Skip to main content
Top
Published in: Cancer and Metastasis Reviews 2/2010

Open Access 01-06-2010

Interactions between lymphocytes and myeloid cells regulate pro- versus anti-tumor immunity

Authors: David G. DeNardo, Pauline Andreu, Lisa M. Coussens

Published in: Cancer and Metastasis Reviews | Issue 2/2010

Login to get access

Abstract

Tumor-associated myeloid cells have been implicated in regulating many of the “hallmarks of cancer” and thus fostering solid tumor development and metastasis. However, the same innate leukocytes also participate in anti-tumor immunity and restraint of malignant disease. While many factors regulate the propensity of myeloid cells to promote or repress cancerous growths, polarized adaptive immune responses by B and T lymphocytes have been identified as regulators of many aspects of myeloid cell biology by specifically regulating their functional capabilities. Here, we detail the diversity of heterogeneous B and T lymphocyte populations and their impacts on solid tumor development through their abilities to regulate myeloid cell function in solid tumors.
Literature
1.
go back to reference Dunn, G. P., Old, L. J., & Schreiber, R. D. (2004). The immunobiology of cancer immunosurveillance and immunoediting. Immunity, 21(2), 137–148.CrossRefPubMed Dunn, G. P., Old, L. J., & Schreiber, R. D. (2004). The immunobiology of cancer immunosurveillance and immunoediting. Immunity, 21(2), 137–148.CrossRefPubMed
2.
go back to reference Ostrand-Rosenberg, S. (2008). Immune surveillance: a balance between protumor and antitumor immunity. Current Opinion in Genetics & Development, 18(1), 11–18.CrossRef Ostrand-Rosenberg, S. (2008). Immune surveillance: a balance between protumor and antitumor immunity. Current Opinion in Genetics & Development, 18(1), 11–18.CrossRef
3.
go back to reference Karin, M., Lawrence, T., & Nizet, V. (2006). Innate immunity gone awry: linking microbial infections to chronic inflammation and cancer. Cell, 124(4), 823–835.CrossRefPubMed Karin, M., Lawrence, T., & Nizet, V. (2006). Innate immunity gone awry: linking microbial infections to chronic inflammation and cancer. Cell, 124(4), 823–835.CrossRefPubMed
4.
go back to reference de Visser, K. E., Eichten, A., & Coussens, L. M. (2006). Paradoxical roles of the immune system during cancer development. Nature Reviews Cancer, 6, 24–37.CrossRefPubMed de Visser, K. E., Eichten, A., & Coussens, L. M. (2006). Paradoxical roles of the immune system during cancer development. Nature Reviews Cancer, 6, 24–37.CrossRefPubMed
5.
go back to reference Balkwill, F., Charles, K. A., & Mantovani, A. (2005). Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell, 7(3), 211–217.CrossRefPubMed Balkwill, F., Charles, K. A., & Mantovani, A. (2005). Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell, 7(3), 211–217.CrossRefPubMed
6.
go back to reference Mantovani, A., Allavena, P., Sica, A., & Balkwill, F. (2008). Cancer-related inflammation. Nature, 454(7203), 436–444.CrossRefPubMed Mantovani, A., Allavena, P., Sica, A., & Balkwill, F. (2008). Cancer-related inflammation. Nature, 454(7203), 436–444.CrossRefPubMed
7.
go back to reference De Palma, M., & Coussens, L. M. (2008). Immune cells and inflammatory mediators as regulators of tumor angiogenesis. In W. D. Figg & J. Folkman (Eds.), Angiogenesis: An integrative approach from science to medicine (pp. 225–238). Springer: New York. De Palma, M., & Coussens, L. M. (2008). Immune cells and inflammatory mediators as regulators of tumor angiogenesis. In W. D. Figg & J. Folkman (Eds.), Angiogenesis: An integrative approach from science to medicine (pp. 225–238). Springer: New York.
8.
go back to reference Stout, R. D., & Bottomly, K. (1989). Antigen-specific activation of effector macrophages by IFN-gamma producing (TH1) T cell clones. Failure of IL-4-producing (TH2) T cell clones to activate effector function in macrophages. Journal of Immunology, 142(3), 760–765. Stout, R. D., & Bottomly, K. (1989). Antigen-specific activation of effector macrophages by IFN-gamma producing (TH1) T cell clones. Failure of IL-4-producing (TH2) T cell clones to activate effector function in macrophages. Journal of Immunology, 142(3), 760–765.
9.
go back to reference Watkins, S. K., Egilmez, N. K., Suttles, J., & Stout, R. D. (2007). IL-12 rapidly alters the functional profile of tumor-associated and tumor-infiltrating macrophages in vitro and in vivo. Journal of Immunology, 178(3), 1357–1362. Watkins, S. K., Egilmez, N. K., Suttles, J., & Stout, R. D. (2007). IL-12 rapidly alters the functional profile of tumor-associated and tumor-infiltrating macrophages in vitro and in vivo. Journal of Immunology, 178(3), 1357–1362.
10.
go back to reference Wakabayashi, O., Yamazaki, K., Oizumi, S., Hommura, F., Kinoshita, I., Ogura, S., et al. (2003). CD4(+) T cells in cancer stroma, not CD8(+) T cells in cancer cell nests, are associated with favorable prognosis in human non-small cell lung cancers. Cancer Science, 94(11), 1003–1009.CrossRefPubMed Wakabayashi, O., Yamazaki, K., Oizumi, S., Hommura, F., Kinoshita, I., Ogura, S., et al. (2003). CD4(+) T cells in cancer stroma, not CD8(+) T cells in cancer cell nests, are associated with favorable prognosis in human non-small cell lung cancers. Cancer Science, 94(11), 1003–1009.CrossRefPubMed
11.
go back to reference Siddiqui, S. A., Frigola, X., Bonne-Annee, S., Mercader, M., Kuntz, S. M., Krambeck, A. E., et al. (2007). Tumor-infiltrating Foxp3-CD4+CD25+ T cells predict poor survival in renal cell carcinoma. Clinical Cancer Research, 13(7), 2075–2081.CrossRefPubMed Siddiqui, S. A., Frigola, X., Bonne-Annee, S., Mercader, M., Kuntz, S. M., Krambeck, A. E., et al. (2007). Tumor-infiltrating Foxp3-CD4+CD25+ T cells predict poor survival in renal cell carcinoma. Clinical Cancer Research, 13(7), 2075–2081.CrossRefPubMed
12.
go back to reference DeNardo, D. G., Johansson, M., & Coussens, L. M. (2008). Immune cells as mediators of solid tumor metastasis. Cancer Metastasis Reviews, 27(1), 11–18.CrossRefPubMed DeNardo, D. G., Johansson, M., & Coussens, L. M. (2008). Immune cells as mediators of solid tumor metastasis. Cancer Metastasis Reviews, 27(1), 11–18.CrossRefPubMed
13.
go back to reference Ruffell, B., Denardo, D. G., Affara, N. I., & Coussens, L. M. (2010). Lymphocytes in cancer development: polarization towards pro-tumor immunity. Cytokine & Growth Factor Reviews, 21, 3–10.CrossRef Ruffell, B., Denardo, D. G., Affara, N. I., & Coussens, L. M. (2010). Lymphocytes in cancer development: polarization towards pro-tumor immunity. Cytokine & Growth Factor Reviews, 21, 3–10.CrossRef
14.
go back to reference Koebel, C. M., Vermi, W., Swann, J. B., Zerafa, N., Rodig, S. J., Old, L. J., et al. (2007). Adaptive immunity maintains occult cancer in an equilibrium state. Nature, 450(7171), 903–907.CrossRefPubMed Koebel, C. M., Vermi, W., Swann, J. B., Zerafa, N., Rodig, S. J., Old, L. J., et al. (2007). Adaptive immunity maintains occult cancer in an equilibrium state. Nature, 450(7171), 903–907.CrossRefPubMed
15.
go back to reference Girardi, M., Glusac, E., Filler, R. B., Roberts, S. J., Propperova, I., Lewis, J., et al. (2003). The distinct contributions of murine T cell receptor (TCR)gammadelta+ and TCRalphabeta+ T cells to different stages of chemically induced skin cancer. Journal of Experimental Medicine, 198(5), 747–755.CrossRefPubMed Girardi, M., Glusac, E., Filler, R. B., Roberts, S. J., Propperova, I., Lewis, J., et al. (2003). The distinct contributions of murine T cell receptor (TCR)gammadelta+ and TCRalphabeta+ T cells to different stages of chemically induced skin cancer. Journal of Experimental Medicine, 198(5), 747–755.CrossRefPubMed
16.
go back to reference Girardi, M., Oppenheim, D., Glusac, E. J., Filler, R., Balmain, A., Tigelaar, R. E., et al. (2004). Characterizing the protective component of the alphabeta T cell response to transplantable squamous cell carcinoma. Journal of Investigative Dermatology, 122(3), 699–706.CrossRefPubMed Girardi, M., Oppenheim, D., Glusac, E. J., Filler, R., Balmain, A., Tigelaar, R. E., et al. (2004). Characterizing the protective component of the alphabeta T cell response to transplantable squamous cell carcinoma. Journal of Investigative Dermatology, 122(3), 699–706.CrossRefPubMed
17.
go back to reference Daniel, D., Chiu, C., Giraud, E., Inoue, M., Mizzen, L. A., Chu, N. R., et al. (2005). CD4+ T cell-mediated antigen-specific immunotherapy in a mouse model of cervical cancer. Cancer Research, 65, 2018–2025.CrossRefPubMed Daniel, D., Chiu, C., Giraud, E., Inoue, M., Mizzen, L. A., Chu, N. R., et al. (2005). CD4+ T cell-mediated antigen-specific immunotherapy in a mouse model of cervical cancer. Cancer Research, 65, 2018–2025.CrossRefPubMed
18.
go back to reference Daniel, D., Meyer-Morse, N., Bergsland, E. K., Dehne, K., Coussens, L. M., & Hanahan, D. (2003). Immune enhancement of skin carcinogenesis by CD4+ T cells. Journal of Experimental Medicine, 197(8), 1017–1028.CrossRefPubMed Daniel, D., Meyer-Morse, N., Bergsland, E. K., Dehne, K., Coussens, L. M., & Hanahan, D. (2003). Immune enhancement of skin carcinogenesis by CD4+ T cells. Journal of Experimental Medicine, 197(8), 1017–1028.CrossRefPubMed
19.
go back to reference Zhou, L., Chong, M. M., & Littman, D. R. (2009). Plasticity of CD4+ T cell lineage differentiation. Immunity, 30(5), 646–655.CrossRefPubMed Zhou, L., Chong, M. M., & Littman, D. R. (2009). Plasticity of CD4+ T cell lineage differentiation. Immunity, 30(5), 646–655.CrossRefPubMed
20.
go back to reference Munk, M. E., & Emoto, M. (1995). Functions of T-cell subsets and cytokines in mycobacterial infections. European Respiratory Journal. Supplement, 20, 668s–675s. Munk, M. E., & Emoto, M. (1995). Functions of T-cell subsets and cytokines in mycobacterial infections. European Respiratory Journal. Supplement, 20, 668s–675s.
21.
go back to reference Romagnani, S., Parronchi, P., D'Elios, M. M., Romagnani, P., Annunziato, F., Piccinni, M. P., et al. (1997). An update on human Th1 and Th2 cells. International Archives of Allergy and Immunology, 113(1–3), 153–156.CrossRefPubMed Romagnani, S., Parronchi, P., D'Elios, M. M., Romagnani, P., Annunziato, F., Piccinni, M. P., et al. (1997). An update on human Th1 and Th2 cells. International Archives of Allergy and Immunology, 113(1–3), 153–156.CrossRefPubMed
22.
go back to reference Parker, D. C. (1993). T cell-dependent B cell activation. Annual Review of Immunology, 11, 331–360.PubMed Parker, D. C. (1993). T cell-dependent B cell activation. Annual Review of Immunology, 11, 331–360.PubMed
23.
go back to reference Pollard, J. W. (2004). Tumour-educated macrophages promote tumour progression and metastasis. Nature Reviews. Cancer, 4(1), 71–78.CrossRefPubMed Pollard, J. W. (2004). Tumour-educated macrophages promote tumour progression and metastasis. Nature Reviews. Cancer, 4(1), 71–78.CrossRefPubMed
24.
go back to reference Aspord, C., Pedroza-Gonzalez, A., Gallegos, M., Tindle, S., Burton, E. C., Su, D., et al. (2007). Breast cancer instructs dendritic cells to prime interleukin 13-secreting CD4+ T cells that facilitate tumor development. Journal of Experimental Medicine, 204(5), 1037–1047.CrossRefPubMed Aspord, C., Pedroza-Gonzalez, A., Gallegos, M., Tindle, S., Burton, E. C., Su, D., et al. (2007). Breast cancer instructs dendritic cells to prime interleukin 13-secreting CD4+ T cells that facilitate tumor development. Journal of Experimental Medicine, 204(5), 1037–1047.CrossRefPubMed
25.
go back to reference DeNardo, D. G., Baretto, J. B., Andreu, P., Vasquez, L., Kolhatkar, N., Tawfik, D., et al. (2009). CD4+ T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell, 16(2), 91–102.CrossRefPubMed DeNardo, D. G., Baretto, J. B., Andreu, P., Vasquez, L., Kolhatkar, N., Tawfik, D., et al. (2009). CD4+ T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell, 16(2), 91–102.CrossRefPubMed
26.
go back to reference Chin, Y., Janseens, J., Vandepitte, J., Vandenbrande, J., Opdebeek, L., & Raus, J. (1992). Phenotypic analysis of tumor-infiltrating lymphocytes from human breast cancer. Anticancer Research, 12(5), 1463–1466.PubMed Chin, Y., Janseens, J., Vandepitte, J., Vandenbrande, J., Opdebeek, L., & Raus, J. (1992). Phenotypic analysis of tumor-infiltrating lymphocytes from human breast cancer. Anticancer Research, 12(5), 1463–1466.PubMed
27.
go back to reference Wilson, C. B., Rowell, E., & Sekimata, M. (2009). Epigenetic control of T-helper-cell differentiation. Nature Reviews. Immunology, 9(2), 91–105.CrossRefPubMed Wilson, C. B., Rowell, E., & Sekimata, M. (2009). Epigenetic control of T-helper-cell differentiation. Nature Reviews. Immunology, 9(2), 91–105.CrossRefPubMed
28.
go back to reference Weaver, C. T., Harrington, L. E., Mangan, P. R., Gavrieli, M., & Murphy, K. M. (2006). Th17: an effector CD4 T cell lineage with regulatory T cell ties. Immunity, 24(6), 677–688.CrossRefPubMed Weaver, C. T., Harrington, L. E., Mangan, P. R., Gavrieli, M., & Murphy, K. M. (2006). Th17: an effector CD4 T cell lineage with regulatory T cell ties. Immunity, 24(6), 677–688.CrossRefPubMed
29.
go back to reference Dong, C. (2008). TH17 cells in development: an updated view of their molecular identity and genetic programming. Nature Reviews. Immunology, 8(5), 337–348.CrossRefPubMed Dong, C. (2008). TH17 cells in development: an updated view of their molecular identity and genetic programming. Nature Reviews. Immunology, 8(5), 337–348.CrossRefPubMed
30.
go back to reference Ouyang, W., Kolls, J. K., & Zheng, Y. (2008). The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity, 28(4), 454–467.CrossRefPubMed Ouyang, W., Kolls, J. K., & Zheng, Y. (2008). The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity, 28(4), 454–467.CrossRefPubMed
31.
go back to reference Bettelli, E., Korn, T., Oukka, M., & Kuchroo, V. K. (2008). Induction and effector functions of T(H)17 cells. Nature, 453(7198), 1051–1057.CrossRefPubMed Bettelli, E., Korn, T., Oukka, M., & Kuchroo, V. K. (2008). Induction and effector functions of T(H)17 cells. Nature, 453(7198), 1051–1057.CrossRefPubMed
32.
go back to reference Wu, S., Rhee, K. J., Albesiano, E., Rabizadeh, S., Wu, X., Yen, H. R., et al. (2009). A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nature Medicine, 15(9), 1016–1022.CrossRefPubMed Wu, S., Rhee, K. J., Albesiano, E., Rabizadeh, S., Wu, X., Yen, H. R., et al. (2009). A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nature Medicine, 15(9), 1016–1022.CrossRefPubMed
33.
go back to reference Miyahara, Y., Odunsi, K., Chen, W., Peng, G., Matsuzaki, J., & Wang, R. F. (2008). Generation and regulation of human CD4+ IL-17-producing T cells in ovarian cancer. Proceedings of the National Academy of Sciences of the United States of America, 105(40), 15505–15510.CrossRefPubMed Miyahara, Y., Odunsi, K., Chen, W., Peng, G., Matsuzaki, J., & Wang, R. F. (2008). Generation and regulation of human CD4+ IL-17-producing T cells in ovarian cancer. Proceedings of the National Academy of Sciences of the United States of America, 105(40), 15505–15510.CrossRefPubMed
34.
go back to reference Sfanos, K. S., Bruno, T. C., Maris, C. H., Xu, L., Thoburn, C. J., DeMarzo, A. M., et al. (2008). Phenotypic analysis of prostate-infiltrating lymphocytes reveals TH17 and Treg skewing. Clinical Cancer Research, 14(11), 3254–3261.CrossRefPubMed Sfanos, K. S., Bruno, T. C., Maris, C. H., Xu, L., Thoburn, C. J., DeMarzo, A. M., et al. (2008). Phenotypic analysis of prostate-infiltrating lymphocytes reveals TH17 and Treg skewing. Clinical Cancer Research, 14(11), 3254–3261.CrossRefPubMed
35.
go back to reference Zhang, J. P., Yan, J., Xu, J., Pang, X. H., Chen, M. S., Li, L., et al. (2009). Increased intratumoral IL-17-producing cells correlate with poor survival in hepatocellular carcinoma patients. Journal of Hepatology, 50(5), 980–989.CrossRefPubMed Zhang, J. P., Yan, J., Xu, J., Pang, X. H., Chen, M. S., Li, L., et al. (2009). Increased intratumoral IL-17-producing cells correlate with poor survival in hepatocellular carcinoma patients. Journal of Hepatology, 50(5), 980–989.CrossRefPubMed
36.
go back to reference Numasaki, M., Watanabe, M., Suzuki, T., Takahashi, H., Nakamura, A., McAllister, F., et al. (2005). IL-17 enhances the net angiogenic activity and in vivo growth of human non-small cell lung cancer in SCID mice through promoting CXCR-2-dependent angiogenesis. Journal of Immunology, 175(9), 6177–6189. Numasaki, M., Watanabe, M., Suzuki, T., Takahashi, H., Nakamura, A., McAllister, F., et al. (2005). IL-17 enhances the net angiogenic activity and in vivo growth of human non-small cell lung cancer in SCID mice through promoting CXCR-2-dependent angiogenesis. Journal of Immunology, 175(9), 6177–6189.
37.
go back to reference Numasaki, M., Fukushi, J., Ono, M., Narula, S. K., Zavodny, P. J., Kudo, T., et al. (2003). Interleukin-17 promotes angiogenesis and tumor growth. Blood, 101(7), 2620–2627.CrossRefPubMed Numasaki, M., Fukushi, J., Ono, M., Narula, S. K., Zavodny, P. J., Kudo, T., et al. (2003). Interleukin-17 promotes angiogenesis and tumor growth. Blood, 101(7), 2620–2627.CrossRefPubMed
38.
go back to reference Martin-Orozco, N., Muranski, P., Chung, Y., Yang, X. O., Yamazaki, T., Lu, S., et al. (2009). T helper 17 cells promote cytotoxic T cell activation in tumor immunity. Immunity, 31(5), 787–798.CrossRefPubMed Martin-Orozco, N., Muranski, P., Chung, Y., Yang, X. O., Yamazaki, T., Lu, S., et al. (2009). T helper 17 cells promote cytotoxic T cell activation in tumor immunity. Immunity, 31(5), 787–798.CrossRefPubMed
39.
go back to reference Carreras, J., Lopez-Guillermo, A., Fox, B. C., Colomo, L., Martinez, A., Roncador, G., et al. (2006). High numbers of tumor-infiltrating FOXP3-positive regulatory T cells are associated with improved overall survival in follicular lymphoma. Blood, 108(9), 2957–2964.CrossRefPubMed Carreras, J., Lopez-Guillermo, A., Fox, B. C., Colomo, L., Martinez, A., Roncador, G., et al. (2006). High numbers of tumor-infiltrating FOXP3-positive regulatory T cells are associated with improved overall survival in follicular lymphoma. Blood, 108(9), 2957–2964.CrossRefPubMed
40.
go back to reference Hiraoka, N., Onozato, K., Kosuge, T., & Hirohashi, S. (2006). Prevalence of FOXP3+ regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clinical Cancer Research, 12(18), 5423–5434.CrossRefPubMed Hiraoka, N., Onozato, K., Kosuge, T., & Hirohashi, S. (2006). Prevalence of FOXP3+ regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clinical Cancer Research, 12(18), 5423–5434.CrossRefPubMed
41.
go back to reference Petersen, R. P., Campa, M. J., Sperlazza, J., Conlon, D., Joshi, M. B., Harpole, D. H., Jr., et al. (2006). Tumor infiltrating Foxp3+ regulatory T-cells are associated with recurrence in pathologic stage I NSCLC patients. Cancer, 107(12), 2866–2872.CrossRefPubMed Petersen, R. P., Campa, M. J., Sperlazza, J., Conlon, D., Joshi, M. B., Harpole, D. H., Jr., et al. (2006). Tumor infiltrating Foxp3+ regulatory T-cells are associated with recurrence in pathologic stage I NSCLC patients. Cancer, 107(12), 2866–2872.CrossRefPubMed
42.
go back to reference Merlo, A., Casalini, P., Carcangiu, M. L., Malventano, C., Triulzi, T., Menard, S., et al. (2009). FOXP3 expression and overall survival in breast cancer. Journal of Clinical Oncology, 27(11), 1746–1752.CrossRefPubMed Merlo, A., Casalini, P., Carcangiu, M. L., Malventano, C., Triulzi, T., Menard, S., et al. (2009). FOXP3 expression and overall survival in breast cancer. Journal of Clinical Oncology, 27(11), 1746–1752.CrossRefPubMed
43.
go back to reference Trzonkowski, P., Szmit, E., Mysliwska, J., Dobyszuk, A., & Mysliwski, A. (2004). CD4+CD25+ T regulatory cells inhibit cytotoxic activity of T CD8+ and NK lymphocytes in the direct cell-to-cell interaction. Clinical Immunology, 112(3), 258–267.CrossRefPubMed Trzonkowski, P., Szmit, E., Mysliwska, J., Dobyszuk, A., & Mysliwski, A. (2004). CD4+CD25+ T regulatory cells inhibit cytotoxic activity of T CD8+ and NK lymphocytes in the direct cell-to-cell interaction. Clinical Immunology, 112(3), 258–267.CrossRefPubMed
44.
go back to reference Strauss, L., Bergmann, C., Szczepanski, M., Gooding, W., Johnson, J. T., & Whiteside, T. L. (2007). A unique subset of CD4+CD25highFoxp3+ T cells secreting interleukin-10 and transforming growth factor-beta1 mediates suppression in the tumor microenvironment. Clinical Cancer Research, 13(15 Pt 1), 4345–4354.CrossRefPubMed Strauss, L., Bergmann, C., Szczepanski, M., Gooding, W., Johnson, J. T., & Whiteside, T. L. (2007). A unique subset of CD4+CD25highFoxp3+ T cells secreting interleukin-10 and transforming growth factor-beta1 mediates suppression in the tumor microenvironment. Clinical Cancer Research, 13(15 Pt 1), 4345–4354.CrossRefPubMed
45.
go back to reference Fehervari, Z., & Sakaguchi, S. (2004). CD4+ Tregs and immune control. Journal of Clinical Investigation, 114(9), 1209–1217.PubMed Fehervari, Z., & Sakaguchi, S. (2004). CD4+ Tregs and immune control. Journal of Clinical Investigation, 114(9), 1209–1217.PubMed
46.
go back to reference Feuerer, M., Hill, J. A., Mathis, D., & Benoist, C. (2009). Foxp3+ regulatory T cells: differentiation, specification, subphenotypes. Nature Immunology, 10(7), 689–695.CrossRefPubMed Feuerer, M., Hill, J. A., Mathis, D., & Benoist, C. (2009). Foxp3+ regulatory T cells: differentiation, specification, subphenotypes. Nature Immunology, 10(7), 689–695.CrossRefPubMed
47.
go back to reference Cao, X., Cai, S. F., Fehniger, T. A., Song, J., Collins, L. I., Piwnica-Worms, D. R., et al. (2007). Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance. Immunity, 27(4), 635–646.CrossRefPubMed Cao, X., Cai, S. F., Fehniger, T. A., Song, J., Collins, L. I., Piwnica-Worms, D. R., et al. (2007). Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance. Immunity, 27(4), 635–646.CrossRefPubMed
48.
go back to reference Tang, Q., & Bluestone, J. A. (2008). The Foxp3+ regulatory T cell: a jack of all trades, master of regulation. Nature Immunology, 9(3), 239–244.CrossRefPubMed Tang, Q., & Bluestone, J. A. (2008). The Foxp3+ regulatory T cell: a jack of all trades, master of regulation. Nature Immunology, 9(3), 239–244.CrossRefPubMed
49.
go back to reference Okamoto, R., Ueno, M., Yamada, Y., Takahashi, N., Sano, H., Suda, T., et al. (2005). Hematopoietic cells regulate the angiogenic switch during tumorigenesis. Blood, 105(7), 2757–2763.CrossRefPubMed Okamoto, R., Ueno, M., Yamada, Y., Takahashi, N., Sano, H., Suda, T., et al. (2005). Hematopoietic cells regulate the angiogenic switch during tumorigenesis. Blood, 105(7), 2757–2763.CrossRefPubMed
50.
go back to reference De Palma, M., Venneri, M. A., Galli, R., Sergi Sergi, L., Politi, L. S., Sampaolesi, M., et al. (2005). Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell, 8(3), 211–226.CrossRefPubMed De Palma, M., Venneri, M. A., Galli, R., Sergi Sergi, L., Politi, L. S., Sampaolesi, M., et al. (2005). Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell, 8(3), 211–226.CrossRefPubMed
51.
go back to reference Coussens, L. M., Raymond, W. W., Bergers, G., Laig-Webster, M., Behrendtsen, O., Werb, Z., et al. (1999). Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes & Development, 13(11), 1382–1397.CrossRef Coussens, L. M., Raymond, W. W., Bergers, G., Laig-Webster, M., Behrendtsen, O., Werb, Z., et al. (1999). Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes & Development, 13(11), 1382–1397.CrossRef
52.
go back to reference Nozawa, H., Chiu, C., & Hanahan, D. (2006). Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America, 103(33), 12493–12498.CrossRefPubMed Nozawa, H., Chiu, C., & Hanahan, D. (2006). Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America, 103(33), 12493–12498.CrossRefPubMed
53.
go back to reference Takakura, N. (2006). Role of hematopoietic lineage cells as accessory components in blood vessel formation. Cancer Science, 97(7), 568–574.CrossRefPubMed Takakura, N. (2006). Role of hematopoietic lineage cells as accessory components in blood vessel formation. Cancer Science, 97(7), 568–574.CrossRefPubMed
54.
go back to reference Zou, W. (2005). Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nature Reviews. Cancer, 5(4), 263–274.CrossRefPubMed Zou, W. (2005). Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nature Reviews. Cancer, 5(4), 263–274.CrossRefPubMed
55.
go back to reference Blankenstein, T. (2005). The role of tumor stroma in the interaction between tumor and immune system. Current Opinion in Immunology, 17(2), 180–186.CrossRefPubMed Blankenstein, T. (2005). The role of tumor stroma in the interaction between tumor and immune system. Current Opinion in Immunology, 17(2), 180–186.CrossRefPubMed
56.
go back to reference Bronte, V., Cingarlini, S., Marigo, I., De Santo, C., Gallina, G., Dolcetti, L., et al. (2006). Leukocyte infiltration in cancer creates an unfavorable environment for antitumor immune responses: a novel target for therapeutic intervention. Immunological Investigations, 35(3–4), 327–357.CrossRefPubMed Bronte, V., Cingarlini, S., Marigo, I., De Santo, C., Gallina, G., Dolcetti, L., et al. (2006). Leukocyte infiltration in cancer creates an unfavorable environment for antitumor immune responses: a novel target for therapeutic intervention. Immunological Investigations, 35(3–4), 327–357.CrossRefPubMed
57.
go back to reference Condeelis, J., & Pollard, J. W. (2006). Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell, 124(2), 263–266.CrossRefPubMed Condeelis, J., & Pollard, J. W. (2006). Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell, 124(2), 263–266.CrossRefPubMed
58.
go back to reference Wyckoff, J., Wang, W., Lin, E. Y., Wang, Y., Pixley, F., Stanley, E. R., et al. (2004). A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Research, 64(19), 7022–7029.CrossRefPubMed Wyckoff, J., Wang, W., Lin, E. Y., Wang, Y., Pixley, F., Stanley, E. R., et al. (2004). A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Research, 64(19), 7022–7029.CrossRefPubMed
59.
go back to reference Lewis, C. E., & Pollard, J. W. (2006). Distinct role of macrophages in different tumor microenvironments. Cancer Research, 66(2), 605–612.CrossRefPubMed Lewis, C. E., & Pollard, J. W. (2006). Distinct role of macrophages in different tumor microenvironments. Cancer Research, 66(2), 605–612.CrossRefPubMed
60.
go back to reference De Palma, M., & Naldini, L. (2006). Role of haematopoietic cells and endothelial progenitors in tumour angiogenesis. Biochimica et Biophysica Acta, 1766(1), 159–166.PubMed De Palma, M., & Naldini, L. (2006). Role of haematopoietic cells and endothelial progenitors in tumour angiogenesis. Biochimica et Biophysica Acta, 1766(1), 159–166.PubMed
61.
go back to reference Coukos, G., Benencia, F., Buckanovich, R. J., & Conejo-Garcia, J. R. (2005). The role of dendritic cell precursors in tumour vasculogenesis. British Journal of Cancer, 92(7), 1182–1187.CrossRefPubMed Coukos, G., Benencia, F., Buckanovich, R. J., & Conejo-Garcia, J. R. (2005). The role of dendritic cell precursors in tumour vasculogenesis. British Journal of Cancer, 92(7), 1182–1187.CrossRefPubMed
62.
go back to reference Yang, L., Debusk, L. M., Fukuda, K., Fingleton, B., Green-Jarvis, B., Shyr, Y., et al. (2004). Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell, 6(4), 409–421.CrossRefPubMed Yang, L., Debusk, L. M., Fukuda, K., Fingleton, B., Green-Jarvis, B., Shyr, Y., et al. (2004). Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell, 6(4), 409–421.CrossRefPubMed
63.
go back to reference Serafini, P., Borrello, I., & Bronte, V. (2006). Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression. Seminars in Cancer Biology, 16(1), 53–65.CrossRefPubMed Serafini, P., Borrello, I., & Bronte, V. (2006). Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression. Seminars in Cancer Biology, 16(1), 53–65.CrossRefPubMed
64.
go back to reference Kisucka, J., Butterfield, C. E., Duda, D. G., Eichenberger, S. C., Saffaripour, S., Ware, J., et al. (2006). Platelets and platelet adhesion support angiogenesis while preventing excessive hemorrhage. Proceedings of the National Academy of Sciences of the United States of America, 103(4), 855–860.CrossRefPubMed Kisucka, J., Butterfield, C. E., Duda, D. G., Eichenberger, S. C., Saffaripour, S., Ware, J., et al. (2006). Platelets and platelet adhesion support angiogenesis while preventing excessive hemorrhage. Proceedings of the National Academy of Sciences of the United States of America, 103(4), 855–860.CrossRefPubMed
65.
go back to reference Puxeddu, I., Alian, A., Piliponsky, A. M., Ribatti, D., Panet, A., & Levi-Schaffer, F. (2005). Human peripheral blood eosinophils induce angiogenesis. International Journal of Biochemistry & Cell Biology, 37(3), 628–636.CrossRef Puxeddu, I., Alian, A., Piliponsky, A. M., Ribatti, D., Panet, A., & Levi-Schaffer, F. (2005). Human peripheral blood eosinophils induce angiogenesis. International Journal of Biochemistry & Cell Biology, 37(3), 628–636.CrossRef
66.
go back to reference Takakura, N., Watanabe, T., Suenobu, S., Yamada, Y., Noda, T., Ito, Y., et al. (2000). A role for hematopoietic stem cells in promoting angiogenesis. Cell, 102(2), 199–209.CrossRefPubMed Takakura, N., Watanabe, T., Suenobu, S., Yamada, Y., Noda, T., Ito, Y., et al. (2000). A role for hematopoietic stem cells in promoting angiogenesis. Cell, 102(2), 199–209.CrossRefPubMed
67.
go back to reference Hagemann, T., Lawrence, T., McNeish, I., Charles, K. A., Kulbe, H., Thompson, R. G., et al. (2008). “Re-educating” tumor-associated macrophages by targeting NF-kappaB. Journal of Experimental Medicine, 205(6), 1261–1268.CrossRefPubMed Hagemann, T., Lawrence, T., McNeish, I., Charles, K. A., Kulbe, H., Thompson, R. G., et al. (2008). “Re-educating” tumor-associated macrophages by targeting NF-kappaB. Journal of Experimental Medicine, 205(6), 1261–1268.CrossRefPubMed
68.
go back to reference Qian, B., Deng, Y., Im, J. H., Muschel, R. J., Zou, Y., Li, J., et al. (2009). A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth. PLoS One, 4(8), e6562.CrossRefPubMed Qian, B., Deng, Y., Im, J. H., Muschel, R. J., Zou, Y., Li, J., et al. (2009). A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth. PLoS One, 4(8), e6562.CrossRefPubMed
69.
go back to reference Corthay, A., Skovseth, D. K., Lundin, K. U., Rosjo, E., Omholt, H., Hofgaard, P. O., et al. (2005). Primary antitumor immune response mediated by CD4+ T cells. Immunity, 22(3), 371–383.CrossRefPubMed Corthay, A., Skovseth, D. K., Lundin, K. U., Rosjo, E., Omholt, H., Hofgaard, P. O., et al. (2005). Primary antitumor immune response mediated by CD4+ T cells. Immunity, 22(3), 371–383.CrossRefPubMed
70.
go back to reference Mantovani, A., Sica, A., & Locati, M. (2007). New vistas on macrophage differentiation and activation. European Journal of Immunology, 37(1), 14–16.CrossRefPubMed Mantovani, A., Sica, A., & Locati, M. (2007). New vistas on macrophage differentiation and activation. European Journal of Immunology, 37(1), 14–16.CrossRefPubMed
71.
go back to reference Mosser, D. M., & Edwards, J. P. (2008). Exploring the full spectrum of macrophage activation. Nature Reviews. Immunology, 8(12), 958–969.CrossRefPubMed Mosser, D. M., & Edwards, J. P. (2008). Exploring the full spectrum of macrophage activation. Nature Reviews. Immunology, 8(12), 958–969.CrossRefPubMed
72.
go back to reference Wynn, T. A. (2004). Fibrotic disease and the T(H)1/T(H)2 paradigm. Nature Reviews. Immunology, 4(8), 583–594.CrossRefPubMed Wynn, T. A. (2004). Fibrotic disease and the T(H)1/T(H)2 paradigm. Nature Reviews. Immunology, 4(8), 583–594.CrossRefPubMed
73.
go back to reference Mantovani, A., Sica, A., Sozzani, S., Allavena, P., Vecchi, A., & Locati, M. (2004). The chemokine system in diverse forms of macrophage activation and polarization. Trends in Immunology, 25(12), 677–686.CrossRefPubMed Mantovani, A., Sica, A., Sozzani, S., Allavena, P., Vecchi, A., & Locati, M. (2004). The chemokine system in diverse forms of macrophage activation and polarization. Trends in Immunology, 25(12), 677–686.CrossRefPubMed
74.
go back to reference Andreu, P., Johansson, M., Affara, N. I., Pucci, F., Tan, T., Junankar, S., et al. (2010). FcRgamma activation regulates inflammation-associated squamous carcinogenesis. Cancer Cell, 17, 121–134.CrossRefPubMed Andreu, P., Johansson, M., Affara, N. I., Pucci, F., Tan, T., Junankar, S., et al. (2010). FcRgamma activation regulates inflammation-associated squamous carcinogenesis. Cancer Cell, 17, 121–134.CrossRefPubMed
75.
go back to reference Kapsenberg, M. L., & Kalinski, P. (1999). The concept of type 1 and type 2 antigen-presenting cells. Immunology Letters, 69(1), 5–6.CrossRefPubMed Kapsenberg, M. L., & Kalinski, P. (1999). The concept of type 1 and type 2 antigen-presenting cells. Immunology Letters, 69(1), 5–6.CrossRefPubMed
76.
go back to reference Fridlender, Z. G., Sun, J., Kim, S., Kapoor, V., Cheng, G., Ling, L., et al. (2009). Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell, 16(3), 183–194.CrossRefPubMed Fridlender, Z. G., Sun, J., Kim, S., Kapoor, V., Cheng, G., Ling, L., et al. (2009). Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell, 16(3), 183–194.CrossRefPubMed
77.
go back to reference Hagemann, T., Wilson, J., Burke, F., Kulbe, H., Li, N. F., Pluddemann, A., et al. (2006). Ovarian cancer cells polarize macrophages toward a tumor-associated phenotype. Journal of Immunology, 176(8), 5023–5032. Hagemann, T., Wilson, J., Burke, F., Kulbe, H., Li, N. F., Pluddemann, A., et al. (2006). Ovarian cancer cells polarize macrophages toward a tumor-associated phenotype. Journal of Immunology, 176(8), 5023–5032.
78.
go back to reference Corthay, A. (2007). CD4+ T cells cooperate with macrophages for specific elimination of MHC class II-negative cancer cells. Advances in Experimental Medicine and Biology, 590, 195–208.CrossRefPubMed Corthay, A. (2007). CD4+ T cells cooperate with macrophages for specific elimination of MHC class II-negative cancer cells. Advances in Experimental Medicine and Biology, 590, 195–208.CrossRefPubMed
79.
go back to reference Newman, K. C., & Riley, E. M. (2007). Whatever turns you on: accessory-cell-dependent activation of NK cells by pathogens. Nature Reviews. Immunology, 7(4), 279–291.CrossRefPubMed Newman, K. C., & Riley, E. M. (2007). Whatever turns you on: accessory-cell-dependent activation of NK cells by pathogens. Nature Reviews. Immunology, 7(4), 279–291.CrossRefPubMed
80.
go back to reference Szekanecz, Z., & Koch, A. E. (2007). Macrophages and their products in rheumatoid arthritis. Current Opinion in Rheumatology, 19(3), 289–295.CrossRefPubMed Szekanecz, Z., & Koch, A. E. (2007). Macrophages and their products in rheumatoid arthritis. Current Opinion in Rheumatology, 19(3), 289–295.CrossRefPubMed
81.
go back to reference Tiemessen, M. M., Jagger, A. L., Evans, H. G., van Herwijnen, M. J., John, S., & Taams, L. S. (2007). CD4+CD25+Foxp3+ regulatory T cells induce alternative activation of human monocytes/macrophages. Proceedings of the National Academy of Sciences of the United States of America, 104(49), 19446–19451.CrossRefPubMed Tiemessen, M. M., Jagger, A. L., Evans, H. G., van Herwijnen, M. J., John, S., & Taams, L. S. (2007). CD4+CD25+Foxp3+ regulatory T cells induce alternative activation of human monocytes/macrophages. Proceedings of the National Academy of Sciences of the United States of America, 104(49), 19446–19451.CrossRefPubMed
82.
go back to reference Dilillo, D. J., Matsushita, T., & Tedder, T. F. (2010). B10 cells and regulatory B cells balance immune responses during inflammation, autoimmunity, and cancer. Annals of the New York Academy of Sciences, 1183, 38–57.CrossRefPubMed Dilillo, D. J., Matsushita, T., & Tedder, T. F. (2010). B10 cells and regulatory B cells balance immune responses during inflammation, autoimmunity, and cancer. Annals of the New York Academy of Sciences, 1183, 38–57.CrossRefPubMed
83.
go back to reference Mizoguchi, A., & Bhan, A. K. (2006). A case for regulatory B cells. Journal of Immunology, 176(2), 705–710. Mizoguchi, A., & Bhan, A. K. (2006). A case for regulatory B cells. Journal of Immunology, 176(2), 705–710.
84.
go back to reference Tan, T. T., & Coussens, L. M. (2007). Humoral immunity, inflammation and cancer. Current Opinion in Immunology, 19(2), 209–216.CrossRefPubMed Tan, T. T., & Coussens, L. M. (2007). Humoral immunity, inflammation and cancer. Current Opinion in Immunology, 19(2), 209–216.CrossRefPubMed
85.
go back to reference Inoue, S., Leitner, W. W., Golding, B., & Scott, D. (2006). Inhibitory effects of B cells on antitumor immunity. Cancer Research, 66(15), 7741–7747.CrossRefPubMed Inoue, S., Leitner, W. W., Golding, B., & Scott, D. (2006). Inhibitory effects of B cells on antitumor immunity. Cancer Research, 66(15), 7741–7747.CrossRefPubMed
86.
go back to reference Shah, S., Divekar, A. A., Hilchey, S. P., Cho, H. M., Newman, C. L., Shin, S. U., et al. (2005). Increased rejection of primary tumors in mice lacking B cells: inhibition of anti-tumor CTL and TH1 cytokine responses by B cells. International Journal of Cancer, 117(4), 574–586.CrossRef Shah, S., Divekar, A. A., Hilchey, S. P., Cho, H. M., Newman, C. L., Shin, S. U., et al. (2005). Increased rejection of primary tumors in mice lacking B cells: inhibition of anti-tumor CTL and TH1 cytokine responses by B cells. International Journal of Cancer, 117(4), 574–586.CrossRef
87.
go back to reference Barbera-Guillem, E., Nelson, M. B., Barr, B., Nyhus, J. K., May, K. F., Jr., Feng, L., et al. (2000). B lymphocyte pathology in human colorectal cancer. Experimental and clinical therapeutic effects of partial B cell depletion. Cancer Immunology and Immunotherapy, 48(10), 541–549.CrossRefPubMed Barbera-Guillem, E., Nelson, M. B., Barr, B., Nyhus, J. K., May, K. F., Jr., Feng, L., et al. (2000). B lymphocyte pathology in human colorectal cancer. Experimental and clinical therapeutic effects of partial B cell depletion. Cancer Immunology and Immunotherapy, 48(10), 541–549.CrossRefPubMed
88.
go back to reference Zapata, J. M., Llobet, D., Krajewska, M., Lefebvre, S., Kress, C. L., & Reed, J. C. (2009). Lymphocyte-specific TRAF3 transgenic mice have enhanced humoral responses and develop plasmacytosis, autoimmunity, inflammation, and cancer. Blood, 113(19), 4595–4603.CrossRefPubMed Zapata, J. M., Llobet, D., Krajewska, M., Lefebvre, S., Kress, C. L., & Reed, J. C. (2009). Lymphocyte-specific TRAF3 transgenic mice have enhanced humoral responses and develop plasmacytosis, autoimmunity, inflammation, and cancer. Blood, 113(19), 4595–4603.CrossRefPubMed
89.
go back to reference Qin, Z., Richter, G., Schuler, T., Ibe, S., Cao, X., & Blankenstein, T. (1998). B cells inhibit induction of T cell-dependent tumor immunity. Nature Medicine, 4(5), 627–630.CrossRefPubMed Qin, Z., Richter, G., Schuler, T., Ibe, S., Cao, X., & Blankenstein, T. (1998). B cells inhibit induction of T cell-dependent tumor immunity. Nature Medicine, 4(5), 627–630.CrossRefPubMed
90.
go back to reference Schreiber, H., Wu, T. H., Nachman, J., & Rowley, D. A. (2000). Immunological enhancement of primary tumor development and its prevention. Seminars in Cancer Biology, 10(5), 351–357.CrossRefPubMed Schreiber, H., Wu, T. H., Nachman, J., & Rowley, D. A. (2000). Immunological enhancement of primary tumor development and its prevention. Seminars in Cancer Biology, 10(5), 351–357.CrossRefPubMed
91.
go back to reference Wijesuriya, R., Maruo, S., Zou, J. P., Ogawa, M., Umehara, K., Yamashita, M., et al. (1998). B cell-mediated down-regulation of IFN-gamma and IL-12 production induced during anti-tumor immune responses in the tumor-bearing state. International Immunology, 10(8), 1057–1065.CrossRefPubMed Wijesuriya, R., Maruo, S., Zou, J. P., Ogawa, M., Umehara, K., Yamashita, M., et al. (1998). B cell-mediated down-regulation of IFN-gamma and IL-12 production induced during anti-tumor immune responses in the tumor-bearing state. International Immunology, 10(8), 1057–1065.CrossRefPubMed
92.
go back to reference Barbera-Guillem, E., May, K. F., Jr., Nyhus, J. K., & Nelson, M. B. (1999). Promotion of tumor invasion by cooperation of granulocytes and macrophages activated by anti-tumor antibodies. Neoplasia, 1(5), 453–460.CrossRefPubMed Barbera-Guillem, E., May, K. F., Jr., Nyhus, J. K., & Nelson, M. B. (1999). Promotion of tumor invasion by cooperation of granulocytes and macrophages activated by anti-tumor antibodies. Neoplasia, 1(5), 453–460.CrossRefPubMed
93.
go back to reference Coussens, L. M., Hanahan, D., & Arbeit, J. M. (1996). Genetic predisposition and parameters of malignant progression in K14- HPV16 transgenic mice. American Journal of Pathology, 149(6), 1899–1917.PubMed Coussens, L. M., Hanahan, D., & Arbeit, J. M. (1996). Genetic predisposition and parameters of malignant progression in K14- HPV16 transgenic mice. American Journal of Pathology, 149(6), 1899–1917.PubMed
94.
go back to reference Ammirante, M., Luo, J. L., Grivennikov, S., Dedospasov, S., & Karin, M. (2010). B-cell-derived lymphotoxin promotes castration-resistant prostate cancer. Nature, 464, 302–306.CrossRefPubMed Ammirante, M., Luo, J. L., Grivennikov, S., Dedospasov, S., & Karin, M. (2010). B-cell-derived lymphotoxin promotes castration-resistant prostate cancer. Nature, 464, 302–306.CrossRefPubMed
96.
go back to reference Colotta, F., Allavena, P., Sica, A., Garlanda, C., & Mantovani, A. (2009). Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis, 30(7), 1073–1081.CrossRefPubMed Colotta, F., Allavena, P., Sica, A., Garlanda, C., & Mantovani, A. (2009). Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis, 30(7), 1073–1081.CrossRefPubMed
Metadata
Title
Interactions between lymphocytes and myeloid cells regulate pro- versus anti-tumor immunity
Authors
David G. DeNardo
Pauline Andreu
Lisa M. Coussens
Publication date
01-06-2010
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 2/2010
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-010-9223-6

Other articles of this Issue 2/2010

Cancer and Metastasis Reviews 2/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine