et Biophysica Acta, 1805(1), 105–117. doi:10.​1016/​j.​bbcan.​2009.​11.​002.PubMed
10.
go back to reference Park, S. Y., Lee, H. E., Li, H., Shipitsin, M., Gelman, R., & Polyak, K. (2010). Heterogeneity for stem cell-related markers according to tumor subtype and histologic stage in breast cancer. [Research support, N.I.H., extramural research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S.]. Clinical cancer research : an official journal of the American Association for Cancer Research, 16(3), 876–887. doi:10.1158/1078-0432.CCR-09-1532.CrossRef Park, S. Y., Lee, H. E., Li, H., Shipitsin, M., Gelman, R., & Polyak, K. (2010). Heterogeneity for stem cell-related markers according to tumor subtype and histologic stage in breast cancer. [Research support, N.I.H., extramural research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S.]. Clinical cancer research : an official journal of the American Association for Cancer Research, 16(3), 876–887. doi:10.​1158/​1078-0432.​CCR-09-1532.CrossRef
11.
go back to reference Burstein, H. J., Temin, S., Anderson, H., Buchholz, T. A., Davidson, N. E., Gelmon, K. E., et al. (2014). Adjuvant endocrine therapy for women with hormone receptor-positive breast cancer: American society of clinical oncology clinical practice guideline focused update. [Practice guideline]. Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 32(21), 2255–2269. doi:10.1200/JCO.2013.54.2258.CrossRef Burstein, H. J., Temin, S., Anderson, H., Buchholz, T. A., Davidson, N. E., Gelmon, K. E., et al. (2014). Adjuvant endocrine therapy for women with hormone receptor-positive breast cancer: American society of clinical oncology clinical practice guideline focused update. [Practice guideline]. Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 32(21), 2255–2269. doi:10.​1200/​JCO.​2013.​54.​2258.CrossRef
12.
go back to reference Ramakrishna, N., Temin, S., Chandarlapaty, S., Crews, J. R., Davidson, N. E., Esteva, F. J., et al. (2014). Recommendations on disease management for patients with advanced human epidermal growth factor receptor 2-positive breast cancer and brain metastases: American Society of Clinical Oncology clinical practice guideline. [Practice guideline research support, non-U.S. Gov’t review]. Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 32(19), 2100–2108. doi:10.1200/JCO.2013.54.0955.CrossRef Ramakrishna, N., Temin, S., Chandarlapaty, S., Crews, J. R., Davidson, N. E., Esteva, F. J., et al. (2014). Recommendations on disease management for patients with advanced human epidermal growth factor receptor 2-positive breast cancer and brain metastases: American Society of Clinical Oncology clinical practice guideline. [Practice guideline research support, non-U.S. Gov’t review]. Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 32(19), 2100–2108. doi:10.​1200/​JCO.​2013.​54.​0955.CrossRef
13.
go back to reference Telli, M. L., Timms, K. M., Reid, J., Hennessy, B., Mills, G. B., Jensen, K. C., et al. (2016). Homologous recombination deficiency (HRD) score predicts response to platinum-containing neoadjuvant chemotherapy in patients with triple-negative breast cancer. Clinical cancer research : an official journal of the American Association for Cancer Research, 22(15), 3764–3773. doi:10.1158/1078-0432.CCR-15-2477.CrossRef Telli, M. L., Timms, K. M., Reid, J., Hennessy, B., Mills, G. B., Jensen, K. C., et al. (2016). Homologous recombination deficiency (HRD) score predicts response to platinum-containing neoadjuvant chemotherapy in patients with triple-negative breast cancer. Clinical cancer research : an official journal of the American Association for Cancer Research, 22(15), 3764–3773. doi:10.​1158/​1078-0432.​CCR-15-2477.CrossRef
14.
15.
go back to reference Lim, E., Vaillant, F., Wu, D., Forrest, N. C., Pal, B., Hart, A. H., et al. (2009). Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nature Medicine, 15(8), 907–913. doi:10.1038/nm.2000.PubMedCrossRef Lim, E., Vaillant, F., Wu, D., Forrest, N. C., Pal, B., Hart, A. H., et al. (2009). Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nature Medicine, 15(8), 907–913. doi:10.​1038/​nm.​2000.PubMedCrossRef
16.
go back to reference Li, X., Lewis, M. T., Huang, J., Gutierrez, C., Osborne, C. K., Wu, M. F., et al. (2008). Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. [Research support, N.I.H., extramural research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S.]. Journal of the National Cancer Institute, 100(9), 672–679. doi:10.1093/jnci/djn123.PubMedCrossRef Li, X., Lewis, M. T., Huang, J., Gutierrez, C., Osborne, C. K., Wu, M. F., et al. (2008). Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. [Research support, N.I.H., extramural research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S.]. Journal of the National Cancer Institute, 100(9), 672–679. doi:10.​1093/​jnci/​djn123.PubMedCrossRef
17.
go back to reference Banerji, S., Cibulskis, K., Rangel-Escareno, C., Brown, K. K., Carter, S. L., Frederick, A. M., et al. (2012). Sequence analysis of mutations and translocations across breast cancer subtypes. [Research support, N.I.H., extramural research support, non-U.S. Gov’t]. Nature, 486(7403), 405–409. doi:10.1038/nature11154.PubMedPubMedCentralCrossRef Banerji, S., Cibulskis, K., Rangel-Escareno, C., Brown, K. K., Carter, S. L., Frederick, A. M., et al. (2012). Sequence analysis of mutations and translocations across breast cancer subtypes. [Research support, N.I.H., extramural research support, non-U.S. Gov’t]. Nature, 486(7403), 405–409. doi:10.​1038/​nature11154.PubMedPubMedCentralCrossRef
18.
go back to reference Curtis, C., Shah, S. P., Chin, S. F., Turashvili, G., Rueda, O. M., Dunning, M. J., et al. (2012). The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. [Research support, N.I.H., extramural research support, non-U.S. Gov’t]. Nature, 486(7403), 346–352. doi:10.1038/nature10983.PubMedPubMedCentral Curtis, C., Shah, S. P., Chin, S. F., Turashvili, G., Rueda, O. M., Dunning, M. J., et al. (2012). The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. [Research support, N.I.H., extramural research support, non-U.S. Gov’t]. Nature, 486(7403), 346–352. doi:10.​1038/​nature10983.PubMedPubMedCentral
19.
go back to reference Network, T. C. G. A. (2012). Comprehensive molecular portraits of human breast tumours. [Research support, N.I.H., extramural research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S.]. Nature, 490(7418), 61–70. doi:10.1038/nature11412.CrossRef Network, T. C. G. A. (2012). Comprehensive molecular portraits of human breast tumours. [Research support, N.I.H., extramural research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S.]. Nature, 490(7418), 61–70. doi:10.​1038/​nature11412.CrossRef
20.
go back to reference Shah, S. P., Roth, A., Goya, R., Oloumi, A., Ha, G., Zhao, Y., et al. (2012). The clonal and mutational evolution spectrum of primary triple-negative breast cancers. [Research support, N.I.H., extramural research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S.]. Nature, 486(7403), 395–399. doi:10.1038/nature10933.PubMed Shah, S. P., Roth, A., Goya, R., Oloumi, A., Ha, G., Zhao, Y., et al. (2012). The clonal and mutational evolution spectrum of primary triple-negative breast cancers. [Research support, N.I.H., extramural research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S.]. Nature, 486(7403), 395–399. doi:10.​1038/​nature10933.PubMed
21.
go back to reference Stephens, P. J., Tarpey, P. S., Davies, H., Van Loo, P., Greenman, C., Wedge, D. C., et al. (2012). The landscape of cancer genes and mutational processes in breast cancer. [Research support, N.I.H., extramural research support, non-U.S. Gov’t]. Nature, 486(7403), 400–404. doi:10.1038/nature11017.PubMedPubMedCentral Stephens, P. J., Tarpey, P. S., Davies, H., Van Loo, P., Greenman, C., Wedge, D. C., et al. (2012). The landscape of cancer genes and mutational processes in breast cancer. [Research support, N.I.H., extramural research support, non-U.S. Gov’t]. Nature, 486(7403), 400–404. doi:10.​1038/​nature11017.PubMedPubMedCentral
22.
go back to reference Pereira, B., Chin, S. F., Rueda, O. M., Vollan, H. K., Provenzano, E., Bardwell, H. A., et al. (2016). Erratum: the somatic mutation profiles of 2,433 breast cancers refine their genomic and transcriptomic landscapes. Nature Communications, 7, 11908. doi:10.1038/ncomms11908.PubMedPubMedCentralCrossRef Pereira, B., Chin, S. F., Rueda, O. M., Vollan, H. K., Provenzano, E., Bardwell, H. A., et al. (2016). Erratum: the somatic mutation profiles of 2,433 breast cancers refine their genomic and transcriptomic landscapes. Nature Communications, 7, 11908. doi:10.​1038/​ncomms11908.PubMedPubMedCentralCrossRef
23.
go back to reference Pereira, B., Chin, S. F., Rueda, O. M., Vollan, H. K., Provenzano, E., Bardwell, H. A., et al. (2016). The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes. Nature Communications, 7, 11479. doi:10.1038/ncomms11479.PubMedPubMedCentralCrossRef Pereira, B., Chin, S. F., Rueda, O. M., Vollan, H. K., Provenzano, E., Bardwell, H. A., et al. (2016). The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes. Nature Communications, 7, 11479. doi:10.​1038/​ncomms11479.PubMedPubMedCentralCrossRef
26.
go back to reference Le Du, F., Eckhardt, B. L., Lim, B., Litton, J. K., Moulder, S., Meric-Bernstam, F., et al. (2015). Is the future of personalized therapy in triple-negative breast cancer based on molecular subtype? [Research support, N.I.H., extramural research support, non-U.S. Gov’t review]. Oncotarget, 6(15), 12890–12908. doi:10.18632/oncotarget.3849.PubMedPubMedCentralCrossRef Le Du, F., Eckhardt, B. L., Lim, B., Litton, J. K., Moulder, S., Meric-Bernstam, F., et al. (2015). Is the future of personalized therapy in triple-negative breast cancer based on molecular subtype? [Research support, N.I.H., extramural research support, non-U.S. Gov’t review]. Oncotarget, 6(15), 12890–12908. doi:10.​18632/​oncotarget.​3849.PubMedPubMedCentralCrossRef
27.
go back to reference Burstein, M. D., Tsimelzon, A., Poage, G. M., Covington, K. R., Contreras, A., Fuqua, S. A., et al. (2015). Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. [Research support, N.I.H., extramural research support, non-U.S. Gov’t]. Clinical Cancer Research, 21(7), 1688–1698. doi:10.1158/1078-0432.CCR-14-0432.PubMedCrossRef Burstein, M. D., Tsimelzon, A., Poage, G. M., Covington, K. R., Contreras, A., Fuqua, S. A., et al. (2015). Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. [Research support, N.I.H., extramural research support, non-U.S. Gov’t]. Clinical Cancer Research, 21(7), 1688–1698. doi:10.​1158/​1078-0432.​CCR-14-0432.PubMedCrossRef
28.
go back to reference Abramson, V. G., Lehmann, B. D., Ballinger, T. J., & Pietenpol, J. A. (2015). Subtyping of triple-negative breast cancer: implications for therapy. [Research support, N.I.H., extramural research support, non-U.S. Gov’t review]. Cancer, 121(1), 8–16. doi:10.1002/cncr.28914.PubMedCrossRef Abramson, V. G., Lehmann, B. D., Ballinger, T. J., & Pietenpol, J. A. (2015). Subtyping of triple-negative breast cancer: implications for therapy. [Research support, N.I.H., extramural research support, non-U.S. Gov’t review]. Cancer, 121(1), 8–16. doi:10.​1002/​cncr.​28914.PubMedCrossRef
29.
go back to reference Prabhu, J. S., Korlimarla, A., Desai, K., Alexander, A., Raghavan, R., Anupama, C., et al. (2014). A majority of low (1-10%) ER positive breast cancers behave like hormone receptor negative tumors. Journal of Cancer, 5(2), 156–165. doi:10.7150/jca.7668.PubMedPubMedCentralCrossRef Prabhu, J. S., Korlimarla, A., Desai, K., Alexander, A., Raghavan, R., Anupama, C., et al. (2014). A majority of low (1-10%) ER positive breast cancers behave like hormone receptor negative tumors. Journal of Cancer, 5(2), 156–165. doi:10.​7150/​jca.​7668.PubMedPubMedCentralCrossRef
30.
go back to reference Hammond, M. E., Hayes, D. F., Dowsett, M., Allred, D. C., Hagerty, K. L., Badve, S., et al. (2010). American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. Archives of Pathology & Laboratory Medicine, 134(6), 907–922. doi:10.1043/1543-2165-134.6.907. Hammond, M. E., Hayes, D. F., Dowsett, M., Allred, D. C., Hagerty, K. L., Badve, S., et al. (2010). American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. Archives of Pathology & Laboratory Medicine, 134(6), 907–922. doi:10.​1043/​1543-2165-134.​6.​907.
32.
go back to reference Wolff, A. C., Hammond, M. E., Hicks, D. G., Dowsett, M., McShane, L. M., Allison, K. H., et al. (2014). Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. [Practice guideline]. Archives of Pathology & Laboratory Medicine, 138(2), 241–256. doi:10.5858/arpa.2013-0953-SA.CrossRef Wolff, A. C., Hammond, M. E., Hicks, D. G., Dowsett, M., McShane, L. M., Allison, K. H., et al. (2014). Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. [Practice guideline]. Archives of Pathology & Laboratory Medicine, 138(2), 241–256. doi:10.​5858/​arpa.​2013-0953-SA.CrossRef
33.
go back to reference Nowell, P. C. (1976). The clonal evolution of tumor cell populations. [Research support, U.S. Gov’t, P.H.S.]. Science, 194(4260), 23–28.PubMedCrossRef Nowell, P. C. (1976). The clonal evolution of tumor cell populations. [Research support, U.S. Gov’t, P.H.S.]. Science, 194(4260), 23–28.PubMedCrossRef
34.
go back to reference De Luca, F., Rotunno, G., Salvianti, F., Galardi, F., Pestrin, M., Gabellini, S., et al. (2016). Mutational analysis of single circulating tumor cells by next generation sequencing in metastatic breast cancer. Oncotarget. doi:10.18632/oncotarget.8431. De Luca, F., Rotunno, G., Salvianti, F., Galardi, F., Pestrin, M., Gabellini, S., et al. (2016). Mutational analysis of single circulating tumor cells by next generation sequencing in metastatic breast cancer. Oncotarget. doi:10.​18632/​oncotarget.​8431.
35.
38.
go back to reference Ha, G., Roth, A., Khattra, J., Ho, J., Yap, D., Prentice, L. M., et al. (2014). TITAN: inference of copy number architectures in clonal cell populations from tumor whole-genome sequence data. [Research support, non-U.S. Gov’t]. Genome Research, 24(11), 1881–1893. doi:10.1101/gr.180281.114.PubMedPubMedCentralCrossRef Ha, G., Roth, A., Khattra, J., Ho, J., Yap, D., Prentice, L. M., et al. (2014). TITAN: inference of copy number architectures in clonal cell populations from tumor whole-genome sequence data. [Research support, non-U.S. Gov’t]. Genome Research, 24(11), 1881–1893. doi:10.​1101/​gr.​180281.​114.PubMedPubMedCentralCrossRef
41.
go back to reference Walter, M. J., Shen, D., Ding, L., Shao, J., Koboldt, D. C., Chen, K., et al. (2012). Clonal architecture of secondary acute myeloid leukemia. [Research support, N.I.H., extramural research support, non-U.S. Gov’t]. The New England Journal of Medicine, 366(12), 1090–1098. doi:10.1056/NEJMoa1106968.PubMedPubMedCentralCrossRef Walter, M. J., Shen, D., Ding, L., Shao, J., Koboldt, D. C., Chen, K., et al. (2012). Clonal architecture of secondary acute myeloid leukemia. [Research support, N.I.H., extramural research support, non-U.S. Gov’t]. The New England Journal of Medicine, 366(12), 1090–1098. doi:10.​1056/​NEJMoa1106968.PubMedPubMedCentralCrossRef
42.
43.
go back to reference Baslan, T., Kendall, J., Rodgers, L., Cox, H., Riggs, M., Stepansky, A., et al. (2016). Corrigendum: genome-wide copy number analysis of single cells. [Published erratum]. Nature Protocols, 11(3), 616. doi:10.1038/nprot0316.616b.PubMedCrossRef Baslan, T., Kendall, J., Rodgers, L., Cox, H., Riggs, M., Stepansky, A., et al. (2016). Corrigendum: genome-wide copy number analysis of single cells. [Published erratum]. Nature Protocols, 11(3), 616. doi:10.​1038/​nprot0316.​616b.PubMedCrossRef
44.
go back to reference Eirew, P., Steif, A., Khattra, J., Ha, G., Yap, D., Farahani, H., et al. (2015). Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution. [Research support, non-U.S. Gov’t]. Nature, 518(7539), 422–426. doi:10.1038/nature13952.PubMedCrossRef Eirew, P., Steif, A., Khattra, J., Ha, G., Yap, D., Farahani, H., et al. (2015). Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution. [Research support, non-U.S. Gov’t]. Nature, 518(7539), 422–426. doi:10.​1038/​nature13952.PubMedCrossRef
45.
go back to reference Hou, Y., Song, L., Zhu, P., Zhang, B., Tao, Y., Xu, X., et al. (2012). Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. [Research support, non-U.S. Gov’t]. Cell, 148(5), 873–885. doi:10.1016/j.cell.2012.02.028.PubMedCrossRef Hou, Y., Song, L., Zhu, P., Zhang, B., Tao, Y., Xu, X., et al. (2012). Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. [Research support, non-U.S. Gov’t]. Cell, 148(5), 873–885. doi:10.​1016/​j.​cell.​2012.​02.​028.PubMedCrossRef
46.
go back to reference Navin, N., Kendall, J., Troge, J., Andrews, P., Rodgers, L., McIndoo, J., et al. (2011). Tumour evolution inferred by single-cell sequencing. [Research support, N.I.H., extramural research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S.]. Nature, 472(7341), 90–94. doi:10.1038/nature09807.PubMedPubMedCentralCrossRef Navin, N., Kendall, J., Troge, J., Andrews, P., Rodgers, L., McIndoo, J., et al. (2011). Tumour evolution inferred by single-cell sequencing. [Research support, N.I.H., extramural research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S.]. Nature, 472(7341), 90–94. doi:10.​1038/​nature09807.PubMedPubMedCentralCrossRef
47.
48.
go back to reference Wang, Y., Waters, J., Leung, M. L., Unruh, A., Roh, W., Shi, X., et al. (2014). Clonal evolution in breast cancer revealed by single nucleus genome sequencing. [Research support, N.I.H., extramural research support, non-U.S. Gov’t]. Nature, 512(7513), 155–160. doi:10.1038/nature13600.PubMedPubMedCentralCrossRef Wang, Y., Waters, J., Leung, M. L., Unruh, A., Roh, W., Shi, X., et al. (2014). Clonal evolution in breast cancer revealed by single nucleus genome sequencing. [Research support, N.I.H., extramural research support, non-U.S. Gov’t]. Nature, 512(7513), 155–160. doi:10.​1038/​nature13600.PubMedPubMedCentralCrossRef
49.
go back to reference Shah, S. P., Morin, R. D., Khattra, J., Prentice, L., Pugh, T., Burleigh, A., et al. (2009). Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature, 461(7265), 809–813. doi:10.1038/nature08489.PubMedCrossRef Shah, S. P., Morin, R. D., Khattra, J., Prentice, L., Pugh, T., Burleigh, A., et al. (2009). Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature, 461(7265), 809–813. doi:10.​1038/​nature08489.PubMedCrossRef
50.
go back to reference Campbell, P. J., Pleasance, E. D., Stephens, P. J., Dicks, E., Rance, R., Goodhead, I., et al. (2008). Subclonal phylogenetic structures in cancer revealed by ultra-deep sequencing. Proceedings of the National Academy of Sciences of the United States of America, 105(35), 13081–13086. doi:10.1073/pnas.0801523105.PubMedPubMedCentralCrossRef Campbell, P. J., Pleasance, E. D., Stephens, P. J., Dicks, E., Rance, R., Goodhead, I., et al. (2008). Subclonal phylogenetic structures in cancer revealed by ultra-deep sequencing. Proceedings of the National Academy of Sciences of the United States of America, 105(35), 13081–13086. doi:10.​1073/​pnas.​0801523105.PubMedPubMedCentralCrossRef
51.
go back to reference Marusyk, A., Tabassum, D. P., Altrock, P. M., Almendro, V., Michor, F., & Polyak, K. (2014). Non-cell-autonomous driving of tumour growth supports sub-clonal heterogeneity. [Research support, N.I.H., extramural research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S.]. Nature, 514(7520), 54–58. doi:10.1038/nature13556.PubMedPubMedCentralCrossRef Marusyk, A., Tabassum, D. P., Altrock, P. M., Almendro, V., Michor, F., & Polyak, K. (2014). Non-cell-autonomous driving of tumour growth supports sub-clonal heterogeneity. [Research support, N.I.H., extramural research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S.]. Nature, 514(7520), 54–58. doi:10.​1038/​nature13556.PubMedPubMedCentralCrossRef
52.
go back to reference Beckhove, P., Schutz, F., Diel, I. J., Solomayer, E. F., Bastert, G., Foerster, J., et al. (2003). Efficient engraftment of human primary breast cancer transplants in nonconditioned NOD/Scid mice. International Journal of Cancer, 105(4), 444–453. doi:10.1002/ijc.11125.PubMedCrossRef Beckhove, P., Schutz, F., Diel, I. J., Solomayer, E. F., Bastert, G., Foerster, J., et al. (2003). Efficient engraftment of human primary breast cancer transplants in nonconditioned NOD/Scid mice. International Journal of Cancer, 105(4), 444–453. doi:10.​1002/​ijc.​11125.PubMedCrossRef
53.
go back to reference Visonneau, S., Cesano, A., Torosian, M. H., Miller, E. J., & Santoli, D. (1998). Growth characteristics and metastatic properties of human breast cancer xenografts in immunodeficient mice. The American Journal of Pathology, 152(5), 1299–1311.PubMedPubMedCentral Visonneau, S., Cesano, A., Torosian, M. H., Miller, E. J., & Santoli, D. (1998). Growth characteristics and metastatic properties of human breast cancer xenografts in immunodeficient mice. The American Journal of Pathology, 152(5), 1299–1311.PubMedPubMedCentral
54.
56.
go back to reference McManus, M. J., & Welsch, C. W. (1980). DNA synthesis of benign human breast tumors in the untreated athymic “nude” mouse. An in vivo model to study hormonal influences on growth of human breast tissues. Cancer, 45(8), 2160–2165.PubMedCrossRef McManus, M. J., & Welsch, C. W. (1980). DNA synthesis of benign human breast tumors in the untreated athymic “nude” mouse. An in vivo model to study hormonal influences on growth of human breast tissues. Cancer, 45(8), 2160–2165.PubMedCrossRef
57.
go back to reference Murthy, M. S., Scanlon, E. F., Jelachich, M. L., Klipstein, S., & Goldschmidt, R. A. (1995). Growth and metastasis of human breast cancers in athymic nude mice. Clinical & Experimental Metastasis, 13(1), 3–15.CrossRef Murthy, M. S., Scanlon, E. F., Jelachich, M. L., Klipstein, S., & Goldschmidt, R. A. (1995). Growth and metastasis of human breast cancers in athymic nude mice. Clinical & Experimental Metastasis, 13(1), 3–15.CrossRef
58.
go back to reference Naundorf, H., Fichtner, I., Buttner, B., & Frege, J. (1992). Establishment and characterization of a new human oestradiol- and progesterone-receptor-positive mammary carcinoma serially transplantable in nude mice. Journal of Cancer Research and Clinical Oncology, 119(1), 35–40.PubMedCrossRef Naundorf, H., Fichtner, I., Buttner, B., & Frege, J. (1992). Establishment and characterization of a new human oestradiol- and progesterone-receptor-positive mammary carcinoma serially transplantable in nude mice. Journal of Cancer Research and Clinical Oncology, 119(1), 35–40.PubMedCrossRef
59.
go back to reference Noel, A., Borcy, V., Bracke, M., Gilles, C., Bernard, J., Birembaut, P., et al. (1995). Heterotransplantation of primary and established human tumour cells in nude mice. Anticancer Research, 15(1), 1–7.PubMed Noel, A., Borcy, V., Bracke, M., Gilles, C., Bernard, J., Birembaut, P., et al. (1995). Heterotransplantation of primary and established human tumour cells in nude mice. Anticancer Research, 15(1), 1–7.PubMed
60.
go back to reference Outzen, H. C., & Custer, R. P. (1975). Growth of human normal and neoplastic mammary tissues in the cleared mammary fat pad of the nude mouse. Journal of the National Cancer Institute, 55(6), 1461–1466.PubMed Outzen, H. C., & Custer, R. P. (1975). Growth of human normal and neoplastic mammary tissues in the cleared mammary fat pad of the nude mouse. Journal of the National Cancer Institute, 55(6), 1461–1466.PubMed
61.
go back to reference Rae-Venter, B., & Reid, L. M. (1980). Growth of human breast carcinomas in nude mice and subsequent establishment in tissue culture. Cancer Research, 40(1), 95–100.PubMed Rae-Venter, B., & Reid, L. M. (1980). Growth of human breast carcinomas in nude mice and subsequent establishment in tissue culture. Cancer Research, 40(1), 95–100.PubMed
62.
go back to reference Sakakibara, T., Xu, Y., Bumpers, H. L., Chen, F. A., Bankert, R. B., Arredondo, M. A., et al. (1996). Growth and metastasis of surgical specimens of human breast carcinomas in SCID mice. The Cancer Journal from Scientific American, 2(5), 291–300.PubMed Sakakibara, T., Xu, Y., Bumpers, H. L., Chen, F. A., Bankert, R. B., Arredondo, M. A., et al. (1996). Growth and metastasis of surgical specimens of human breast carcinomas in SCID mice. The Cancer Journal from Scientific American, 2(5), 291–300.PubMed
63.
go back to reference Sebesteny, A., Taylor-Papadimitriou, J., Ceriani, R., Millis, R., Schmitt, C., & Trevan, D. (1979). Primary human breast carcinomas transplantable in the nude mouse. Journal of the National Cancer Institute, 63(6), 1331–1337.PubMed Sebesteny, A., Taylor-Papadimitriou, J., Ceriani, R., Millis, R., Schmitt, C., & Trevan, D. (1979). Primary human breast carcinomas transplantable in the nude mouse. Journal of the National Cancer Institute, 63(6), 1331–1337.PubMed
64.
go back to reference Sheffield, L. G., & Welsch, C. W. (1988). Transplantation of human breast epithelia to mammary-gland-free fat-pads of athymic nude mice: influence of mammotrophic hormones on growth of breast epithelia. International Journal of Cancer, 41(5), 713–719.PubMedCrossRef Sheffield, L. G., & Welsch, C. W. (1988). Transplantation of human breast epithelia to mammary-gland-free fat-pads of athymic nude mice: influence of mammotrophic hormones on growth of breast epithelia. International Journal of Cancer, 41(5), 713–719.PubMedCrossRef
65.
go back to reference Shultz, L. D., Ishikawa, F., & Greiner, D. L. (2007). Humanized mice in translational biomedical research. [Research support, N.I.H., extramural research support, non-U.S. Gov’t review]. Nature Reviews. Immunology, 7(2), 118–130. doi:10.1038/nri2017.PubMedCrossRef Shultz, L. D., Ishikawa, F., & Greiner, D. L. (2007). Humanized mice in translational biomedical research. [Research support, N.I.H., extramural research support, non-U.S. Gov’t review]. Nature Reviews. Immunology, 7(2), 118–130. doi:10.​1038/​nri2017.PubMedCrossRef
67.
go back to reference Zhang, H., Cohen, A. L., Krishnakumar, S., Wapnir, I. L., Veeriah, S., Deng, G., et al. (2014). Patient-derived xenografts of triple-negative breast cancer reproduce molecular features of patient tumors and respond to mTOR inhibition. Breast Cancer Research, 16(2), R36. doi:10.1186/bcr3640.PubMedPubMedCentralCrossRef Zhang, H., Cohen, A. L., Krishnakumar, S., Wapnir, I. L., Veeriah, S., Deng, G., et al. (2014). Patient-derived xenografts of triple-negative breast cancer reproduce molecular features of patient tumors and respond to mTOR inhibition. Breast Cancer Research, 16(2), R36. doi:10.​1186/​bcr3640.PubMedPubMedCentralCrossRef
68.
go back to reference Marangoni, E., Vincent-Salomon, A., Auger, N., Degeorges, A., Assayag, F., de Cremoux, P., et al. (2007). A new model of patient tumor-derived breast cancer xenografts for preclinical assays. Clinical Cancer Research, 13(13), 3989–3998. doi:10.1158/1078-0432.CCR-07-0078.PubMedCrossRef Marangoni, E., Vincent-Salomon, A., Auger, N., Degeorges, A., Assayag, F., de Cremoux, P., et al. (2007). A new model of patient tumor-derived breast cancer xenografts for preclinical assays. Clinical Cancer Research, 13(13), 3989–3998. doi:10.​1158/​1078-0432.​CCR-07-0078.PubMedCrossRef
69.
go back to reference Kabos, P., Finlay-Schultz, J., Li, C., Kline, E., Finlayson, C., Wisell, J., et al. (2012). Patient-derived luminal breast cancer xenografts retain hormone receptor heterogeneity and help define unique estrogen-dependent gene signatures. Breast Cancer Research and Treatment, 135(2), 415–432. doi:10.1007/s10549-012-2164-8.PubMedCrossRef Kabos, P., Finlay-Schultz, J., Li, C., Kline, E., Finlayson, C., Wisell, J., et al. (2012). Patient-derived luminal breast cancer xenografts retain hormone receptor heterogeneity and help define unique estrogen-dependent gene signatures. Breast Cancer Research and Treatment, 135(2), 415–432. doi:10.​1007/​s10549-012-2164-8.PubMedCrossRef
70.
71.
go back to reference DeRose, Y. S., Wang, G., Lin, Y. C., Bernard, P. S., Buys, S. S., Ebbert, M. T., et al. (2011). Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nature Medicine, 17(11), 1514–1520. doi:10.1038/nm.2454.PubMedPubMedCentralCrossRef DeRose, Y. S., Wang, G., Lin, Y. C., Bernard, P. S., Buys, S. S., Ebbert, M. T., et al. (2011). Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nature Medicine, 17(11), 1514–1520. doi:10.​1038/​nm.​2454.PubMedPubMedCentralCrossRef
72.
go back to reference DeRose, Y. S., Gligorich, K. M., Wang, G., Georgelas, A., Bowman, P., Courdy, S. J., et al. (2013). Patient-derived models of human breast cancer: protocols for in vitro and in vivo applications in tumor biology and translational medicine. Curr Protoc Pharmacol, Chapter 14(Unit14), 23. doi:10.1002/0471141755.ph1423s60.PubMed DeRose, Y. S., Gligorich, K. M., Wang, G., Georgelas, A., Bowman, P., Courdy, S. J., et al. (2013). Patient-derived models of human breast cancer: protocols for in vitro and in vivo applications in tumor biology and translational medicine. Curr Protoc Pharmacol, Chapter 14(Unit14), 23. doi:10.​1002/​0471141755.​ph1423s60.PubMed
75.
go back to reference Kuperwasser, C., Chavarria, T., Wu, M., Magrane, G., Gray, J. W., Carey, L., et al. (2004). Reconstruction of functionally normal and malignant human breast tissues in mice. Proceedings of the National Academy of Sciences of the United States of America, 101(14), 4966–4971.PubMedPubMedCentralCrossRef Kuperwasser, C., Chavarria, T., Wu, M., Magrane, G., Gray, J. W., Carey, L., et al. (2004). Reconstruction of functionally normal and malignant human breast tissues in mice. Proceedings of the National Academy of Sciences of the United States of America, 101(14), 4966–4971.PubMedPubMedCentralCrossRef
76.
go back to reference Lewis, M. T. (2012). Xenograft models of the normal and malignant human breast. In X. Wang (Ed.), Translational animal models in drug discovery and development (pp. 122–138). Sharjah: Bentham Science Publishers. Lewis, M. T. (2012). Xenograft models of the normal and malignant human breast. In X. Wang (Ed.), Translational animal models in drug discovery and development (pp. 122–138). Sharjah: Bentham Science Publishers.
77.
go back to reference Whittle, J. R., Lewis, M. T., Lindeman, G. J., & Visvader, J. E. (2015). Patient-derived xenograft models of breast cancer and their predictive power. [Research support, N.I.H., extramural research support, non-U.S. Gov’t review]. Breast Cancer Research, 17, 17. doi:10.1186/s13058-015-0523-1.PubMedPubMedCentralCrossRef Whittle, J. R., Lewis, M. T., Lindeman, G. J., & Visvader, J. E. (2015). Patient-derived xenograft models of breast cancer and their predictive power. [Research support, N.I.H., extramural research support, non-U.S. Gov’t review]. Breast Cancer Research, 17, 17. doi:10.​1186/​s13058-015-0523-1.PubMedPubMedCentralCrossRef
78.
go back to reference Lum, D. H., Matsen, C., Welm, A. L., & Welm, B. E. (2012). Overview of human primary tumorgraft models: comparisons with traditional oncology preclinical models and the clinical relevance and utility of primary tumorgrafts in basic and translational oncology research. [Research support, N.I.H., extramural research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S.]. Curr Protoc Pharmacol, Chapter 14(Unit 14), 22. doi:10.1002/0471141755.ph1422s59.PubMed Lum, D. H., Matsen, C., Welm, A. L., & Welm, B. E. (2012). Overview of human primary tumorgraft models: comparisons with traditional oncology preclinical models and the clinical relevance and utility of primary tumorgrafts in basic and translational oncology research. [Research support, N.I.H., extramural research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S.]. Curr Protoc Pharmacol, Chapter 14(Unit 14), 22. doi:10.​1002/​0471141755.​ph1422s59.PubMed
81.
go back to reference Hollestelle, A., Nagel, J. H., Smid, M., Lam, S., Elstrodt, F., Wasielewski, M., et al. (2009). Distinct gene mutation profiles among luminal-type and basal-type breast cancer cell lines. Breast Cancer Research and Treatment. doi:10.1007/s10549-009-0460-8. Hollestelle, A., Nagel, J. H., Smid, M., Lam, S., Elstrodt, F., Wasielewski, M., et al. (2009). Distinct gene mutation profiles among luminal-type and basal-type breast cancer cell lines. Breast Cancer Research and Treatment. doi:10.​1007/​s10549-009-0460-8.
83.
go back to reference Bonnefoi, H., Potti, A., Delorenzi, M., Mauriac, L., Campone, M., Tubiana-Hulin, M., et al. (2007). Validation of gene signatures that predict the response of breast cancer to neoadjuvant chemotherapy: a substudy of the EORTC 10994/BIG 00-01 clinical trial. The Lancet Oncology, 8(12), 1071–1078. doi:10.1016/S1470-2045(07)70345-5.PubMedCrossRef Bonnefoi, H., Potti, A., Delorenzi, M., Mauriac, L., Campone, M., Tubiana-Hulin, M., et al. (2007). Validation of gene signatures that predict the response of breast cancer to neoadjuvant chemotherapy: a substudy of the EORTC 10994/BIG 00-01 clinical trial. The Lancet Oncology, 8(12), 1071–1078. doi:10.​1016/​S1470-2045(07)70345-5.PubMedCrossRef
84.
go back to reference Potti, A., Dressman, H. K., Bild, A., Riedel, R. F., Chan, G., Sayer, R., et al. (2006). Genomic signatures to guide the use of chemotherapeutics. Nature Medicine, 12(11), 1294–1300. doi:10.1038/nm1491.PubMedCrossRef Potti, A., Dressman, H. K., Bild, A., Riedel, R. F., Chan, G., Sayer, R., et al. (2006). Genomic signatures to guide the use of chemotherapeutics. Nature Medicine, 12(11), 1294–1300. doi:10.​1038/​nm1491.PubMedCrossRef
86.
go back to reference Liedtke, C., Wang, J., Tordai, A., Symmans, W. F., Hortobagyi, G. N., Kiesel, L., et al. (2009). Clinical evaluation of chemotherapy response predictors developed from breast cancer cell lines. Breast Cancer Research and Treatment. doi:10.1007/s10549-009-0445-7.PubMed Liedtke, C., Wang, J., Tordai, A., Symmans, W. F., Hortobagyi, G. N., Kiesel, L., et al. (2009). Clinical evaluation of chemotherapy response predictors developed from breast cancer cell lines. Breast Cancer Research and Treatment. doi:10.​1007/​s10549-009-0445-7.PubMed
87.
go back to reference Wu, M., & Robinson, M. O. (2009). Human-in-mouse breast cancer model. Cell Cycle, 8(15), 2317–2318.PubMedCrossRef Wu, M., & Robinson, M. O. (2009). Human-in-mouse breast cancer model. Cell Cycle, 8(15), 2317–2318.PubMedCrossRef
88.
91.
go back to reference Clarke, R. (1996). Human breast cancer cell line xenografts as models of breast cancer. The immunobiologies of recipient mice and the characteristics of several tumorigenic cell lines. Breast Cancer Research and Treatment, 39(1), 69–86.PubMedCrossRef Clarke, R. (1996). Human breast cancer cell line xenografts as models of breast cancer. The immunobiologies of recipient mice and the characteristics of several tumorigenic cell lines. Breast Cancer Research and Treatment, 39(1), 69–86.PubMedCrossRef
93.
go back to reference Weigelt, B., Lo, A. T., Park, C. C., Gray, J. W., & Bissell, M. J. (2009). HER2 signaling pathway activation and response of breast cancer cells to HER2-targeting agents is dependent strongly on the 3D microenvironment. Breast Cancer Research and Treatment. doi:10.1007/s10549-009-0502-2.PubMedCentral Weigelt, B., Lo, A. T., Park, C. C., Gray, J. W., & Bissell, M. J. (2009). HER2 signaling pathway activation and response of breast cancer cells to HER2-targeting agents is dependent strongly on the 3D microenvironment. Breast Cancer Research and Treatment. doi:10.​1007/​s10549-009-0502-2.PubMedCentral
94.
go back to reference Gillet, J. P., Calcagno, A. M., Varma, S., Marino, M., Green, L. J., Vora, M. I., et al. (2011). Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance. Proceedings of the National Academy of Sciences of the United States of America, 108(46), 18708–18713. doi:10.1073/pnas.1111840108.PubMedPubMedCentralCrossRef Gillet, J. P., Calcagno, A. M., Varma, S., Marino, M., Green, L. J., Vora, M. I., et al. (2011). Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance. Proceedings of the National Academy of Sciences of the United States of America, 108(46), 18708–18713. doi:10.​1073/​pnas.​1111840108.PubMedPubMedCentralCrossRef
95.
go back to reference Johnson, J. I., Decker, S., Zaharevitz, D., Rubinstein, L. V., Venditti, J. M., Schepartz, S., et al. (2001). Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. British Journal of Cancer, 84(10), 1424–1431. doi:10.1054/bjoc.2001.1796.PubMedPubMedCentralCrossRef Johnson, J. I., Decker, S., Zaharevitz, D., Rubinstein, L. V., Venditti, J. M., Schepartz, S., et al. (2001). Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. British Journal of Cancer, 84(10), 1424–1431. doi:10.​1054/​bjoc.​2001.​1796.PubMedPubMedCentralCrossRef
97.
go back to reference Hampton, O. A., Den Hollander, P., Miller, C. A., Delgado, D. A., Li, J., Coarfa, C., et al. (2009). A sequence-level map of chromosomal breakpoints in the MCF-7 breast cancer cell line yields insights into the evolution of a cancer genome. Genome Research, 19(2), 167–177. doi:10.1101/gr.080259.108.PubMedPubMedCentralCrossRef Hampton, O. A., Den Hollander, P., Miller, C. A., Delgado, D. A., Li, J., Coarfa, C., et al. (2009). A sequence-level map of chromosomal breakpoints in the MCF-7 breast cancer cell line yields insights into the evolution of a cancer genome. Genome Research, 19(2), 167–177. doi:10.​1101/​gr.​080259.​108.PubMedPubMedCentralCrossRef
99.
go back to reference du Manoir, S., Orsetti, B., Bras-Goncalves, R., Nguyen, T. T., Lasorsa, L., Boissiere, F., et al. (2014). Breast tumor PDXs are genetically plastic and correspond to a subset of aggressive cancers prone to relapse. Molecular Oncology, 8(2), 431–443. doi:10.1016/j.molonc.2013.11.010.PubMedCrossRef du Manoir, S., Orsetti, B., Bras-Goncalves, R., Nguyen, T. T., Lasorsa, L., Boissiere, F., et al. (2014). Breast tumor PDXs are genetically plastic and correspond to a subset of aggressive cancers prone to relapse. Molecular Oncology, 8(2), 431–443. doi:10.​1016/​j.​molonc.​2013.​11.​010.PubMedCrossRef
101.
go back to reference Petrillo, L. A., Wolf, D. M., Kapoun, A. M., Wang, N. J., Barczak, A., Xiao, Y., et al. (2012). Xenografts faithfully recapitulate breast cancer-specific gene expression patterns of parent primary breast tumors. Breast Cancer Research and Treatment, 135(3), 913–922. doi:10.1007/s10549-012-2226-y.PubMedCrossRef Petrillo, L. A., Wolf, D. M., Kapoun, A. M., Wang, N. J., Barczak, A., Xiao, Y., et al. (2012). Xenografts faithfully recapitulate breast cancer-specific gene expression patterns of parent primary breast tumors. Breast Cancer Research and Treatment, 135(3), 913–922. doi:10.​1007/​s10549-012-2226-y.PubMedCrossRef
102.
go back to reference Giuliano, M., Herrera, S., Christiny, P., Shaw, C., Creighton, C. J., Mitchell, T., et al. (2015). Circulating and disseminated tumor cells from breast cancer patient-derived xenograft-bearing mice as a novel model to study metastasis. [Research support, N.I.H., extramural research support, non-U.S. Gov’t]. Breast Cancer Research, 17(3). doi:10.1186/s13058-014-0508-5. Giuliano, M., Herrera, S., Christiny, P., Shaw, C., Creighton, C. J., Mitchell, T., et al. (2015). Circulating and disseminated tumor cells from breast cancer patient-derived xenograft-bearing mice as a novel model to study metastasis. [Research support, N.I.H., extramural research support, non-U.S. Gov’t]. Breast Cancer Research, 17(3). doi:10.​1186/​s13058-014-0508-5.
103.
go back to reference Powell, E., Shao, J., Yuan, Y., Chen, H. C., Cai, S., Echeverria, G. V., et al. (2016). p53 deficiency linked to B cell translocation gene 2 (BTG2) loss enhances metastatic potential by promoting tumor growth in primary and metastatic sites in patient-derived xenograft (PDX) models of triple-negative breast cancer. Breast Cancer Research, 18(1), 13. doi:10.1186/s13058-016-0673-9.PubMedPubMedCentralCrossRef Powell, E., Shao, J., Yuan, Y., Chen, H. C., Cai, S., Echeverria, G. V., et al. (2016). p53 deficiency linked to B cell translocation gene 2 (BTG2) loss enhances metastatic potential by promoting tumor growth in primary and metastatic sites in patient-derived xenograft (PDX) models of triple-negative breast cancer. Breast Cancer Research, 18(1), 13. doi:10.​1186/​s13058-016-0673-9.PubMedPubMedCentralCrossRef
104.
go back to reference Flanagan, S. P. (1966). ‘Nude’, a new hairless gene with pleiotropic effects in the mouse. Genetical Research, 8(3), 295–309.PubMedCrossRef Flanagan, S. P. (1966). ‘Nude’, a new hairless gene with pleiotropic effects in the mouse. Genetical Research, 8(3), 295–309.PubMedCrossRef
106.
go back to reference Wortis, H. H., Nehlsen, S., & Owen, J. J. (1971). Abnormal development of the thymus in “nude” mice. The Journal of Experimental Medicine, 134(3 Pt 1), 681–692.PubMedPubMedCentralCrossRef Wortis, H. H., Nehlsen, S., & Owen, J. J. (1971). Abnormal development of the thymus in “nude” mice. The Journal of Experimental Medicine, 134(3 Pt 1), 681–692.PubMedPubMedCentralCrossRef
107.
go back to reference Kaestner, K. H., Knochel, W., & Martinez, D. E. (2000). Unified nomenclature for the winged helix/forkhead transcription factors. Genes & Development, 14(2), 142–146. Kaestner, K. H., Knochel, W., & Martinez, D. E. (2000). Unified nomenclature for the winged helix/forkhead transcription factors. Genes & Development, 14(2), 142–146.
108.
go back to reference Nehls, M., Pfeifer, D., Schorpp, M., Hedrich, H., & Boehm, T. (1994). New member of the winged-helix protein family disrupted in mouse and rat nude mutations. Nature, 372(6501), 103–107. doi:10.1038/372103a0.PubMedCrossRef Nehls, M., Pfeifer, D., Schorpp, M., Hedrich, H., & Boehm, T. (1994). New member of the winged-helix protein family disrupted in mouse and rat nude mutations. Nature, 372(6501), 103–107. doi:10.​1038/​372103a0.PubMedCrossRef
109.
go back to reference Osborne, C. K., Hobbs, K., & Clark, G. M. (1985). Effect of estrogens and antiestrogens on growth of human breast cancer cells in athymic nude mice. Cancer Research, 45(2), 584–590.PubMed Osborne, C. K., Hobbs, K., & Clark, G. M. (1985). Effect of estrogens and antiestrogens on growth of human breast cancer cells in athymic nude mice. Cancer Research, 45(2), 584–590.PubMed
110.
go back to reference Seibert, K., Shafie, S. M., Triche, T. J., Whang-Peng, J. J., O’Brien, S. J., Toney, J. H., et al. (1983). Clonal variation of MCF-7 breast cancer cells in vitro and in athymic nude mice. Cancer Research, 43(5), 2223–2239.PubMed Seibert, K., Shafie, S. M., Triche, T. J., Whang-Peng, J. J., O’Brien, S. J., Toney, J. H., et al. (1983). Clonal variation of MCF-7 breast cancer cells in vitro and in athymic nude mice. Cancer Research, 43(5), 2223–2239.PubMed
111.
go back to reference Popnikolov, N. K., Yang, J., Guzman, R. C., Swanson, S. M., Thordarson, G., Collins, G., et al. (1995). In vivo growth stimulation of collagen gel embedded normal human and mouse primary mammary epithelial cells. Journal of Cellular Physiology, 163(1), 51–60. doi:10.1002/jcp.1041630107.PubMedCrossRef Popnikolov, N. K., Yang, J., Guzman, R. C., Swanson, S. M., Thordarson, G., Collins, G., et al. (1995). In vivo growth stimulation of collagen gel embedded normal human and mouse primary mammary epithelial cells. Journal of Cellular Physiology, 163(1), 51–60. doi:10.​1002/​jcp.​1041630107.PubMedCrossRef
112.
go back to reference Soule, H. D., & McGrath, C. M. (1980). Estrogen responsive proliferation of clonal human breast carcinoma cells in athymic mice. Cancer Letters, 10(2), 177–189.PubMedCrossRef Soule, H. D., & McGrath, C. M. (1980). Estrogen responsive proliferation of clonal human breast carcinoma cells in athymic mice. Cancer Letters, 10(2), 177–189.PubMedCrossRef
113.
go back to reference McAuliffe, P. F., Evans, K. W., Akcakanat, A., Chen, K., Zheng, X., Zhao, H., et al. (2016). Correction: ability to generate patient-derived breast cancer xenografts is enhanced in chemoresistant disease and predicts poor patient outcomes. [published erratum]. PloS One, 11(3), e0151121. doi:10.1371/journal.pone.0151121.PubMedPubMedCentralCrossRef McAuliffe, P. F., Evans, K. W., Akcakanat, A., Chen, K., Zheng, X., Zhao, H., et al. (2016). Correction: ability to generate patient-derived breast cancer xenografts is enhanced in chemoresistant disease and predicts poor patient outcomes. [published erratum]. PloS One, 11(3), e0151121. doi:10.​1371/​journal.​pone.​0151121.PubMedPubMedCentralCrossRef
114.
go back to reference McAuliffe, P. F., Evans, K. W., Akcakanat, A., Chen, K., Zheng, X., Zhao, H., et al. (2015). Ability to generate patient-derived breast cancer xenografts is enhanced in chemoresistant disease and predicts poor patient outcomes. [Research support, N.I.H., extramural research support, non-U.S. Gov’t]. PloS One, 10(9), e0136851. doi:10.1371/journal.pone.0136851.PubMedPubMedCentralCrossRef McAuliffe, P. F., Evans, K. W., Akcakanat, A., Chen, K., Zheng, X., Zhao, H., et al. (2015). Ability to generate patient-derived breast cancer xenografts is enhanced in chemoresistant disease and predicts poor patient outcomes. [Research support, N.I.H., extramural research support, non-U.S. Gov’t]. PloS One, 10(9), e0136851. doi:10.​1371/​journal.​pone.​0136851.PubMedPubMedCentralCrossRef
115.
go back to reference Mombaerts, P., Iacomini, J., Johnson, R. S., Herrup, K., Tonegawa, S., & Papaioannou, V. E. (1992). RAG-1-deficient mice have no mature B and T lymphocytes. Cell, 68(5), 869–877.PubMedCrossRef Mombaerts, P., Iacomini, J., Johnson, R. S., Herrup, K., Tonegawa, S., & Papaioannou, V. E. (1992). RAG-1-deficient mice have no mature B and T lymphocytes. Cell, 68(5), 869–877.PubMedCrossRef
116.
go back to reference Wunderlich, M., Mizukawa, B., Chou, F. S., Sexton, C., Shrestha, M., Saunthararajah, Y., et al. (2013). AML cells are differentially sensitive to chemotherapy treatment in a human xenograft model. [Research support, N.I.H., extramural research support, U.S. Gov’t, non-P.H.S.]. Blood, 121(12), e90–e97. doi:10.1182/blood-2012-10-464677.PubMedPubMedCentralCrossRef Wunderlich, M., Mizukawa, B., Chou, F. S., Sexton, C., Shrestha, M., Saunthararajah, Y., et al. (2013). AML cells are differentially sensitive to chemotherapy treatment in a human xenograft model. [Research support, N.I.H., extramural research support, U.S. Gov’t, non-P.H.S.]. Blood, 121(12), e90–e97. doi:10.​1182/​blood-2012-10-464677.PubMedPubMedCentralCrossRef
117.
go back to reference Bosma, G. C., Fried, M., Custer, R. P., Carroll, A., Gibson, D. M., & Bosma, M. J. (1988). Evidence of functional lymphocytes in some (leaky) scid mice. The Journal of Experimental Medicine, 167(3), 1016–1033.PubMedCrossRef Bosma, G. C., Fried, M., Custer, R. P., Carroll, A., Gibson, D. M., & Bosma, M. J. (1988). Evidence of functional lymphocytes in some (leaky) scid mice. The Journal of Experimental Medicine, 167(3), 1016–1033.PubMedCrossRef
118.
go back to reference Bosma, G. C., Custer, R. P., & Bosma, M. J. (1983). A severe combined immunodeficiency mutation in the mouse. Nature, 301(5900), 527–530.PubMedCrossRef Bosma, G. C., Custer, R. P., & Bosma, M. J. (1983). A severe combined immunodeficiency mutation in the mouse. Nature, 301(5900), 527–530.PubMedCrossRef
119.
go back to reference Blunt, T., Finnie, N. J., Taccioli, G. E., Smith, G. C., Demengeot, J., Gottlieb, T. M., et al. (1995). Defective DNA-dependent protein kinase activity is linked to V(D)J recombination and DNA repair defects associated with the murine scid mutation. Cell, 80(5), 813–823.PubMedCrossRef Blunt, T., Finnie, N. J., Taccioli, G. E., Smith, G. C., Demengeot, J., Gottlieb, T. M., et al. (1995). Defective DNA-dependent protein kinase activity is linked to V(D)J recombination and DNA repair defects associated with the murine scid mutation. Cell, 80(5), 813–823.PubMedCrossRef
120.
go back to reference Nonoyama, S., Smith, F. O., Bernstein, I. D., & Ochs, H. D. (1993). Strain-dependent leakiness of mice with severe combined immune deficiency. Journal of Immunology, 150(9), 3817–3824. Nonoyama, S., Smith, F. O., Bernstein, I. D., & Ochs, H. D. (1993). Strain-dependent leakiness of mice with severe combined immune deficiency. Journal of Immunology, 150(9), 3817–3824.
121.
go back to reference Custer, R. P., Bosma, G. C., & Bosma, M. J. (1985). Severe combined immunodeficiency (SCID) in the mouse. Pathology, reconstitution, neoplasms. [Research support, non-U.S. Gov’t research support, U.S. Gov’t, P.H.S.]. The American Journal of Pathology, 120(3), 464–477.PubMedPubMedCentral Custer, R. P., Bosma, G. C., & Bosma, M. J. (1985). Severe combined immunodeficiency (SCID) in the mouse. Pathology, reconstitution, neoplasms. [Research support, non-U.S. Gov’t research support, U.S. Gov’t, P.H.S.]. The American Journal of Pathology, 120(3), 464–477.PubMedPubMedCentral
122.
go back to reference Christianson, S. W., Greiner, D. L., Schweitzer, I. B., Gott, B., Beamer, G. L., Schweitzer, P. A., et al. (1996). Role of natural killer cells on engraftment of human lymphoid cells and on metastasis of human T-lymphoblastoid leukemia cells in C57BL/6J-scid mice and in C57BL/6J-scid bg mice. Cellular Immunology, 171(2), 186–199. doi:10.1006/cimm.1996.0193.PubMedCrossRef Christianson, S. W., Greiner, D. L., Schweitzer, I. B., Gott, B., Beamer, G. L., Schweitzer, P. A., et al. (1996). Role of natural killer cells on engraftment of human lymphoid cells and on metastasis of human T-lymphoblastoid leukemia cells in C57BL/6J-scid mice and in C57BL/6J-scid bg mice. Cellular Immunology, 171(2), 186–199. doi:10.​1006/​cimm.​1996.​0193.PubMedCrossRef
123.
go back to reference Greiner, D. L., Shultz, L. D., Yates, J., Appel, M. C., Perdrizet, G., Hesselton, R. M., et al. (1995). Improved engraftment of human spleen cells in NOD/LtSz-scid/scid mice as compared with C.B-17-scid/scid mice. The American Journal of Pathology, 146(4), 888–902.PubMedPubMedCentral Greiner, D. L., Shultz, L. D., Yates, J., Appel, M. C., Perdrizet, G., Hesselton, R. M., et al. (1995). Improved engraftment of human spleen cells in NOD/LtSz-scid/scid mice as compared with C.B-17-scid/scid mice. The American Journal of Pathology, 146(4), 888–902.PubMedPubMedCentral
124.
go back to reference Hudson, W. A., Li, Q., Le, C., & Kersey, J. H. (1998). Xenotransplantation of human lymphoid malignancies is optimized in mice with multiple immunologic defects. Leukemia, 12(12), 2029–2033.PubMedCrossRef Hudson, W. A., Li, Q., Le, C., & Kersey, J. H. (1998). Xenotransplantation of human lymphoid malignancies is optimized in mice with multiple immunologic defects. Leukemia, 12(12), 2029–2033.PubMedCrossRef
125.
go back to reference Dewan, M. Z., Terunuma, H., Ahmed, S., Ohba, K., Takada, M., Tanaka, Y., et al. (2005). Natural killer cells in breast cancer cell growth and metastasis in SCID mice. Biomedicine & Pharmacotherapy, 59(Suppl 2), S375–S379.CrossRef Dewan, M. Z., Terunuma, H., Ahmed, S., Ohba, K., Takada, M., Tanaka, Y., et al. (2005). Natural killer cells in breast cancer cell growth and metastasis in SCID mice. Biomedicine & Pharmacotherapy, 59(Suppl 2), S375–S379.CrossRef
126.
go back to reference Roder, J., & Duwe, A. (1979). The beige mutation in the mouse selectively impairs natural killer cell function. Nature, 278(5703), 451–453.PubMedCrossRef Roder, J., & Duwe, A. (1979). The beige mutation in the mouse selectively impairs natural killer cell function. Nature, 278(5703), 451–453.PubMedCrossRef
127.
go back to reference Xia, Z., Taylor, P. R., Locklin, R. M., Gordon, S., Cui, Z., & Triffitt, J. T. (2006). Innate immune response to human bone marrow fibroblastic cell implantation in CB17 scid/beige mice. Journal of Cellular Biochemistry, 98(4), 966–980.PubMedCrossRef Xia, Z., Taylor, P. R., Locklin, R. M., Gordon, S., Cui, Z., & Triffitt, J. T. (2006). Innate immune response to human bone marrow fibroblastic cell implantation in CB17 scid/beige mice. Journal of Cellular Biochemistry, 98(4), 966–980.PubMedCrossRef
128.
go back to reference Gouon-Evans, V., Lin, E. Y., & Pollard, J. W. (2002). Requirement of macrophages and eosinophils and their cytokines/chemokines for mammary gland development. Breast Cancer Research, 4(4), 155–164.PubMedPubMedCentralCrossRef Gouon-Evans, V., Lin, E. Y., & Pollard, J. W. (2002). Requirement of macrophages and eosinophils and their cytokines/chemokines for mammary gland development. Breast Cancer Research, 4(4), 155–164.PubMedPubMedCentralCrossRef
129.
go back to reference Gouon-Evans, V., Rothenberg, M. E., & Pollard, J. W. (2000). Postnatal mammary gland development requires macrophages and eosinophils. Development, 127(11), 2269–2282.PubMed Gouon-Evans, V., Rothenberg, M. E., & Pollard, J. W. (2000). Postnatal mammary gland development requires macrophages and eosinophils. Development, 127(11), 2269–2282.PubMed
131.
go back to reference Iyer, V., Klebba, I., McCready, J., Arendt, L. M., Betancur-Boissel, M., Wu, M. F., et al. (2012). Estrogen promotes ER-negative tumor growth and angiogenesis through mobilization of bone marrow-derived monocytes. Cancer Research, 72(11), 2705–2713. doi:10.1158/0008-5472.CAN-11-3287.PubMedCrossRef Iyer, V., Klebba, I., McCready, J., Arendt, L. M., Betancur-Boissel, M., Wu, M. F., et al. (2012). Estrogen promotes ER-negative tumor growth and angiogenesis through mobilization of bone marrow-derived monocytes. Cancer Research, 72(11), 2705–2713. doi:10.​1158/​0008-5472.​CAN-11-3287.PubMedCrossRef
132.
go back to reference Shultz, L. D., Schweitzer, P. A., Christianson, S. W., Gott, B., Schweitzer, I. B., Tennent, B., et al. (1995). Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. Journal of Immunology, 154(1), 180–191. Shultz, L. D., Schweitzer, P. A., Christianson, S. W., Gott, B., Schweitzer, I. B., Tennent, B., et al. (1995). Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. Journal of Immunology, 154(1), 180–191.
133.
go back to reference Pflumio, F., Izac, B., Katz, A., Shultz, L. D., Vainchenker, W., & Coulombel, L. (1996). Phenotype and function of human hematopoietic cells engrafting immune-deficient CB17-severe combined immunodeficiency mice and nonobese diabetic-severe combined immunodeficiency mice after transplantation of human cord blood mononuclear cells. Blood, 88(10), 3731–3740.PubMed Pflumio, F., Izac, B., Katz, A., Shultz, L. D., Vainchenker, W., & Coulombel, L. (1996). Phenotype and function of human hematopoietic cells engrafting immune-deficient CB17-severe combined immunodeficiency mice and nonobese diabetic-severe combined immunodeficiency mice after transplantation of human cord blood mononuclear cells. Blood, 88(10), 3731–3740.PubMed
134.
go back to reference Cashman, J. D., Lapidot, T., Wang, J. C., Doedens, M., Shultz, L. D., Lansdorp, P., et al. (1997). Kinetic evidence of the regeneration of multilineage hematopoiesis from primitive cells in normal human bone marrow transplanted into immunodeficient mice. Blood, 89(12), 4307–4316.PubMed Cashman, J. D., Lapidot, T., Wang, J. C., Doedens, M., Shultz, L. D., Lansdorp, P., et al. (1997). Kinetic evidence of the regeneration of multilineage hematopoiesis from primitive cells in normal human bone marrow transplanted into immunodeficient mice. Blood, 89(12), 4307–4316.PubMed
135.
go back to reference Sikora, M. J., Cooper, K. L., Bahreini, A., Luthra, S., Wang, G., Chandran, U. R., et al. (2014). Invasive lobular carcinoma cell lines are characterized by unique estrogen-mediated gene expression patterns and altered tamoxifen response. [Research support, N.I.H., extramural research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S.]. Cancer Research, 74(5), 1463–1474. doi:10.1158/0008-5472.CAN-13-2779.PubMedPubMedCentralCrossRef Sikora, M. J., Cooper, K. L., Bahreini, A., Luthra, S., Wang, G., Chandran, U. R., et al. (2014). Invasive lobular carcinoma cell lines are characterized by unique estrogen-mediated gene expression patterns and altered tamoxifen response. [Research support, N.I.H., extramural research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S.]. Cancer Research, 74(5), 1463–1474. doi:10.​1158/​0008-5472.​CAN-13-2779.PubMedPubMedCentralCrossRef
136.
go back to reference Eyre, R., Alferez, D. G., & Clarke, R. B. (2016). Journal of Mammary Gland Biology and Neoplasia, (in press). Eyre, R., Alferez, D. G., & Clarke, R. B. (2016). Journal of Mammary Gland Biology and Neoplasia, (in press).
137.
go back to reference Shultz, L. D., Lyons, B. L., Burzenski, L. M., Gott, B., Chen, X., Chaleff, S., et al. (2005). Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. Journal of Immunology, 174(10), 6477–6489.CrossRef Shultz, L. D., Lyons, B. L., Burzenski, L. M., Gott, B., Chen, X., Chaleff, S., et al. (2005). Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. Journal of Immunology, 174(10), 6477–6489.CrossRef
138.
go back to reference Ito, M., Hiramatsu, H., Kobayashi, K., Suzue, K., Kawahata, M., Hioki, K., et al. (2002). NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood, 100(9), 3175–3182. doi:10.1182/blood-2001-12-0207.PubMedCrossRef Ito, M., Hiramatsu, H., Kobayashi, K., Suzue, K., Kawahata, M., Hioki, K., et al. (2002). NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood, 100(9), 3175–3182. doi:10.​1182/​blood-2001-12-0207.PubMedCrossRef
139.
go back to reference Oakes, S. R., Vaillant, F., Lim, E., Lee, L., Breslin, K., Feleppa, F., et al. (2012). Sensitization of BCL-2-expressing breast tumors to chemotherapy by the BH3 mimetic ABT-737. [Research support, non-U.S. Gov’t]. Proceedings of the National Academy of Sciences of the United States of America, 109(8), 2766–2771. doi:10.1073/pnas.1104778108.PubMedCrossRef Oakes, S. R., Vaillant, F., Lim, E., Lee, L., Breslin, K., Feleppa, F., et al. (2012). Sensitization of BCL-2-expressing breast tumors to chemotherapy by the BH3 mimetic ABT-737. [Research support, non-U.S. Gov’t]. Proceedings of the National Academy of Sciences of the United States of America, 109(8), 2766–2771. doi:10.​1073/​pnas.​1104778108.PubMedCrossRef
140.
go back to reference Nolan, E., Vaillant, F., Branstetter, D., Pal, B., Giner, G., Whitehead, L., et al. (2016). RANK ligand as a potential target for breast cancer prevention in BRCA1-mutation carriers. Nature Medicine, 22(8), 933–939. doi:10.1038/nm.4118.PubMedCrossRef Nolan, E., Vaillant, F., Branstetter, D., Pal, B., Giner, G., Whitehead, L., et al. (2016). RANK ligand as a potential target for breast cancer prevention in BRCA1-mutation carriers. Nature Medicine, 22(8), 933–939. doi:10.​1038/​nm.​4118.PubMedCrossRef
141.
go back to reference Richard, E., Grellety, T., Velasco, V., MacGrogan, G., Bonnefoi, H., & Iggo, R. (2016). The mammary ducts create a favourable microenvironment for xenografting of luminal and molecular apocrine breast tumours. The Journal of Pathology. doi:10.1002/path.4772.PubMed Richard, E., Grellety, T., Velasco, V., MacGrogan, G., Bonnefoi, H., & Iggo, R. (2016). The mammary ducts create a favourable microenvironment for xenografting of luminal and molecular apocrine breast tumours. The Journal of Pathology. doi:10.​1002/​path.​4772.PubMed
142.
go back to reference McDermott, S. P., Eppert, K., Lechman, E. R., Doedens, M., & Dick, J. E. (2010). Comparison of human cord blood engraftment between immunocompromised mouse strains. [Comparative study research support, non-U.S. Gov’t]. Blood, 116(2), 193–200. doi:10.1182/blood-2010-02-271841.PubMedCrossRef McDermott, S. P., Eppert, K., Lechman, E. R., Doedens, M., & Dick, J. E. (2010). Comparison of human cord blood engraftment between immunocompromised mouse strains. [Comparative study research support, non-U.S. Gov’t]. Blood, 116(2), 193–200. doi:10.​1182/​blood-2010-02-271841.PubMedCrossRef
143.
go back to reference Bondarenko, G., Ugolkov, A., Rohan, S., Kulesza, P., Dubrovskyi, O., Gursel, D., et al. (2015). Patient-derived tumor xenografts are susceptible to formation of human lymphocytic tumors. [Research support, N.I.H., extramural research support, non-U.S. Gov’t]. Neoplasia, 17(9), 735–741. doi:10.1016/j.neo.2015.09.004.PubMedPubMedCentralCrossRef Bondarenko, G., Ugolkov, A., Rohan, S., Kulesza, P., Dubrovskyi, O., Gursel, D., et al. (2015). Patient-derived tumor xenografts are susceptible to formation of human lymphocytic tumors. [Research support, N.I.H., extramural research support, non-U.S. Gov’t]. Neoplasia, 17(9), 735–741. doi:10.​1016/​j.​neo.​2015.​09.​004.PubMedPubMedCentralCrossRef
144.
go back to reference Wetterauer, C., Vlajnic, T., Schuler, J., Gsponer, J. R., Thalmann, G. N., Cecchini, M., et al. (2015). Early development of human lymphomas in a prostate cancer xenograft program using triple knock-out immunocompromised mice. [Research support, non-U.S. Gov’t]. The Prostate, 75(6), 585–592. doi:10.1002/pros.22939.PubMedCrossRef Wetterauer, C., Vlajnic, T., Schuler, J., Gsponer, J. R., Thalmann, G. N., Cecchini, M., et al. (2015). Early development of human lymphomas in a prostate cancer xenograft program using triple knock-out immunocompromised mice. [Research support, non-U.S. Gov’t]. The Prostate, 75(6), 585–592. doi:10.​1002/​pros.​22939.PubMedCrossRef
145.
go back to reference Moon, H. G., Oh, K., Lee, J., Lee, M., Kim, J. Y., Yoo, T. K., et al. (2015). Prognostic and functional importance of the engraftment-associated genes in the patient-derived xenograft models of triple-negative breast cancers. [Research support, non-U.S. Gov’t]. Breast Cancer Research and Treatment, 154(1), 13–22. doi:10.1007/s10549-015-3585-y.PubMedCrossRef Moon, H. G., Oh, K., Lee, J., Lee, M., Kim, J. Y., Yoo, T. K., et al. (2015). Prognostic and functional importance of the engraftment-associated genes in the patient-derived xenograft models of triple-negative breast cancers. [Research support, non-U.S. Gov’t]. Breast Cancer Research and Treatment, 154(1), 13–22. doi:10.​1007/​s10549-015-3585-y.PubMedCrossRef
146.
go back to reference Gullino, P. M. (1977). Considerations on the preneoplastic lesions of the mammary gland. The American Journal of Pathology, 89(2), 413–430.PubMedPubMedCentral Gullino, P. M. (1977). Considerations on the preneoplastic lesions of the mammary gland. The American Journal of Pathology, 89(2), 413–430.PubMedPubMedCentral
147.
go back to reference Brem, S. S., Jensen, H. M., & Gullino, P. M. (1978). Angiogenesis as a marker of preneoplastic lesions of the human breast. Cancer, 41, 239–244.PubMedCrossRef Brem, S. S., Jensen, H. M., & Gullino, P. M. (1978). Angiogenesis as a marker of preneoplastic lesions of the human breast. Cancer, 41, 239–244.PubMedCrossRef
148.
go back to reference Bogden, A. E., Haskell, P. M., LePage, D. J., Kelton, D. E., Cobb, W. R., & Esber, H. J. (1979). Growth of human tumor xenografts implanted under the renal capsule of normal immunocompetent mice. Experimental Cell Biology, 47(4), 281–293.PubMed Bogden, A. E., Haskell, P. M., LePage, D. J., Kelton, D. E., Cobb, W. R., & Esber, H. J. (1979). Growth of human tumor xenografts implanted under the renal capsule of normal immunocompetent mice. Experimental Cell Biology, 47(4), 281–293.PubMed
149.
go back to reference Bogden, A. E., Kelton, D. E., Cobb, W. B., & Esber, H. J.. 1978. A rapid screening method for testing chemotherapeutic agents against human tumor xenografts. In Houchens, & Ovejera (Eds.), Symposium on the use of athymic (nude) mice in cancer research, (pp. 231). New York. Bogden, A. E., Kelton, D. E., Cobb, W. B., & Esber, H. J.. 1978. A rapid screening method for testing chemotherapeutic agents against human tumor xenografts. In Houchens, & Ovejera (Eds.), Symposium on the use of athymic (nude) mice in cancer research, (pp. 231). New York.
150.
go back to reference Aamdal, S., Fodstad, O., Nesland, J. M., & Pihl, A. (1985). Characteristics of human tumour xenografts transplanted under the renal capsule of immunocompetent mice. British Journal of Cancer, 51(3), 347–356.PubMedPubMedCentralCrossRef Aamdal, S., Fodstad, O., Nesland, J. M., & Pihl, A. (1985). Characteristics of human tumour xenografts transplanted under the renal capsule of immunocompetent mice. British Journal of Cancer, 51(3), 347–356.PubMedPubMedCentralCrossRef
151.
go back to reference Eirew, P., Stingl, J., Raouf, A., Turashvili, G., Aparicio, S., Emerman, J. T., et al. (2008). A method for quantifying normal human mammary epithelial stem cells with in vivo regenerative ability. Nature Medicine, 14(12), 1384–1389. doi:10.1038/nm.1791.PubMedCrossRef Eirew, P., Stingl, J., Raouf, A., Turashvili, G., Aparicio, S., Emerman, J. T., et al. (2008). A method for quantifying normal human mammary epithelial stem cells with in vivo regenerative ability. Nature Medicine, 14(12), 1384–1389. doi:10.​1038/​nm.​1791.PubMedCrossRef
152.
go back to reference DeOme, K. B., Faulkin, L. J. J., & Bern, H. (1958). Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Research, 19, 515–520. DeOme, K. B., Faulkin, L. J. J., & Bern, H. (1958). Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Research, 19, 515–520.
153.
go back to reference Behbod, F., Kittrell, F. S., LaMarca, H., Edwards, D., Kerbawy, S., Heestand, J. C., et al. (2009). An intraductal human-in-mouse transplantation model mimics the subtypes of ductal carcinoma in situ. Breast Cancer Research, 11(5), R66. doi:10.1186/bcr2358.PubMedPubMedCentralCrossRef Behbod, F., Kittrell, F. S., LaMarca, H., Edwards, D., Kerbawy, S., Heestand, J. C., et al. (2009). An intraductal human-in-mouse transplantation model mimics the subtypes of ductal carcinoma in situ. Breast Cancer Research, 11(5), R66. doi:10.​1186/​bcr2358.PubMedPubMedCentralCrossRef
154.
go back to reference Sflomos, G., Dormoy, V., Metsalu, T., Jeitziner, R., Battista, L., Scabia, V., et al. (2016). A preclinical model for ERalpha-positive breast cancer points to the epithelial microenvironment as determinant of luminal phenotype and hormone response. [Research support, non-U.S. Gov’t]. Cancer Cell, 29(3), 407–422. doi:10.1016/j.ccell.2016.02.002.PubMedCrossRef Sflomos, G., Dormoy, V., Metsalu, T., Jeitziner, R., Battista, L., Scabia, V., et al. (2016). A preclinical model for ERalpha-positive breast cancer points to the epithelial microenvironment as determinant of luminal phenotype and hormone response. [Research support, non-U.S. Gov’t]. Cancer Cell, 29(3), 407–422. doi:10.​1016/​j.​ccell.​2016.​02.​002.PubMedCrossRef
155.
go back to reference Kang, Y., Siegel, P. M., Shu, W., Drobnjak, M., Kakonen, S. M., Cordon-Cardo, C., et al. (2003). A multigenic program mediating breast cancer metastasis to bone. Cancer Cell, 3(6), 537–549.PubMedCrossRef Kang, Y., Siegel, P. M., Shu, W., Drobnjak, M., Kakonen, S. M., Cordon-Cardo, C., et al. (2003). A multigenic program mediating breast cancer metastasis to bone. Cancer Cell, 3(6), 537–549.PubMedCrossRef
156.
go back to reference Palmieri, D., Smith, Q. R., Lockman, P. R., Bronder, J., Gril, B., Chambers, A. F., et al. (2006). Brain metastases of breast cancer. Breast Disease, 26, 139–147.PubMedCrossRef Palmieri, D., Smith, Q. R., Lockman, P. R., Bronder, J., Gril, B., Chambers, A. F., et al. (2006). Brain metastases of breast cancer. Breast Disease, 26, 139–147.PubMedCrossRef
159.
go back to reference Murphy, P., Alexander, P., Senior, P. V., Fleming, J., Kirkham, N., & Taylor, I. (1988). Mechanisms of organ selective tumour growth by bloodborne cancer cells. British Journal of Cancer, 57(1), 19–31.PubMedPubMedCentralCrossRef Murphy, P., Alexander, P., Senior, P. V., Fleming, J., Kirkham, N., & Taylor, I. (1988). Mechanisms of organ selective tumour growth by bloodborne cancer cells. British Journal of Cancer, 57(1), 19–31.PubMedPubMedCentralCrossRef
160.
go back to reference Yi, B., Williams, P. J., Niewolna, M., Wang, Y., & Yoneda, T. (2002). Tumor-derived platelet-derived growth factor-BB plays a critical role in osteosclerotic bone metastasis in an animal model of human breast cancer. Cancer Research, 62(3), 917–923.PubMed Yi, B., Williams, P. J., Niewolna, M., Wang, Y., & Yoneda, T. (2002). Tumor-derived platelet-derived growth factor-BB plays a critical role in osteosclerotic bone metastasis in an animal model of human breast cancer. Cancer Research, 62(3), 917–923.PubMed
161.
go back to reference Lam, P., Yang, W., Amemiya, Y., Kahn, H., Yee, A., Holloway, C., et al. (2009). A human bone NOD/SCID mouse model to distinguish metastatic potential in primary breast cancers. Cancer Biology & Therapy, 8(11), 1010–1017.CrossRef Lam, P., Yang, W., Amemiya, Y., Kahn, H., Yee, A., Holloway, C., et al. (2009). A human bone NOD/SCID mouse model to distinguish metastatic potential in primary breast cancers. Cancer Biology & Therapy, 8(11), 1010–1017.CrossRef
162.
go back to reference Faulkin Jr., L. J., & Deome, K. B. (1960). Regulation of growth and spacing of gland elements in the mammary fat pad of the C3H mouse. Journal of the National Cancer Institute, 24, 953–969.PubMed Faulkin Jr., L. J., & Deome, K. B. (1960). Regulation of growth and spacing of gland elements in the mammary fat pad of the C3H mouse. Journal of the National Cancer Institute, 24, 953–969.PubMed
163.
go back to reference Deome, K. B., Faulkin Jr., L. J., Bern, H. A., & Blair, P. B. (1959). Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Research, 19(5), 515–520.PubMed Deome, K. B., Faulkin Jr., L. J., Bern, H. A., & Blair, P. B. (1959). Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Research, 19(5), 515–520.PubMed
164.
go back to reference Bailey, M. J., Gazet, J. C., & Peckham, M. J. (1980). Human breast-cancer xenografts in immune-suppressed mice. British Journal of Cancer, 42(4), 524–529.PubMedPubMedCentralCrossRef Bailey, M. J., Gazet, J. C., & Peckham, M. J. (1980). Human breast-cancer xenografts in immune-suppressed mice. British Journal of Cancer, 42(4), 524–529.PubMedPubMedCentralCrossRef
165.
go back to reference Levin-Allerhand, J. A., Sokol, K., & Smith, J. D. (2003). Safe and effective method for chronic 17beta-estradiol administration to mice. [Comparative StudyResearch support, non-U.S. Gov’t]. (2016). Contemporary topics in laboratory animal science / American Association for Laboratory Animal Science, 42(6), 33–35. Levin-Allerhand, J. A., Sokol, K., & Smith, J. D. (2003). Safe and effective method for chronic 17beta-estradiol administration to mice. [Comparative StudyResearch support, non-U.S. Gov’t]. (2016). Contemporary topics in laboratory animal science / American Association for Laboratory Animal Science, 42(6), 33–35.
166.
go back to reference Welsch, C. W., Swim, E. L., McManus, M. J., White, A. C., & McGrath, C. M. (1981). Estrogen induced growth of human breast cancer cells (MCF-7) in athymic nude mice is enhanced by secretions from a transplantable pituitary tumor. [Research support, non-U.S. Gov’tResearch support, U.S. Gov’t, P.H.S.]. Cancer Letters, 14(3), 309–316.PubMedCrossRef Welsch, C. W., Swim, E. L., McManus, M. J., White, A. C., & McGrath, C. M. (1981). Estrogen induced growth of human breast cancer cells (MCF-7) in athymic nude mice is enhanced by secretions from a transplantable pituitary tumor. [Research support, non-U.S. Gov’tResearch support, U.S. Gov’t, P.H.S.]. Cancer Letters, 14(3), 309–316.PubMedCrossRef
167.
go back to reference Cottu, P., Marangoni, E., Assayag, F., de Cremoux, P., Vincent-Salomon, A., Guyader, C., et al. (2012). Modeling of response to endocrine therapy in a panel of human luminal breast cancer xenografts. [Research support, non-U.S. Gov’t]. Breast Cancer Research and Treatment, 133(2), 595–606. doi:10.1007/s10549-011-1815-5.PubMedCrossRef Cottu, P., Marangoni, E., Assayag, F., de Cremoux, P., Vincent-Salomon, A., Guyader, C., et al. (2012). Modeling of response to endocrine therapy in a panel of human luminal breast cancer xenografts. [Research support, non-U.S. Gov’t]. Breast Cancer Research and Treatment, 133(2), 595–606. doi:10.​1007/​s10549-011-1815-5.PubMedCrossRef
168.
go back to reference Hatem, R., El Botty, R., Chateau-Joubert, S., Servely, J. L., Labiod, D., de Plater, L., et al. (2016). Targeting mTOR pathway inhibits tumor growth in different molecular subtypes of triple-negative breast cancers. Oncotarget. doi:10.18632/oncotarget.10195.PubMed Hatem, R., El Botty, R., Chateau-Joubert, S., Servely, J. L., Labiod, D., de Plater, L., et al. (2016). Targeting mTOR pathway inhibits tumor growth in different molecular subtypes of triple-negative breast cancers. Oncotarget. doi:10.​18632/​oncotarget.​10195.PubMed
170.
go back to reference Gupta, P. B., Proia, D., Cingoz, O., Weremowicz, J., Naber, S. P., Weinberg, R. A., et al. (2007). Systemic stromal effects of estrogen promote the growth of estrogen receptor-negative cancers. Cancer Research, 67(5), 2062–2071. doi:10.1158/0008-5472.CAN-06-3895.PubMedCrossRef Gupta, P. B., Proia, D., Cingoz, O., Weremowicz, J., Naber, S. P., Weinberg, R. A., et al. (2007). Systemic stromal effects of estrogen promote the growth of estrogen receptor-negative cancers. Cancer Research, 67(5), 2062–2071. doi:10.​1158/​0008-5472.​CAN-06-3895.PubMedCrossRef
171.
go back to reference Pequeux, C., Raymond-Letron, I., Blacher, S., Boudou, F., Adlanmerini, M., Fouque, M. J., et al. (2012). Stromal estrogen receptor-alpha promotes tumor growth by normalizing an increased angiogenesis. [Research support, non-U.S. Gov’t]. Cancer Research, 72(12), 3010–3019. doi:10.1158/0008-5472.CAN-11-3768.PubMedCrossRef Pequeux, C., Raymond-Letron, I., Blacher, S., Boudou, F., Adlanmerini, M., Fouque, M. J., et al. (2012). Stromal estrogen receptor-alpha promotes tumor growth by normalizing an increased angiogenesis. [Research support, non-U.S. Gov’t]. Cancer Research, 72(12), 3010–3019. doi:10.​1158/​0008-5472.​CAN-11-3768.PubMedCrossRef
172.
go back to reference Pece, S., Tosoni, D., Confalonieri, S., Mazzarol, G., Vecchi, M., Ronzoni, S., et al. (2010). Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. [Research support, non-U.S. Gov’t]. Cell, 140(1), 62–73. doi:10.1016/j.cell.2009.12.007.PubMedCrossRef Pece, S., Tosoni, D., Confalonieri, S., Mazzarol, G., Vecchi, M., Ronzoni, S., et al. (2010). Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. [Research support, non-U.S. Gov’t]. Cell, 140(1), 62–73. doi:10.​1016/​j.​cell.​2009.​12.​007.PubMedCrossRef
173.
go back to reference Charafe-Jauffret, E., Ginestier, C., Bertucci, F., Cabaud, O., Wicinski, J., Finetti, P., et al. (2013). ALDH1-positive cancer stem cells predict engraftment of primary breast tumors and are governed by a common stem cell program. [Research support, non-U.S. Gov’t]. Cancer Research, 73(24), 7290–7300. doi:10.1158/0008-5472.CAN-12-4704.PubMedCrossRef Charafe-Jauffret, E., Ginestier, C., Bertucci, F., Cabaud, O., Wicinski, J., Finetti, P., et al. (2013). ALDH1-positive cancer stem cells predict engraftment of primary breast tumors and are governed by a common stem cell program. [Research support, non-U.S. Gov’t]. Cancer Research, 73(24), 7290–7300. doi:10.​1158/​0008-5472.​CAN-12-4704.PubMedCrossRef
174.
go back to reference Rong, S., Oskarsson, M., Faletto, D., Tsarfaty, I., Resau, J. H., Nakamura, T., et al. (1993). Tumorigenesis induced by coexpression of human hepatocyte growth factor and the human met protooncogene leads to high levels of expression of the ligand and receptor. Cell Growth & Differentiation, 4(7), 563–569. Rong, S., Oskarsson, M., Faletto, D., Tsarfaty, I., Resau, J. H., Nakamura, T., et al. (1993). Tumorigenesis induced by coexpression of human hepatocyte growth factor and the human met protooncogene leads to high levels of expression of the ligand and receptor. Cell Growth & Differentiation, 4(7), 563–569.
175.
go back to reference Utama, F. E., LeBaron, M. J., Neilson, L. M., Sultan, A. S., Parlow, A. F., Wagner, K. U., et al. (2006). Human prolactin receptors are insensitive to mouse prolactin: implications for xenotransplant modeling of human breast cancer in mice. The Journal of Endocrinology, 188(3), 589–601. doi:10.1677/joe.1.06560.PubMedCrossRef Utama, F. E., LeBaron, M. J., Neilson, L. M., Sultan, A. S., Parlow, A. F., Wagner, K. U., et al. (2006). Human prolactin receptors are insensitive to mouse prolactin: implications for xenotransplant modeling of human breast cancer in mice. The Journal of Endocrinology, 188(3), 589–601. doi:10.​1677/​joe.​1.​06560.PubMedCrossRef
176.
go back to reference Rong, S., Bodescot, M., Blair, D., Dunn, J., Nakamura, T., Mizuno, K., et al. (1992). Tumorigenicity of the met proto-oncogene and the gene for hepatocyte growth factor. Molecular and Cellular Biology, 12(11), 5152–5158.PubMedPubMedCentralCrossRef Rong, S., Bodescot, M., Blair, D., Dunn, J., Nakamura, T., Mizuno, K., et al. (1992). Tumorigenicity of the met proto-oncogene and the gene for hepatocyte growth factor. Molecular and Cellular Biology, 12(11), 5152–5158.PubMedPubMedCentralCrossRef
177.
go back to reference Kaur, H., Mao, S., Shah, S., Gorski, D. H., Krawetz, S. A., Sloane, B. F., et al. (2013). Next-generation sequencing: a powerful tool for the discovery of molecular markers in breast ductal carcinoma in situ. Expert Review of Molecular Diagnostics, 13(2), 151–165. doi:10.1586/erm.13.4.PubMedPubMedCentralCrossRef Kaur, H., Mao, S., Shah, S., Gorski, D. H., Krawetz, S. A., Sloane, B. F., et al. (2013). Next-generation sequencing: a powerful tool for the discovery of molecular markers in breast ductal carcinoma in situ. Expert Review of Molecular Diagnostics, 13(2), 151–165. doi:10.​1586/​erm.​13.​4.PubMedPubMedCentralCrossRef
178.
go back to reference Miller, F. R. (2000). Xenograft models of premalignant breast disease. Journal of Mammary Gland Biology and Neoplasia, 5(4), 379–391.PubMedCrossRef Miller, F. R. (2000). Xenograft models of premalignant breast disease. Journal of Mammary Gland Biology and Neoplasia, 5(4), 379–391.PubMedCrossRef
179.
go back to reference Holland, P. A., Knox, W. F., Potten, C. S., Howell, A., Anderson, E., Baildam, A. D., et al. (1997). Assessment of hormone dependence of comedo ductal carcinoma in situ of the breast. Journal of the National Cancer Institute, 89(14), 1059–1065.PubMedCrossRef Holland, P. A., Knox, W. F., Potten, C. S., Howell, A., Anderson, E., Baildam, A. D., et al. (1997). Assessment of hormone dependence of comedo ductal carcinoma in situ of the breast. Journal of the National Cancer Institute, 89(14), 1059–1065.PubMedCrossRef
180.
go back to reference Warnberg, F., White, D., Anderson, E., Knox, F., Clarke, R. B., Morris, J., et al. (2006). Effect of a farnesyl transferase inhibitor (R115777) on ductal carcinoma in situ of the breast in a human xenograft model and on breast and ovarian cancer cell growth in vitro and in vivo. Breast Cancer Research, 8(2), R21. doi:10.1186/bcr1395.PubMedPubMedCentralCrossRef Warnberg, F., White, D., Anderson, E., Knox, F., Clarke, R. B., Morris, J., et al. (2006). Effect of a farnesyl transferase inhibitor (R115777) on ductal carcinoma in situ of the breast in a human xenograft model and on breast and ovarian cancer cell growth in vitro and in vivo. Breast Cancer Research, 8(2), R21. doi:10.​1186/​bcr1395.PubMedPubMedCentralCrossRef
181.
go back to reference Miller, F. R., Soule, H. D., Tait, L., Pauley, R. J., Wolman, S. R., Dawson, P. J., et al. (1993). Xenograft model of progressive human proliferative breast disease. Journal of the National Cancer Institute, 85(21), 1725–1732.PubMedCrossRef Miller, F. R., Soule, H. D., Tait, L., Pauley, R. J., Wolman, S. R., Dawson, P. J., et al. (1993). Xenograft model of progressive human proliferative breast disease. Journal of the National Cancer Institute, 85(21), 1725–1732.PubMedCrossRef
182.
go back to reference Dawson, P. J., Wolman, S. R., Tait, L., Heppner, G. H., & Miller, F. R. (1996). MCF10AT: a model for the evolution of cancer from proliferative breast disease. The American Journal of Pathology, 148(1), 313–319.PubMedPubMedCentral Dawson, P. J., Wolman, S. R., Tait, L., Heppner, G. H., & Miller, F. R. (1996). MCF10AT: a model for the evolution of cancer from proliferative breast disease. The American Journal of Pathology, 148(1), 313–319.PubMedPubMedCentral
185.
go back to reference Gupta, P. B., & Kuperwasser, C. (2004). Disease models of breast cancer. [Review]. Drug Discovery Today: Disease Models, 1(1), 9–16. Gupta, P. B., & Kuperwasser, C. (2004). Disease models of breast cancer. [Review]. Drug Discovery Today: Disease Models, 1(1), 9–16.
187.
go back to reference Klopp, A. H., Gupta, A., Spaeth, E., Andreeff, M., & Marini 3rd, F. (2011). Concise review: dissecting a discrepancy in the literature: do mesenchymal stem cells support or suppress tumor growth? [Research support, N.I.H., extramural research support, non-U.S. Gov’tReview]. Stem Cells, 29(1), 11–19. doi:10.1002/stem.559.PubMedCrossRef Klopp, A. H., Gupta, A., Spaeth, E., Andreeff, M., & Marini 3rd, F. (2011). Concise review: dissecting a discrepancy in the literature: do mesenchymal stem cells support or suppress tumor growth? [Research support, N.I.H., extramural research support, non-U.S. Gov’tReview]. Stem Cells, 29(1), 11–19. doi:10.​1002/​stem.​559.PubMedCrossRef
188.
go back to reference Klopp, A. H., Lacerda, L., Gupta, A., Debeb, B. G., Solley, T., Li, L., et al. (2010). Mesenchymal stem cells promote mammosphere formation and decrease E-cadherin in normal and malignant breast cells. [Research support, N.I.H., extramural research support, non-U.S. Gov’t]. PloS One, 5(8), e12180. doi:10.1371/journal.pone.0012180.PubMedPubMedCentralCrossRef Klopp, A. H., Lacerda, L., Gupta, A., Debeb, B. G., Solley, T., Li, L., et al. (2010). Mesenchymal stem cells promote mammosphere formation and decrease E-cadherin in normal and malignant breast cells. [Research support, N.I.H., extramural research support, non-U.S. Gov’t]. PloS One, 5(8), e12180. doi:10.​1371/​journal.​pone.​0012180.PubMedPubMedCentralCrossRef
189.
go back to reference Karnoub, A. E., Dash, A. B., Vo, A. P., Sullivan, A., Brooks, M. W., Bell, G. W., et al. (2007). Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature, 449(7162), 557–563. doi:10.1038/nature06188.PubMedCrossRef Karnoub, A. E., Dash, A. B., Vo, A. P., Sullivan, A., Brooks, M. W., Bell, G. W., et al. (2007). Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature, 449(7162), 557–563. doi:10.​1038/​nature06188.PubMedCrossRef
190.
go back to reference Liu, S., Ginestier, C., Ou, S. J., Clouthier, S. G., Patel, S. H., Monville, F., et al. (2011). Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. [Research support, N.I.H., extramural research support, non-U.S. Gov’t]. Cancer Research, 71(2), 614–624. doi:10.1158/0008-5472.CAN-10-0538.PubMedPubMedCentralCrossRef Liu, S., Ginestier, C., Ou, S. J., Clouthier, S. G., Patel, S. H., Monville, F., et al. (2011). Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. [Research support, N.I.H., extramural research support, non-U.S. Gov’t]. Cancer Research, 71(2), 614–624. doi:10.​1158/​0008-5472.​CAN-10-0538.PubMedPubMedCentralCrossRef
191.
go back to reference Smyth, M. J., Dunn, G. P., & Schreiber, R. D. (2006). Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. [Research support, N.I.H., extramural research support, non-U.S. Gov’t review]. Advances in Immunology, 90, 1–50. doi:10.1016/S0065-2776(06)90001-7.PubMedCrossRef Smyth, M. J., Dunn, G. P., & Schreiber, R. D. (2006). Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. [Research support, N.I.H., extramural research support, non-U.S. Gov’t review]. Advances in Immunology, 90, 1–50. doi:10.​1016/​S0065-2776(06)90001-7.PubMedCrossRef
192.
193.
go back to reference DeNardo, D. G., Andreu, P., & Coussens, L. M. (2010). Interactions between lymphocytes and myeloid cells regulate pro- versus anti-tumor immunity. [Research support, N.I.H., extramural research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S. Review]. Cancer Metastasis Reviews, 29(2), 309–316. doi:10.1007/s10555-010-9223-6.PubMedPubMedCentralCrossRef DeNardo, D. G., Andreu, P., & Coussens, L. M. (2010). Interactions between lymphocytes and myeloid cells regulate pro- versus anti-tumor immunity. [Research support, N.I.H., extramural research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S. Review]. Cancer Metastasis Reviews, 29(2), 309–316. doi:10.​1007/​s10555-010-9223-6.PubMedPubMedCentralCrossRef
195.
go back to reference Wyckoff, J. B., Wang, Y., Lin, E. Y., Li, J. F., Goswami, S., Stanley, E. R., et al. (2007). Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. [Research support, N.I.H., extramural]. Cancer Research, 67(6), 2649–2656. doi:10.1158/0008-5472.CAN-06-1823.PubMedCrossRef Wyckoff, J. B., Wang, Y., Lin, E. Y., Li, J. F., Goswami, S., Stanley, E. R., et al. (2007). Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. [Research support, N.I.H., extramural]. Cancer Research, 67(6), 2649–2656. doi:10.​1158/​0008-5472.​CAN-06-1823.PubMedCrossRef
196.
go back to reference Mantovani, A., Sica, A., Allavena, P., Garlanda, C., & Locati, M. (2009). Tumor-associated macrophages and the related myeloid-derived suppressor cells as a paradigm of the diversity of macrophage activation. [Research support, non-U.S. Gov’t review]. Human Immunology, 70(5), 325–330, doi: 10.1016/j.humimm.2009.02.008. Mantovani, A., Sica, A., Allavena, P., Garlanda, C., & Locati, M. (2009). Tumor-associated macrophages and the related myeloid-derived suppressor cells as a paradigm of the diversity of macrophage activation. [Research support, non-U.S. Gov’t review]. Human Immunology, 70(5), 325–330, doi: 10.​1016/​j.​humimm.​2009.​02.​008.
197.
go back to reference Knutson, K. L., Disis, M. L., & Salazar, L. G. (2007). CD4 regulatory T cells in human cancer pathogenesis. [Research support, N.I.H., extramural review]. Cancer Immunology, Immunotherapy, 56(3), 271–285. doi:10.1007/s00262-006-0194-y.PubMedCrossRef Knutson, K. L., Disis, M. L., & Salazar, L. G. (2007). CD4 regulatory T cells in human cancer pathogenesis. [Research support, N.I.H., extramural review]. Cancer Immunology, Immunotherapy, 56(3), 271–285. doi:10.​1007/​s00262-006-0194-y.PubMedCrossRef
200.
go back to reference Rakhra, K., Bachireddy, P., Zabuawala, T., Zeiser, R., Xu, L., Kopelman, A., et al. (2010). CD4(+) T cells contribute to the remodeling of the microenvironment required for sustained tumor regression upon oncogene inactivation. [Comment research support, N.I.H., extramural research support, non-U.S. Gov’t]. Cancer Cell, 18(5), 485–498. doi:10.1016/j.ccr.2010.10.002.PubMedPubMedCentralCrossRef Rakhra, K., Bachireddy, P., Zabuawala, T., Zeiser, R., Xu, L., Kopelman, A., et al. (2010). CD4(+) T cells contribute to the remodeling of the microenvironment required for sustained tumor regression upon oncogene inactivation. [Comment research support, N.I.H., extramural research support, non-U.S. Gov’t]. Cancer Cell, 18(5), 485–498. doi:10.​1016/​j.​ccr.​2010.​10.​002.PubMedPubMedCentralCrossRef
201.
go back to reference Mosier, D. E., Gulizia, R. J., Baird, S. M., & Wilson, D. B. (1988). Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature, 335(6187), 256–259. doi:10.1038/335256a0.PubMedCrossRef Mosier, D. E., Gulizia, R. J., Baird, S. M., & Wilson, D. B. (1988). Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature, 335(6187), 256–259. doi:10.​1038/​335256a0.PubMedCrossRef
202.
go back to reference Wege, A. K., Ernst, W., Eckl, J., Frankenberger, B., Vollmann-Zwerenz, A., Mannel, D. N., et al. (2011). Humanized tumor mice--a new model to study and manipulate the immune response in advanced cancer therapy. [Research support, non-U.S. Gov’t]. International Journal of Cancer, 129(9), 2194–2206. doi:10.1002/ijc.26159.PubMedCrossRef Wege, A. K., Ernst, W., Eckl, J., Frankenberger, B., Vollmann-Zwerenz, A., Mannel, D. N., et al. (2011). Humanized tumor mice--a new model to study and manipulate the immune response in advanced cancer therapy. [Research support, non-U.S. Gov’t]. International Journal of Cancer, 129(9), 2194–2206. doi:10.​1002/​ijc.​26159.PubMedCrossRef
203.
go back to reference Sanmamed, M. F., Chester, C., Melero, I., & Kohrt, H. (2016). Defining the optimal murine models to investigate immune checkpoint blockers and their combination with other immunotherapies. [Review]. Annals of Oncology, 27(7), 1190–1198. doi:10.1093/annonc/mdw041.PubMedCrossRef Sanmamed, M. F., Chester, C., Melero, I., & Kohrt, H. (2016). Defining the optimal murine models to investigate immune checkpoint blockers and their combination with other immunotherapies. [Review]. Annals of Oncology, 27(7), 1190–1198. doi:10.​1093/​annonc/​mdw041.PubMedCrossRef
204.
go back to reference Holzapfel, B. M., Wagner, F., Thibaudeau, L., Levesque, J. P., & Hutmacher, D. W. (2015). Concise review: humanized models of tumor immunology in the twenty-first century: convergence of cancer research and tissue engineering. [Review]. Stem Cells, 33(6), 1696–1704. doi:10.1002/stem.1978.PubMedCrossRef Holzapfel, B. M., Wagner, F., Thibaudeau, L., Levesque, J. P., & Hutmacher, D. W. (2015). Concise review: humanized models of tumor immunology in the twenty-first century: convergence of cancer research and tissue engineering. [Review]. Stem Cells, 33(6), 1696–1704. doi:10.​1002/​stem.​1978.PubMedCrossRef
205.
go back to reference Zhou, Q., Facciponte, J., Jin, M., Shen, Q., & Lin, Q. (2014). Humanized NOD-SCID IL2rg−/− mice as a preclinical model for cancer research and its potential use for individualized cancer therapies. [Review]. Cancer Letters, 344(1), 13–19. doi:10.1016/j.canlet.2013.10.015.PubMedCrossRef Zhou, Q., Facciponte, J., Jin, M., Shen, Q., & Lin, Q. (2014). Humanized NOD-SCID IL2rg−/− mice as a preclinical model for cancer research and its potential use for individualized cancer therapies. [Review]. Cancer Letters, 344(1), 13–19. doi:10.​1016/​j.​canlet.​2013.​10.​015.PubMedCrossRef
206.
go back to reference Brehm, M. A., Shultz, L. D., Luban, J., & Greiner, D. L. (2013). Overcoming current limitations in humanized mouse research. [Research support, N.I.H., extramural research support, non-U.S. Gov’t review]. The Journal of Infectious Diseases, 208(Suppl 2), S125–S130. doi:10.1093/infdis/jit319.PubMedPubMedCentralCrossRef Brehm, M. A., Shultz, L. D., Luban, J., & Greiner, D. L. (2013). Overcoming current limitations in humanized mouse research. [Research support, N.I.H., extramural research support, non-U.S. Gov’t review]. The Journal of Infectious Diseases, 208(Suppl 2), S125–S130. doi:10.​1093/​infdis/​jit319.PubMedPubMedCentralCrossRef
207.
go back to reference Vargo-Gogola, T. (2010). Putting the brakes on breast cancer: therapeutic opportunities to bring cancer stem cells and the tumor microenvironment to a screeching halt. [Editorial introductory]. Current Drug Targets, 11(9), 1041–1042.PubMedCrossRef Vargo-Gogola, T. (2010). Putting the brakes on breast cancer: therapeutic opportunities to bring cancer stem cells and the tumor microenvironment to a screeching halt. [Editorial introductory]. Current Drug Targets, 11(9), 1041–1042.PubMedCrossRef
209.
go back to reference DeNardo, D. G., Brennan, D. J., Rexhepaj, E., Ruffell, B., Shiao, S. L., Madden, S. F., et al. (2011). Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. [Research support, N.I.H., extramural research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S.]. Cancer Discovery, 1(1), 54–67. doi:10.1158/2159-8274.CD-10-0028.PubMedPubMedCentralCrossRef DeNardo, D. G., Brennan, D. J., Rexhepaj, E., Ruffell, B., Shiao, S. L., Madden, S. F., et al. (2011). Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. [Research support, N.I.H., extramural research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S.]. Cancer Discovery, 1(1), 54–67. doi:10.​1158/​2159-8274.​CD-10-0028.PubMedPubMedCentralCrossRef
210.
go back to reference Bedognetti, D., Maccalli, C., Bader, S. B., Marincola, F. M., & Seliger, B. (2016). Checkpoint inhibitors and their application in breast cancer. [Review]. Breast Care (Basel), 11(2), 108–115. doi:10.1159/000445335.CrossRef Bedognetti, D., Maccalli, C., Bader, S. B., Marincola, F. M., & Seliger, B. (2016). Checkpoint inhibitors and their application in breast cancer. [Review]. Breast Care (Basel), 11(2), 108–115. doi:10.​1159/​000445335.CrossRef
212.
go back to reference Rongvaux, A., Willinger, T., Martinek, J., Strowig, T., Gearty, S. V., Teichmann, L. L., et al. (2014). Development and function of human innate immune cells in a humanized mouse model. [Research support, N.I.H., extramural research support, non-U.S. Gov’t]. Nature Biotechnology, 32(4), 364–372. doi:10.1038/nbt.2858.PubMedPubMedCentralCrossRef Rongvaux, A., Willinger, T., Martinek, J., Strowig, T., Gearty, S. V., Teichmann, L. L., et al. (2014). Development and function of human innate immune cells in a humanized mouse model. [Research support, N.I.H., extramural research support, non-U.S. Gov’t]. Nature Biotechnology, 32(4), 364–372. doi:10.​1038/​nbt.​2858.PubMedPubMedCentralCrossRef
213.
go back to reference Bertotti, A., Migliardi, G., Galimi, F., Sassi, F., Torti, D., Isella, C., et al. (2011). A molecularly annotated platform of patient-derived xenografts (“xenopatients”) identifies HER2 as an effective therapeutic target in cetuximab-resistant colorectal cancer. [Research support, non-U.S. Gov’t]. Cancer Discovery, 1(6), 508–523. doi:10.1158/2159-8290.CD-11-0109.PubMedCrossRef Bertotti, A., Migliardi, G., Galimi, F., Sassi, F., Torti, D., Isella, C., et al. (2011). A molecularly annotated platform of patient-derived xenografts (“xenopatients”) identifies HER2 as an effective therapeutic target in cetuximab-resistant colorectal cancer. [Research support, non-U.S. Gov’t]. Cancer Discovery, 1(6), 508–523. doi:10.​1158/​2159-8290.​CD-11-0109.PubMedCrossRef
214.
go back to reference Gao, H., Korn, J. M., Ferretti, S., Monahan, J. E., Wang, Y., Singh, M., et al. (2015). High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nature Medicine, 21(11), 1318–1325, doi:10.1038/nm.3954. Gao, H., Korn, J. M., Ferretti, S., Monahan, J. E., Wang, Y., Singh, M., et al. (2015). High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nature Medicine, 21(11), 1318–1325, doi:10.​1038/​nm.​3954.
Metadata
Title
Patient-derived xenograft (PDX) models in basic and translational breast cancer research
Authors
Lacey E. Dobrolecki
Susie D. Airhart
Denis G. Alferez
Samuel Aparicio
Fariba Behbod
Mohamed Bentires-Alj
Cathrin Brisken
Carol J. Bult
Shirong Cai
Robert B. Clarke
Heidi Dowst
Matthew J. Ellis
Eva Gonzalez-Suarez
Richard D. Iggo
Peter Kabos
Shunqiang Li
Geoffrey J. Lindeman
Elisabetta Marangoni
Aaron McCoy
Funda Meric-Bernstam
Helen Piwnica-Worms
Marie-France Poupon
Jorge Reis-Filho
Carol A. Sartorius
Valentina Scabia
George Sflomos
Yizheng Tu
François Vaillant
Jane E. Visvader
Alana Welm
Max S. Wicha
Michael T. Lewis
Publication date
01-12-2016
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 4/2016
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-016-9653-x

Other articles of this Issue 4/2016

Cancer and Metastasis Reviews 4/2016 Go to the issue

Announcement

Biography—Li Ma

EditorialNotes

Preface

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine