Skip to main content
Top
Published in: Cancer and Metastasis Reviews 4/2015

01-12-2015 | NON-THEMATIC REVIEW

Neutrophils: important contributors to tumor progression and metastasis

Authors: Agnieszka Swierczak, Kellie A. Mouchemore, John A. Hamilton, Robin L. Anderson

Published in: Cancer and Metastasis Reviews | Issue 4/2015

Login to get access

Abstract

The presence of neutrophils in tumors has traditionally been considered to be indicative of a failed immune response against cancers. However, there is now evidence showing that neutrophils can promote tumor growth, and increasingly, the data support an active role for neutrophils in tumor progression to distant metastasis. Neutrophils have been implicated in promoting metastasis in cancer patients, where neutrophil numbers and neutrophil-related factors and functions have been associated with progressive disease. Nevertheless, the role of neutrophils in tumors, both at the primary and secondary sites, remains controversial, with some studies reporting their anti-tumor functions. This review will focus on the data demonstrating a role for neutrophils in both tumor growth and metastasis and will attempt to clarify the discrepancies in the literature.
Literature
2.
go back to reference Mantovani, A., Allavena, P., Sica, A., & Balkwill, F. (2008). Cancer-related inflammation. Nature, 454(7203), 436–444.PubMedCrossRef Mantovani, A., Allavena, P., Sica, A., & Balkwill, F. (2008). Cancer-related inflammation. Nature, 454(7203), 436–444.PubMedCrossRef
3.
go back to reference Pollard, J. W. (2004). Tumour-educated macrophages promote tumour progression and metastasis. Nature Reviews Cancer, 4(1), 71–78.PubMedCrossRef Pollard, J. W. (2004). Tumour-educated macrophages promote tumour progression and metastasis. Nature Reviews Cancer, 4(1), 71–78.PubMedCrossRef
4.
go back to reference Allavena, P., Sica, A., Solinas, G., Porta, C., & Mantovani, A. (2008). The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Critical Reviews in Oncology/Hematology, 66(1), 1–9.PubMedCrossRef Allavena, P., Sica, A., Solinas, G., Porta, C., & Mantovani, A. (2008). The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Critical Reviews in Oncology/Hematology, 66(1), 1–9.PubMedCrossRef
5.
go back to reference Chee, D. O., Townsend, C. M., Jr., Galbraith, M. A., Eilber, F. R., & Morton, D. L. (1978). Selective reduction of human tumor cell populations by human granulocytes in vitro. Cancer Research, 38(12), 4534–4539.PubMed Chee, D. O., Townsend, C. M., Jr., Galbraith, M. A., Eilber, F. R., & Morton, D. L. (1978). Selective reduction of human tumor cell populations by human granulocytes in vitro. Cancer Research, 38(12), 4534–4539.PubMed
6.
go back to reference Dvorak, A. M., Connell, A. B., Proppe, K., & Dvorak, H. F. (1978). Immunologic rejection of mammary adenocarcinoma (TA3-St) in C57BL/6 mice: participation of neutrophils and activated macrophages with fibrin formation. Journal of Immunology, 120(4), 1240–1248. Dvorak, A. M., Connell, A. B., Proppe, K., & Dvorak, H. F. (1978). Immunologic rejection of mammary adenocarcinoma (TA3-St) in C57BL/6 mice: participation of neutrophils and activated macrophages with fibrin formation. Journal of Immunology, 120(4), 1240–1248.
7.
go back to reference Di Carlo, E., Forni, G., & Musiani, P. (2003). Neutrophils in the antitumoral immune response. Chemical Immunology and Allergy, 83, 182–203.PubMedCrossRef Di Carlo, E., Forni, G., & Musiani, P. (2003). Neutrophils in the antitumoral immune response. Chemical Immunology and Allergy, 83, 182–203.PubMedCrossRef
8.
go back to reference Souto, J. C., Vila, L., & Bru, A. (2011). Polymorphonuclear neutrophils and cancer: intense and sustained neutrophilia as a treatment against solid tumors. Medicinal Research Reviews, 31(3), 311–363.PubMedCrossRef Souto, J. C., Vila, L., & Bru, A. (2011). Polymorphonuclear neutrophils and cancer: intense and sustained neutrophilia as a treatment against solid tumors. Medicinal Research Reviews, 31(3), 311–363.PubMedCrossRef
9.
go back to reference Yan, H. H., Pickup, M., Pang, Y., Gorska, A. E., Li, Z., Chytil, A., et al. (2010). Gr-1 + CD11b + myeloid cells tip the balance of immune protection to tumor promotion in the premetastatic lung. Cancer Research, 70(15), 6139–6149.PubMedCrossRef Yan, H. H., Pickup, M., Pang, Y., Gorska, A. E., Li, Z., Chytil, A., et al. (2010). Gr-1 + CD11b + myeloid cells tip the balance of immune protection to tumor promotion in the premetastatic lung. Cancer Research, 70(15), 6139–6149.PubMedCrossRef
10.
go back to reference Kaplan, R. N., Riba, R. D., Zacharoulis, S., Bramley, A. H., Vincent, L., Costa, C., et al. (2005). VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature, 438(7069), 820–827.PubMedCentralPubMedCrossRef Kaplan, R. N., Riba, R. D., Zacharoulis, S., Bramley, A. H., Vincent, L., Costa, C., et al. (2005). VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature, 438(7069), 820–827.PubMedCentralPubMedCrossRef
11.
go back to reference Colotta, F., Re, F., Polentarutti, N., Sozzani, S., & Mantovani, A. (1992). Modulation of granulocyte survival and programmed cell death by cytokines and bacterial products. Blood, 80(8), 2012–2020.PubMed Colotta, F., Re, F., Polentarutti, N., Sozzani, S., & Mantovani, A. (1992). Modulation of granulocyte survival and programmed cell death by cytokines and bacterial products. Blood, 80(8), 2012–2020.PubMed
12.
go back to reference Smith, J. A. (1994). Neutrophils, host defense, and inflammation: a double-edged sword. Journal of Leukocyte Biology, 56(6), 672–686.PubMed Smith, J. A. (1994). Neutrophils, host defense, and inflammation: a double-edged sword. Journal of Leukocyte Biology, 56(6), 672–686.PubMed
13.
go back to reference Ley, K., Laudanna, C., Cybulsky, M. I., & Nourshargh, S. (2007). Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nature Reviews Immunology, 7(9), 678–689.PubMedCrossRef Ley, K., Laudanna, C., Cybulsky, M. I., & Nourshargh, S. (2007). Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nature Reviews Immunology, 7(9), 678–689.PubMedCrossRef
14.
go back to reference Hermant, B., Bibert, S., Concord, E., Dublet, B., Weidenhaupt, M., Vernet, T., et al. (2003). Identification of proteases involved in the proteolysis of vascular endothelium cadherin during neutrophil transmigration. Journal of Biological Chemistry, 278(16), 14002–14012.PubMedCrossRef Hermant, B., Bibert, S., Concord, E., Dublet, B., Weidenhaupt, M., Vernet, T., et al. (2003). Identification of proteases involved in the proteolysis of vascular endothelium cadherin during neutrophil transmigration. Journal of Biological Chemistry, 278(16), 14002–14012.PubMedCrossRef
15.
go back to reference Nathan, C. (2006). Neutrophils and immunity: challenges and opportunities. Nature Reviews Immunology, 6(3), 173–182.PubMedCrossRef Nathan, C. (2006). Neutrophils and immunity: challenges and opportunities. Nature Reviews Immunology, 6(3), 173–182.PubMedCrossRef
16.
go back to reference Mantovani, A., Cassatella, M. A., Costantini, C., & Jaillon, S. (2011). Neutrophils in the activation and regulation of innate and adaptive immunity. Nature Reviews Immunology, 11(8), 519–531.PubMedCrossRef Mantovani, A., Cassatella, M. A., Costantini, C., & Jaillon, S. (2011). Neutrophils in the activation and regulation of innate and adaptive immunity. Nature Reviews Immunology, 11(8), 519–531.PubMedCrossRef
17.
go back to reference Gabrilovich, D. I., Bronte, V., Chen, S. H., Colombo, M. P., Ochoa, A., Ostrand-Rosenberg, S., et al. (2007). The terminology issue for myeloid-derived suppressor cells. Cancer Research, 67(1), 425. author reply 426.PubMedCentralPubMedCrossRef Gabrilovich, D. I., Bronte, V., Chen, S. H., Colombo, M. P., Ochoa, A., Ostrand-Rosenberg, S., et al. (2007). The terminology issue for myeloid-derived suppressor cells. Cancer Research, 67(1), 425. author reply 426.PubMedCentralPubMedCrossRef
18.
go back to reference Bronte, V., Apolloni, E., Cabrelle, A., Ronca, R., Serafini, P., Zamboni, P., et al. (2000). Identification of a CD11b+/Gr-1+/CD31+ myeloid progenitor capable of activating or suppressing CD8+ T cells. Blood, 96(12), 3838–3846.PubMedCentralPubMed Bronte, V., Apolloni, E., Cabrelle, A., Ronca, R., Serafini, P., Zamboni, P., et al. (2000). Identification of a CD11b+/Gr-1+/CD31+ myeloid progenitor capable of activating or suppressing CD8+ T cells. Blood, 96(12), 3838–3846.PubMedCentralPubMed
19.
go back to reference Movahedi, K., Guilliams, M., Van den Bossche, J., Van den Bergh, R., Gysemans, C., Beschin, A., et al. (2008). Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood, 111(8), 4233–4244.PubMedCrossRef Movahedi, K., Guilliams, M., Van den Bossche, J., Van den Bergh, R., Gysemans, C., Beschin, A., et al. (2008). Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood, 111(8), 4233–4244.PubMedCrossRef
20.
go back to reference Li, H., Han, Y., Guo, Q., Zhang, M., & Cao, X. (2009). Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1. Journal of Immunology, 182(1), 240–249.CrossRef Li, H., Han, Y., Guo, Q., Zhang, M., & Cao, X. (2009). Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1. Journal of Immunology, 182(1), 240–249.CrossRef
21.
go back to reference Rieber, N., Gille, C., Köstlin, N., Schäfer, I., Spring, B., Ost, M., et al. (2013). Neutrophilic myeloid-derived suppressor cells in cord blood modulate innate and adaptive immune responses. Clinical and Experimental Immunology, 174(1), 45–52.PubMedCentralPubMedCrossRef Rieber, N., Gille, C., Köstlin, N., Schäfer, I., Spring, B., Ost, M., et al. (2013). Neutrophilic myeloid-derived suppressor cells in cord blood modulate innate and adaptive immune responses. Clinical and Experimental Immunology, 174(1), 45–52.PubMedCentralPubMedCrossRef
22.
go back to reference Hoechst, B., Voigtlaender, T., Ormandy, L., Gamrekelashvili, J., Zhao, F., Wedemeyer, H., et al. (2009). Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology, 50(3), 799–807.PubMedCrossRef Hoechst, B., Voigtlaender, T., Ormandy, L., Gamrekelashvili, J., Zhao, F., Wedemeyer, H., et al. (2009). Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology, 50(3), 799–807.PubMedCrossRef
23.
go back to reference Cao, Y., Slaney, C. Y., Bidwell, B. N., Parker, B. S., Johnstone, C. N., Rautela, J., et al. (2014). BMP4 inhibits breast cancer metastasis by blocking myeloid-derived suppressor cell activity. Cancer Research, 74(18), 5091–5102.PubMedCrossRef Cao, Y., Slaney, C. Y., Bidwell, B. N., Parker, B. S., Johnstone, C. N., Rautela, J., et al. (2014). BMP4 inhibits breast cancer metastasis by blocking myeloid-derived suppressor cell activity. Cancer Research, 74(18), 5091–5102.PubMedCrossRef
24.
go back to reference Serafini, P., Mgebroff, S., Noonan, K., & Borrello, I. (2008). Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells. Cancer Research, 68(13), 5439–5449.PubMedCentralPubMedCrossRef Serafini, P., Mgebroff, S., Noonan, K., & Borrello, I. (2008). Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells. Cancer Research, 68(13), 5439–5449.PubMedCentralPubMedCrossRef
25.
go back to reference Rodriguez, P. C., Quiceno, D. G., Zabaleta, J., Ortiz, B., Zea, A. H., Piazuelo, M. B., et al. (2004). Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Research, 64(16), 5839–5849.PubMedCrossRef Rodriguez, P. C., Quiceno, D. G., Zabaleta, J., Ortiz, B., Zea, A. H., Piazuelo, M. B., et al. (2004). Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Research, 64(16), 5839–5849.PubMedCrossRef
26.
go back to reference Rotondo, R., Barisione, G., Mastracci, L., Grossi, F., Orengo, A. M., Costa, R., et al. (2009). IL-8 induces exocytosis of arginase 1 by neutrophil polymorphonuclears in nonsmall cell lung cancer. International Journal of Cancer, 125(4), 887–893.CrossRef Rotondo, R., Barisione, G., Mastracci, L., Grossi, F., Orengo, A. M., Costa, R., et al. (2009). IL-8 induces exocytosis of arginase 1 by neutrophil polymorphonuclears in nonsmall cell lung cancer. International Journal of Cancer, 125(4), 887–893.CrossRef
27.
go back to reference Schmielau, J., & Finn, O. J. (2001). Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of T-cell function in advanced cancer patients. Cancer Research, 61(12), 4756–4760.PubMed Schmielau, J., & Finn, O. J. (2001). Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of T-cell function in advanced cancer patients. Cancer Research, 61(12), 4756–4760.PubMed
28.
go back to reference Coffelt, S. B., Chen, Y. Y., Muthana, M., Welford, A. F., Tal, A. O., Scholz, A., et al. (2011). Angiopoietin 2 stimulates TIE2-expressing monocytes to suppress T cell activation and to promote regulatory T cell expansion. Journal of Immunology, 186(7), 4183–4190.CrossRef Coffelt, S. B., Chen, Y. Y., Muthana, M., Welford, A. F., Tal, A. O., Scholz, A., et al. (2011). Angiopoietin 2 stimulates TIE2-expressing monocytes to suppress T cell activation and to promote regulatory T cell expansion. Journal of Immunology, 186(7), 4183–4190.CrossRef
29.
go back to reference Almand, B., Clark, J. I., Nikitina, E., van Beynen, J., English, N. R., Knight, S. C., et al. (2001). Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. Journal of Immunology, 166(1), 678–689.CrossRef Almand, B., Clark, J. I., Nikitina, E., van Beynen, J., English, N. R., Knight, S. C., et al. (2001). Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. Journal of Immunology, 166(1), 678–689.CrossRef
30.
go back to reference Bronte, V., Chappell, D. B., Apolloni, E., Cabrelle, A., Wang, M., Hwu, P., et al. (1999). Unopposed production of granulocyte-macrophage colony-stimulating factor by tumors inhibits CD8+ T cell responses by dysregulating antigen-presenting cell maturation. Journal of Immunology, 162(10), 5728–5737. Bronte, V., Chappell, D. B., Apolloni, E., Cabrelle, A., Wang, M., Hwu, P., et al. (1999). Unopposed production of granulocyte-macrophage colony-stimulating factor by tumors inhibits CD8+ T cell responses by dysregulating antigen-presenting cell maturation. Journal of Immunology, 162(10), 5728–5737.
31.
go back to reference Youn, J. I., Kumar, V., Collazo, M., Nefedova, Y., Condamine, T., Cheng, P., et al. (2013). Epigenetic silencing of retinoblastoma gene regulates pathologic differentiation of myeloid cells in cancer. Nature Immunology, 14(3), 211–220.PubMedCentralPubMedCrossRef Youn, J. I., Kumar, V., Collazo, M., Nefedova, Y., Condamine, T., Cheng, P., et al. (2013). Epigenetic silencing of retinoblastoma gene regulates pathologic differentiation of myeloid cells in cancer. Nature Immunology, 14(3), 211–220.PubMedCentralPubMedCrossRef
32.
go back to reference Sawanobori, Y., Ueha, S., Kurachi, M., Shimaoka, T., Talmadge, J. E., Abe, J., et al. (2008). Chemokine-mediated rapid turnover of myeloid-derived suppressor cells in tumor-bearing mice. Blood, 111(12), 5457–5466.PubMedCrossRef Sawanobori, Y., Ueha, S., Kurachi, M., Shimaoka, T., Talmadge, J. E., Abe, J., et al. (2008). Chemokine-mediated rapid turnover of myeloid-derived suppressor cells in tumor-bearing mice. Blood, 111(12), 5457–5466.PubMedCrossRef
33.
go back to reference Youn, J. I., Nagaraj, S., Collazo, M., & Gabrilovich, D. I. (2008). Subsets of myeloid-derived suppressor cells in tumor-bearing mice. Journal of Immunology, 181(8), 5791–5802.CrossRef Youn, J. I., Nagaraj, S., Collazo, M., & Gabrilovich, D. I. (2008). Subsets of myeloid-derived suppressor cells in tumor-bearing mice. Journal of Immunology, 181(8), 5791–5802.CrossRef
34.
go back to reference Augier, S., Ciucci, T., Luci, C., Carle, G. F., Blin-Wakkach, C., & Wakkach, A. (2010). Inflammatory blood monocytes contribute to tumor development and represent a privileged target to improve host immunosurveillance. Journal of Immunology, 185(12), 7165–7173.CrossRef Augier, S., Ciucci, T., Luci, C., Carle, G. F., Blin-Wakkach, C., & Wakkach, A. (2010). Inflammatory blood monocytes contribute to tumor development and represent a privileged target to improve host immunosurveillance. Journal of Immunology, 185(12), 7165–7173.CrossRef
35.
go back to reference Fleming, T. J., Fleming, M. L., & Malek, T. R. (1993). Selective expression of Ly-6G on myeloid lineage cells in mouse bone marrow. RB6-8C5 mAb to granulocyte-differentiation antigen (Gr-1) detects members of the Ly-6 family. Journal of Immunology, 151(5), 2399–2408. Fleming, T. J., Fleming, M. L., & Malek, T. R. (1993). Selective expression of Ly-6G on myeloid lineage cells in mouse bone marrow. RB6-8C5 mAb to granulocyte-differentiation antigen (Gr-1) detects members of the Ly-6 family. Journal of Immunology, 151(5), 2399–2408.
36.
go back to reference Rose, S., Misharin, A., & Perlman, H. (2012). A novel Ly6C/Ly6G-based strategy to analyze the mouse splenic myeloid compartment. Cytometry. Part A, 81(4), 343–350.CrossRef Rose, S., Misharin, A., & Perlman, H. (2012). A novel Ly6C/Ly6G-based strategy to analyze the mouse splenic myeloid compartment. Cytometry. Part A, 81(4), 343–350.CrossRef
37.
go back to reference Kusmartsev, S., & Gabrilovich, D. I. (2005). STAT1 signaling regulates tumor-associated macrophage-mediated T cell deletion. Journal of Immunology, 174(8), 4880–4891.CrossRef Kusmartsev, S., & Gabrilovich, D. I. (2005). STAT1 signaling regulates tumor-associated macrophage-mediated T cell deletion. Journal of Immunology, 174(8), 4880–4891.CrossRef
38.
go back to reference Yang, L., DeBusk, L. M., Fukuda, K., Fingleton, B., Green-Jarvis, B., Shyr, Y., et al. (2004). Expansion of myeloid immune suppressor Gr + CD11b + cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell, 6(4), 409–421.PubMedCrossRef Yang, L., DeBusk, L. M., Fukuda, K., Fingleton, B., Green-Jarvis, B., Shyr, Y., et al. (2004). Expansion of myeloid immune suppressor Gr + CD11b + cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell, 6(4), 409–421.PubMedCrossRef
39.
go back to reference Peranzoni, E., Zilio, S., Marigo, I., Dolcetti, L., Zanovello, P., Mandruzzato, S., et al. (2010). Myeloid-derived suppressor cell heterogeneity and subset definition. Current Opinion in Immunology, 22(2), 238–244.PubMedCrossRef Peranzoni, E., Zilio, S., Marigo, I., Dolcetti, L., Zanovello, P., Mandruzzato, S., et al. (2010). Myeloid-derived suppressor cell heterogeneity and subset definition. Current Opinion in Immunology, 22(2), 238–244.PubMedCrossRef
40.
go back to reference Kowanetz, M., Wu, X., Lee, J., Tan, M., Hagenbeek, T., Qu, X., et al. (2010). Granulocyte-colony stimulating factor promotes lung metastasis through mobilization of Ly6G + Ly6C+ granulocytes. Proceedings of the National Academy of Sciences of the United States of America, 107(50), 21248–21255.PubMedCentralPubMedCrossRef Kowanetz, M., Wu, X., Lee, J., Tan, M., Hagenbeek, T., Qu, X., et al. (2010). Granulocyte-colony stimulating factor promotes lung metastasis through mobilization of Ly6G + Ly6C+ granulocytes. Proceedings of the National Academy of Sciences of the United States of America, 107(50), 21248–21255.PubMedCentralPubMedCrossRef
41.
go back to reference Lenzo, J. C., Turner, A. L., Cook, A. D., Vlahos, R., Anderson, G. P., Reynolds, E. C., et al. (2011). Control of macrophage lineage populations by CSF-1 receptor and GM-CSF in homeostasis and inflammation. Immunology and Cell Biology, 90(4), 429–40.PubMedCrossRef Lenzo, J. C., Turner, A. L., Cook, A. D., Vlahos, R., Anderson, G. P., Reynolds, E. C., et al. (2011). Control of macrophage lineage populations by CSF-1 receptor and GM-CSF in homeostasis and inflammation. Immunology and Cell Biology, 90(4), 429–40.PubMedCrossRef
42.
go back to reference Movahedi, K., Laoui, D., Gysemans, C., Baeten, M., Stange, G., Van den Bossche, J., et al. (2010). Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C (high) monocytes. Cancer Research, 70(14), 5728–5739.PubMedCrossRef Movahedi, K., Laoui, D., Gysemans, C., Baeten, M., Stange, G., Van den Bossche, J., et al. (2010). Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C (high) monocytes. Cancer Research, 70(14), 5728–5739.PubMedCrossRef
43.
go back to reference Granot, Z., Henke, E., Comen, E. A., King, T. A., Norton, L., & Benezra, R. (2011). Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell, 20(3), 300–314.PubMedCentralPubMedCrossRef Granot, Z., Henke, E., Comen, E. A., King, T. A., Norton, L., & Benezra, R. (2011). Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell, 20(3), 300–314.PubMedCentralPubMedCrossRef
44.
go back to reference Bao, Y., & Cao, X. (2011). Revisiting the protective and pathogenic roles of neutrophils: Ly-6G is key! European Journal of Immunology, 41(9), 2535–2538.PubMedCrossRef Bao, Y., & Cao, X. (2011). Revisiting the protective and pathogenic roles of neutrophils: Ly-6G is key! European Journal of Immunology, 41(9), 2535–2538.PubMedCrossRef
45.
go back to reference Carr, K. D., Sieve, A. N., Indramohan, M., Break, T. J., Lee, S., & Berg, R. E. (2011). Specific depletion reveals a novel role for neutrophil-mediated protection in the liver during Listeria monocytogenes infection. European Journal of Immunology, 41(9), 2666–2676.PubMedCentralPubMedCrossRef Carr, K. D., Sieve, A. N., Indramohan, M., Break, T. J., Lee, S., & Berg, R. E. (2011). Specific depletion reveals a novel role for neutrophil-mediated protection in the liver during Listeria monocytogenes infection. European Journal of Immunology, 41(9), 2666–2676.PubMedCentralPubMedCrossRef
46.
go back to reference Bingle, L., Brown, N. J., & Lewis, C. E. (2002). The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. Journal of Pathology, 196(3), 254–265.PubMedCrossRef Bingle, L., Brown, N. J., & Lewis, C. E. (2002). The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. Journal of Pathology, 196(3), 254–265.PubMedCrossRef
47.
go back to reference Condeelis, J., & Pollard, J. W. (2006). Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell, 124(2), 263–266.PubMedCrossRef Condeelis, J., & Pollard, J. W. (2006). Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell, 124(2), 263–266.PubMedCrossRef
48.
go back to reference Mantovani, A., Schioppa, T., Porta, C., Allavena, P., & Sica, A. (2006). Role of tumor-associated macrophages in tumor progression and invasion. Cancer and Metastasis Reviews, 25(3), 315–322.PubMedCrossRef Mantovani, A., Schioppa, T., Porta, C., Allavena, P., & Sica, A. (2006). Role of tumor-associated macrophages in tumor progression and invasion. Cancer and Metastasis Reviews, 25(3), 315–322.PubMedCrossRef
49.
go back to reference Kershaw, M. H., Trapani, J. A., & Smyth, M. J. (1995). Cytotoxic lymphocytes: redirecting the cell-mediated immune response for the therapy of cancer. Therapeutic Immunology, 2(3), 173–181.PubMed Kershaw, M. H., Trapani, J. A., & Smyth, M. J. (1995). Cytotoxic lymphocytes: redirecting the cell-mediated immune response for the therapy of cancer. Therapeutic Immunology, 2(3), 173–181.PubMed
50.
go back to reference Ghiringhelli, F., Menard, C., Martin, F., & Zitvogel, L. (2006). The role of regulatory T cells in the control of natural killer cells: relevance during tumor progression. Immunology Reviews, 214, 229–238.CrossRef Ghiringhelli, F., Menard, C., Martin, F., & Zitvogel, L. (2006). The role of regulatory T cells in the control of natural killer cells: relevance during tumor progression. Immunology Reviews, 214, 229–238.CrossRef
51.
go back to reference Orentas, R. J., Kohler, M. E., & Johnson, B. D. (2006). Suppression of anti-cancer immunity by regulatory T cells: back to the future. Seminars in Cancer Biology, 16(2), 137–149.PubMedCrossRef Orentas, R. J., Kohler, M. E., & Johnson, B. D. (2006). Suppression of anti-cancer immunity by regulatory T cells: back to the future. Seminars in Cancer Biology, 16(2), 137–149.PubMedCrossRef
52.
go back to reference Mougiakakos, D., Choudhury, A., Lladser, A., Kiessling, R., & Johansson, C. C. (2010). Regulatory T cells in cancer. Advances in Cancer Research, 107, 57–117.PubMedCrossRef Mougiakakos, D., Choudhury, A., Lladser, A., Kiessling, R., & Johansson, C. C. (2010). Regulatory T cells in cancer. Advances in Cancer Research, 107, 57–117.PubMedCrossRef
53.
go back to reference Draca, S. R. (1993). The participation of natural cytotoxicity in the control of malignant disease. Panminerva Medica, 35(3), 123–126.PubMed Draca, S. R. (1993). The participation of natural cytotoxicity in the control of malignant disease. Panminerva Medica, 35(3), 123–126.PubMed
54.
go back to reference Alderson, K. L., & Sondel, P. M. (2011). Clinical cancer therapy by NK cells via antibody-dependent cell-mediated cytotoxicity. Journal of Biomedicine and Biotechnology, 2011, 379123.PubMedCentralPubMedCrossRef Alderson, K. L., & Sondel, P. M. (2011). Clinical cancer therapy by NK cells via antibody-dependent cell-mediated cytotoxicity. Journal of Biomedicine and Biotechnology, 2011, 379123.PubMedCentralPubMedCrossRef
55.
go back to reference Gillgrass, A., & Ashkar, A. (2011). Stimulating natural killer cells to protect against cancer: recent developments. Expert Review of Clinical Immunology, 7(3), 367–382.PubMedCrossRef Gillgrass, A., & Ashkar, A. (2011). Stimulating natural killer cells to protect against cancer: recent developments. Expert Review of Clinical Immunology, 7(3), 367–382.PubMedCrossRef
56.
go back to reference Johnson, G. R., Whitehead, R., & Nicola, N. A. (1985). Effects of a murine mammary tumor on in vivo and in vitro hemopoiesis. International Journal of Cell Cloning, 3(2), 91–105.PubMedCrossRef Johnson, G. R., Whitehead, R., & Nicola, N. A. (1985). Effects of a murine mammary tumor on in vivo and in vitro hemopoiesis. International Journal of Cell Cloning, 3(2), 91–105.PubMedCrossRef
57.
go back to reference Hardy, C. L., & Balducci, L. (1986). Early hematopoietic events during tumor growth in mice. Journal of the National Cancer Institute, 76(3), 535–540.PubMed Hardy, C. L., & Balducci, L. (1986). Early hematopoietic events during tumor growth in mice. Journal of the National Cancer Institute, 76(3), 535–540.PubMed
58.
go back to reference Wislez, M., Rabbe, N., Marchal, J., Milleron, B., Crestani, B., Mayaud, C., et al. (2003). Hepatocyte growth factor production by neutrophils infiltrating bronchioloalveolar subtype pulmonary adenocarcinoma: role in tumor progression and death. Cancer Research, 63(6), 1405–1412.PubMed Wislez, M., Rabbe, N., Marchal, J., Milleron, B., Crestani, B., Mayaud, C., et al. (2003). Hepatocyte growth factor production by neutrophils infiltrating bronchioloalveolar subtype pulmonary adenocarcinoma: role in tumor progression and death. Cancer Research, 63(6), 1405–1412.PubMed
59.
go back to reference Bellocq, A., Antoine, M., Flahault, A., Philippe, C., Crestani, B., Bernaudin, J. F., et al. (1998). Neutrophil alveolitis in bronchioloalveolar carcinoma: induction by tumor-derived interleukin-8 and relation to clinical outcome. American Journal of Pathology, 152(1), 83–92.PubMedCentralPubMed Bellocq, A., Antoine, M., Flahault, A., Philippe, C., Crestani, B., Bernaudin, J. F., et al. (1998). Neutrophil alveolitis in bronchioloalveolar carcinoma: induction by tumor-derived interleukin-8 and relation to clinical outcome. American Journal of Pathology, 152(1), 83–92.PubMedCentralPubMed
60.
go back to reference Clark, R. A., & Klebanoff, S. J. (1975). Neutrophil-mediated tumor cell cytotoxicity: role of the peroxidase system. Journal of Experimental Medicine, 141(6), 1442–1447.PubMedCrossRef Clark, R. A., & Klebanoff, S. J. (1975). Neutrophil-mediated tumor cell cytotoxicity: role of the peroxidase system. Journal of Experimental Medicine, 141(6), 1442–1447.PubMedCrossRef
61.
go back to reference Kondo, M., Kato, H., Yoshikawa, T., & Sugino, S. (1986). Treatment of cancer ascites by intraperitoneal administration of a streptococcal preparation OK-432 with fresh human complement—role of complement-derived chemotactic factor to neutrophils. International Journal of Immunopharmacology, 8(7), 715–721.PubMedCrossRef Kondo, M., Kato, H., Yoshikawa, T., & Sugino, S. (1986). Treatment of cancer ascites by intraperitoneal administration of a streptococcal preparation OK-432 with fresh human complement—role of complement-derived chemotactic factor to neutrophils. International Journal of Immunopharmacology, 8(7), 715–721.PubMedCrossRef
62.
go back to reference Lichtenstein, A. (1987). Stimulation of the respiratory burst of murine peritoneal inflammatory neutrophils by conjugation with tumor cells. Cancer Research, 47(9), 2211–2217.PubMed Lichtenstein, A. (1987). Stimulation of the respiratory burst of murine peritoneal inflammatory neutrophils by conjugation with tumor cells. Cancer Research, 47(9), 2211–2217.PubMed
63.
go back to reference Lichtenstein, A., & Kahle, J. (1985). Anti-tumor effect of inflammatory neutrophils: characteristics of in vivo generation and in vitro tumor cell lysis. International Journal of Cancer, 35(1), 121–127.CrossRef Lichtenstein, A., & Kahle, J. (1985). Anti-tumor effect of inflammatory neutrophils: characteristics of in vivo generation and in vitro tumor cell lysis. International Journal of Cancer, 35(1), 121–127.CrossRef
64.
go back to reference Pickaver, A. H., Ratcliffe, N. A., Williams, A. E., & Smith, H. (1972). Cytotoxic effects of peritoneal neutrophils on a syngeneic rat tumour. Nature - New Biology, 235(58), 186–187.PubMedCrossRef Pickaver, A. H., Ratcliffe, N. A., Williams, A. E., & Smith, H. (1972). Cytotoxic effects of peritoneal neutrophils on a syngeneic rat tumour. Nature - New Biology, 235(58), 186–187.PubMedCrossRef
65.
go back to reference Inoue, T., & Sendo, F. (1983). In vitro induction of cytotoxic polymorphonuclear leukocytes by supernatant from a concanavalin A-stimulated spleen cell culture. Journal of Immunology, 131(5), 2508–2514. Inoue, T., & Sendo, F. (1983). In vitro induction of cytotoxic polymorphonuclear leukocytes by supernatant from a concanavalin A-stimulated spleen cell culture. Journal of Immunology, 131(5), 2508–2514.
66.
go back to reference Colombo, M. P., Lombardi, L., Stoppacciaro, A., Melani, C., Parenza, M., Bottazzi, B., et al. (1992). Granulocyte colony-stimulating factor (G-CSF) gene transduction in murine adenocarcinoma drives neutrophil-mediated tumor inhibition in vivo. Neutrophils discriminate between G-CSF-producing and G-CSF-nonproducing tumor cells. Journal of Immunology, 149(1), 113–119. Colombo, M. P., Lombardi, L., Stoppacciaro, A., Melani, C., Parenza, M., Bottazzi, B., et al. (1992). Granulocyte colony-stimulating factor (G-CSF) gene transduction in murine adenocarcinoma drives neutrophil-mediated tumor inhibition in vivo. Neutrophils discriminate between G-CSF-producing and G-CSF-nonproducing tumor cells. Journal of Immunology, 149(1), 113–119.
67.
go back to reference Musiani, P., Allione, A., Modica, A., Lollini, P. L., Giovarelli, M., Cavallo, F., et al. (1996). Role of neutrophils and lymphocytes in inhibition of a mouse mammary adenocarcinoma engineered to release IL-2, IL-4, IL-7, IL-10, IFN-alpha, IFN-gamma, and TNF-alpha. Laboratory Investigation, 74(1), 146–157.PubMed Musiani, P., Allione, A., Modica, A., Lollini, P. L., Giovarelli, M., Cavallo, F., et al. (1996). Role of neutrophils and lymphocytes in inhibition of a mouse mammary adenocarcinoma engineered to release IL-2, IL-4, IL-7, IL-10, IFN-alpha, IFN-gamma, and TNF-alpha. Laboratory Investigation, 74(1), 146–157.PubMed
68.
go back to reference Colombo, M. P., Ferrari, G., Stoppacciaro, A., Parenza, M., Rodolfo, M., Mavilio, F., et al. (1991). Granulocyte colony-stimulating factor gene transfer suppresses tumorigenicity of a murine adenocarcinoma in vivo. Journal of Experimental Medicine, 173(4), 889–897.PubMedCrossRef Colombo, M. P., Ferrari, G., Stoppacciaro, A., Parenza, M., Rodolfo, M., Mavilio, F., et al. (1991). Granulocyte colony-stimulating factor gene transfer suppresses tumorigenicity of a murine adenocarcinoma in vivo. Journal of Experimental Medicine, 173(4), 889–897.PubMedCrossRef
69.
go back to reference Aeed, P. A., Nakajima, M., & Welch, D. R. (1988). The role of polymorphonuclear leukocytes (PMN) on the growth and metastatic potential of 13762NF mammary adenocarcinoma cells. International Journal of Cancer, 42(5), 748–759.CrossRef Aeed, P. A., Nakajima, M., & Welch, D. R. (1988). The role of polymorphonuclear leukocytes (PMN) on the growth and metastatic potential of 13762NF mammary adenocarcinoma cells. International Journal of Cancer, 42(5), 748–759.CrossRef
70.
go back to reference Aeed, P. A., & Welch, D. R. (1988). Sensitivity of locally recurrent rat mammary tumour cell lines to syngeneic polymorphonuclear cell, macrophage and natural killer cell cytolysis. British Journal of Cancer, 58(6), 746–752.PubMedCentralPubMedCrossRef Aeed, P. A., & Welch, D. R. (1988). Sensitivity of locally recurrent rat mammary tumour cell lines to syngeneic polymorphonuclear cell, macrophage and natural killer cell cytolysis. British Journal of Cancer, 58(6), 746–752.PubMedCentralPubMedCrossRef
71.
go back to reference Dallegri, F., Ballestrero, A., Ottonello, L., & Patrone, F. (1989). Defective antibody-dependent tumour cell lysis by neutrophils from cancer patients. Clinical and Experimental Immunology, 77(1), 58–61.PubMedCentralPubMed Dallegri, F., Ballestrero, A., Ottonello, L., & Patrone, F. (1989). Defective antibody-dependent tumour cell lysis by neutrophils from cancer patients. Clinical and Experimental Immunology, 77(1), 58–61.PubMedCentralPubMed
72.
go back to reference Trellakis, S., Bruderek, K., Dumitru, C. A., Gholaman, H., Gu, X., Bankfalvi, A., et al. (2010). Polymorphonuclear granulocytes in human head and neck cancer: enhanced inflammatory activity, modulation by cancer cells and expansion in advanced disease. International Journal of Cancer, 129(9), 2183–2193.CrossRef Trellakis, S., Bruderek, K., Dumitru, C. A., Gholaman, H., Gu, X., Bankfalvi, A., et al. (2010). Polymorphonuclear granulocytes in human head and neck cancer: enhanced inflammatory activity, modulation by cancer cells and expansion in advanced disease. International Journal of Cancer, 129(9), 2183–2193.CrossRef
73.
go back to reference Tazzyman, S., Barry, S. T., Ashton, S., Wood, P., Blakey, D., Lewis, C. E., et al. (2011). Inhibition of neutrophil infiltration into A549 lung tumors in vitro and in vivo using a CXCR2-specific antagonist is associated with reduced tumor growth. International Journal of Cancer, 129(4), 847–58.CrossRef Tazzyman, S., Barry, S. T., Ashton, S., Wood, P., Blakey, D., Lewis, C. E., et al. (2011). Inhibition of neutrophil infiltration into A549 lung tumors in vitro and in vivo using a CXCR2-specific antagonist is associated with reduced tumor growth. International Journal of Cancer, 129(4), 847–58.CrossRef
74.
go back to reference Shang, K., Bai, Y. P., Wang, C., Wang, Z., Gu, H. Y., Du, X., et al. (2012). Crucial involvement of tumor-associated neutrophils in the regulation of chronic colitis-associated carcinogenesis in mice. PLoS One, 7(12), e51848.PubMedCentralPubMedCrossRef Shang, K., Bai, Y. P., Wang, C., Wang, Z., Gu, H. Y., Du, X., et al. (2012). Crucial involvement of tumor-associated neutrophils in the regulation of chronic colitis-associated carcinogenesis in mice. PLoS One, 7(12), e51848.PubMedCentralPubMedCrossRef
75.
go back to reference Tazawa, H., Okada, F., Kobayashi, T., Tada, M., Mori, Y., Une, Y., et al. (2003). Infiltration of neutrophils is required for acquisition of metastatic phenotype of benign murine fibrosarcoma cells: implication of inflammation-associated carcinogenesis and tumor progression. American Journal of Pathology, 163(6), 2221–2232.PubMedCentralPubMedCrossRef Tazawa, H., Okada, F., Kobayashi, T., Tada, M., Mori, Y., Une, Y., et al. (2003). Infiltration of neutrophils is required for acquisition of metastatic phenotype of benign murine fibrosarcoma cells: implication of inflammation-associated carcinogenesis and tumor progression. American Journal of Pathology, 163(6), 2221–2232.PubMedCentralPubMedCrossRef
76.
go back to reference Ishikawa, M., Koga, Y., Hosokawa, M., & Kobayashi, H. (1986). Augmentation of B16 melanoma lung colony formation in C57BL/6 mice having marked granulocytosis. International Journal of Cancer, 37(6), 919–924.CrossRef Ishikawa, M., Koga, Y., Hosokawa, M., & Kobayashi, H. (1986). Augmentation of B16 melanoma lung colony formation in C57BL/6 mice having marked granulocytosis. International Journal of Cancer, 37(6), 919–924.CrossRef
77.
go back to reference Jung, M. R., Park, Y. K., Jeong, O., Seon, J. W., Ryu, S. Y., Kim, D. Y., et al. (2011). Elevated preoperative neutrophil to lymphocyte ratio predicts poor survival following resection in late stage gastric cancer. Journal of Surgical Oncology, 104(5), 504–510.PubMedCrossRef Jung, M. R., Park, Y. K., Jeong, O., Seon, J. W., Ryu, S. Y., Kim, D. Y., et al. (2011). Elevated preoperative neutrophil to lymphocyte ratio predicts poor survival following resection in late stage gastric cancer. Journal of Surgical Oncology, 104(5), 504–510.PubMedCrossRef
78.
go back to reference Shimada, H., Takiguchi, N., Kainuma, O., Soda, H., Ikeda, A., Cho, A., et al. (2010). High preoperative neutrophil-lymphocyte ratio predicts poor survival in patients with gastric cancer. Gastric Cancer, 13(3), 170–176.PubMedCrossRef Shimada, H., Takiguchi, N., Kainuma, O., Soda, H., Ikeda, A., Cho, A., et al. (2010). High preoperative neutrophil-lymphocyte ratio predicts poor survival in patients with gastric cancer. Gastric Cancer, 13(3), 170–176.PubMedCrossRef
79.
go back to reference Ubukata, H., Konishi, S., Nagata, H., Kasuga, N., Watanabe, Y., Goto, Y., et al. (2010). Significance of preoperative evaluations of tumor necrosis factor-alpha, the granulocyte/lymphocyte ratio and their correlation with regard to outcome in gastric cancer patients. Digestive Surgery, 27(4), 324–330.PubMedCrossRef Ubukata, H., Konishi, S., Nagata, H., Kasuga, N., Watanabe, Y., Goto, Y., et al. (2010). Significance of preoperative evaluations of tumor necrosis factor-alpha, the granulocyte/lymphocyte ratio and their correlation with regard to outcome in gastric cancer patients. Digestive Surgery, 27(4), 324–330.PubMedCrossRef
80.
go back to reference Ding, P. R., An, X., Zhang, R. X., Fang, Y. J., Li, L. R., Chen, G., et al. (2010). Elevated preoperative neutrophil to lymphocyte ratio predicts risk of recurrence following curative resection for stage IIA colon cancer. International Journal of Colorectal Disease, 25(12), 1427–1433.PubMedCrossRef Ding, P. R., An, X., Zhang, R. X., Fang, Y. J., Li, L. R., Chen, G., et al. (2010). Elevated preoperative neutrophil to lymphocyte ratio predicts risk of recurrence following curative resection for stage IIA colon cancer. International Journal of Colorectal Disease, 25(12), 1427–1433.PubMedCrossRef
81.
go back to reference Roxburgh, C. S., Wallace, A. M., Guthrie, G. K., Horgan, P. G., & McMillan, D. C. (2010). Comparison of the prognostic value of tumour- and patient-related factors in patients undergoing potentially curative surgery for colon cancer. Colorectal Disease, 12(10), 987–994.PubMedCrossRef Roxburgh, C. S., Wallace, A. M., Guthrie, G. K., Horgan, P. G., & McMillan, D. C. (2010). Comparison of the prognostic value of tumour- and patient-related factors in patients undergoing potentially curative surgery for colon cancer. Colorectal Disease, 12(10), 987–994.PubMedCrossRef
82.
go back to reference Chua, W., Charles, K. A., Baracos, V. E., & Clarke, S. J. (2011). Neutrophil/lymphocyte ratio predicts chemotherapy outcomes in patients with advanced colorectal cancer. British Journal of Cancer, 104(8), 1288–1295.PubMedCentralPubMedCrossRef Chua, W., Charles, K. A., Baracos, V. E., & Clarke, S. J. (2011). Neutrophil/lymphocyte ratio predicts chemotherapy outcomes in patients with advanced colorectal cancer. British Journal of Cancer, 104(8), 1288–1295.PubMedCentralPubMedCrossRef
83.
go back to reference Tomita, M., Shimizu, T., Ayabe, T., Yonei, A., & Onitsuka, T. (2011). Preoperative neutrophil to lymphocyte ratio as a prognostic predictor after curative resection for non-small cell lung cancer. Anticancer Research, 31(9), 2995–2998.PubMed Tomita, M., Shimizu, T., Ayabe, T., Yonei, A., & Onitsuka, T. (2011). Preoperative neutrophil to lymphocyte ratio as a prognostic predictor after curative resection for non-small cell lung cancer. Anticancer Research, 31(9), 2995–2998.PubMed
84.
go back to reference Sharaiha, R. Z., Halazun, K. J., Mirza, F., Port, J. L., Lee, P. C., Neugut, A. I., et al. (2011). Elevated preoperative neutrophil: lymphocyte ratio as a predictor of postoperative disease recurrence in esophageal cancer. Annals of Surgical Oncology, 18(12), 3362–9.PubMedCentralPubMedCrossRef Sharaiha, R. Z., Halazun, K. J., Mirza, F., Port, J. L., Lee, P. C., Neugut, A. I., et al. (2011). Elevated preoperative neutrophil: lymphocyte ratio as a predictor of postoperative disease recurrence in esophageal cancer. Annals of Surgical Oncology, 18(12), 3362–9.PubMedCentralPubMedCrossRef
85.
go back to reference Aliustaoglu, M., Bilici, A., Seker, M., Dane, F., Gocun, M., Konya, V., et al. (2010). The association of pre-treatment peripheral blood markers with survival in patients with pancreatic cancer. Hepato-Gastroenterology, 57(99–100), 640–645.PubMed Aliustaoglu, M., Bilici, A., Seker, M., Dane, F., Gocun, M., Konya, V., et al. (2010). The association of pre-treatment peripheral blood markers with survival in patients with pancreatic cancer. Hepato-Gastroenterology, 57(99–100), 640–645.PubMed
86.
go back to reference An, X., Ding, P. R., Li, Y. H., Wang, F. H., Shi, Y. X., Wang, Z. Q., et al. (2010). Elevated neutrophil to lymphocyte ratio predicts survival in advanced pancreatic cancer. Biomarkers, 15(6), 516–522.PubMedCrossRef An, X., Ding, P. R., Li, Y. H., Wang, F. H., Shi, Y. X., Wang, Z. Q., et al. (2010). Elevated neutrophil to lymphocyte ratio predicts survival in advanced pancreatic cancer. Biomarkers, 15(6), 516–522.PubMedCrossRef
87.
go back to reference Bhatti, I., Peacock, O., Lloyd, G., Larvin, M., & Hall, R. I. (2010). Preoperative hematologic markers as independent predictors of prognosis in resected pancreatic ductal adenocarcinoma: neutrophil-lymphocyte versus platelet-lymphocyte ratio. American Journal of Surgery, 200(2), 197–203.PubMedCrossRef Bhatti, I., Peacock, O., Lloyd, G., Larvin, M., & Hall, R. I. (2010). Preoperative hematologic markers as independent predictors of prognosis in resected pancreatic ductal adenocarcinoma: neutrophil-lymphocyte versus platelet-lymphocyte ratio. American Journal of Surgery, 200(2), 197–203.PubMedCrossRef
88.
go back to reference Tavares-Murta, B. M., Mendonca, M. A., Duarte, N. L., da Silva, J. A., Mutao, T. S., Garcia, C. B., et al. (2010). Systemic leukocyte alterations are associated with invasive uterine cervical cancer. International Journal of Gynecological Cancer, 20(7), 1154–1159.PubMedCrossRef Tavares-Murta, B. M., Mendonca, M. A., Duarte, N. L., da Silva, J. A., Mutao, T. S., Garcia, C. B., et al. (2010). Systemic leukocyte alterations are associated with invasive uterine cervical cancer. International Journal of Gynecological Cancer, 20(7), 1154–1159.PubMedCrossRef
89.
go back to reference Cho, H., Hur, H. W., Kim, S. W., Kim, S. H., Kim, J. H., Kim, Y. T., et al. (2009). Pre-treatment neutrophil to lymphocyte ratio is elevated in epithelial ovarian cancer and predicts survival after treatment. Cancer Immunology, Immunotherapy, 58(1), 15–23.PubMedCrossRef Cho, H., Hur, H. W., Kim, S. W., Kim, S. H., Kim, J. H., Kim, Y. T., et al. (2009). Pre-treatment neutrophil to lymphocyte ratio is elevated in epithelial ovarian cancer and predicts survival after treatment. Cancer Immunology, Immunotherapy, 58(1), 15–23.PubMedCrossRef
90.
go back to reference Thavaramara, T., Phaloprakarn, C., Tangjitgamol, S., & Manusirivithaya, S. (2011). Role of neutrophil to lymphocyte ratio as a prognostic indicator for epithelial ovarian cancer. Journal of the Medical Association of Thailand, 94(7), 871–877.PubMed Thavaramara, T., Phaloprakarn, C., Tangjitgamol, S., & Manusirivithaya, S. (2011). Role of neutrophil to lymphocyte ratio as a prognostic indicator for epithelial ovarian cancer. Journal of the Medical Association of Thailand, 94(7), 871–877.PubMed
91.
go back to reference Yamashita, J., Ogawa, M., & Shirakusa, T. (1995). Free-form neutrophil elastase is an independent marker predicting recurrence in primary breast cancer. Journal of Leukocyte Biology, 57(3), 375–378.PubMed Yamashita, J., Ogawa, M., & Shirakusa, T. (1995). Free-form neutrophil elastase is an independent marker predicting recurrence in primary breast cancer. Journal of Leukocyte Biology, 57(3), 375–378.PubMed
92.
go back to reference Jensen, H. K., Donskov, F., Marcussen, N., Nordsmark, M., Lundbeck, F., & von der Maase, H. (2009). Presence of intratumoral neutrophils is an independent prognostic factor in localized renal cell carcinoma. Journal of Clinical Oncology, 27(28), 4709–4717.PubMedCrossRef Jensen, H. K., Donskov, F., Marcussen, N., Nordsmark, M., Lundbeck, F., & von der Maase, H. (2009). Presence of intratumoral neutrophils is an independent prognostic factor in localized renal cell carcinoma. Journal of Clinical Oncology, 27(28), 4709–4717.PubMedCrossRef
93.
go back to reference Kuang, D. M., Zhao, Q., Wu, Y., Peng, C., Wang, J., Xu, Z., et al. (2011). Peritumoral neutrophils link inflammatory response to disease progression by fostering angiogenesis in hepatocellular carcinoma. Journal of Hepatology, 54(5), 948–955.PubMedCrossRef Kuang, D. M., Zhao, Q., Wu, Y., Peng, C., Wang, J., Xu, Z., et al. (2011). Peritumoral neutrophils link inflammatory response to disease progression by fostering angiogenesis in hepatocellular carcinoma. Journal of Hepatology, 54(5), 948–955.PubMedCrossRef
94.
go back to reference Mentzel, T., Brown, L. F., Dvorak, H. F., Kuhnen, C., Stiller, K. J., Katenkamp, D., et al. (2001). The association between tumour progression and vascularity in myxofibrosarcoma and myxoid/round cell liposarcoma. Virchows Archiv, 438(1), 13–22.PubMedCrossRef Mentzel, T., Brown, L. F., Dvorak, H. F., Kuhnen, C., Stiller, K. J., Katenkamp, D., et al. (2001). The association between tumour progression and vascularity in myxofibrosarcoma and myxoid/round cell liposarcoma. Virchows Archiv, 438(1), 13–22.PubMedCrossRef
95.
go back to reference Jensen, T. O., Schmidt, H., Moller, H. J., Donskov, F., Hoyer, M., & Sjoegren, P. (2011). Intratumoral neutrophils and plasmacytoid dendritic cells indicate poor prognosis and are associated with pSTAT3 expression in AJCC stage I/II melanoma. Cancer, 118(9), 2476–8.PubMedCrossRef Jensen, T. O., Schmidt, H., Moller, H. J., Donskov, F., Hoyer, M., & Sjoegren, P. (2011). Intratumoral neutrophils and plasmacytoid dendritic cells indicate poor prognosis and are associated with pSTAT3 expression in AJCC stage I/II melanoma. Cancer, 118(9), 2476–8.PubMedCrossRef
96.
go back to reference Liu, H., Ubukata, H., Tabuchi, T., Takemura, A., Motohashi, G., Nishimura, M., et al. (2009). It is possible that tumour-infiltrating granulocytes promote tumour progression. Oncology Reports, 22(1), 29–33.PubMed Liu, H., Ubukata, H., Tabuchi, T., Takemura, A., Motohashi, G., Nishimura, M., et al. (2009). It is possible that tumour-infiltrating granulocytes promote tumour progression. Oncology Reports, 22(1), 29–33.PubMed
97.
98.
go back to reference Fridlender, Z. G., Sun, J., Kim, S., Kapoor, V., Cheng, G., Ling, L., et al. (2009). Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell, 16(3), 183–194.PubMedCentralPubMedCrossRef Fridlender, Z. G., Sun, J., Kim, S., Kapoor, V., Cheng, G., Ling, L., et al. (2009). Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell, 16(3), 183–194.PubMedCentralPubMedCrossRef
99.
go back to reference Mantovani, A., Sica, A., & Locati, M. (2005). Macrophage polarization comes of age. Immunity, 23(4), 344–346.PubMedCrossRef Mantovani, A., Sica, A., & Locati, M. (2005). Macrophage polarization comes of age. Immunity, 23(4), 344–346.PubMedCrossRef
100.
go back to reference Jablonska, J., Leschner, S., Westphal, K., Lienenklaus, S., & Weiss, S. (2010). Neutrophils responsive to endogenous IFN-beta regulate tumor angiogenesis and growth in a mouse tumor model. Journal of Clinical Investigation, 120(4), 1151–1164.PubMedCentralPubMedCrossRef Jablonska, J., Leschner, S., Westphal, K., Lienenklaus, S., & Weiss, S. (2010). Neutrophils responsive to endogenous IFN-beta regulate tumor angiogenesis and growth in a mouse tumor model. Journal of Clinical Investigation, 120(4), 1151–1164.PubMedCentralPubMedCrossRef
101.
go back to reference Houghton, A. M. (2010). The paradox of tumor-associated neutrophils: fueling tumor growth with cytotoxic substances. Cell Cycle, 9(9), 1732–1737.PubMedCrossRef Houghton, A. M. (2010). The paradox of tumor-associated neutrophils: fueling tumor growth with cytotoxic substances. Cell Cycle, 9(9), 1732–1737.PubMedCrossRef
102.
go back to reference Mishalian, I., Bayuh, R., Levy, L., Zolotarov, L., Michaeli, J., & Fridlender, Z. G. (2013). Tumor-associated neutrophils (TAN) develop pro-tumorigenic properties during tumor progression. Cancer Immunology, Immunotherapy, 62(11), 1745–1756.PubMedCrossRef Mishalian, I., Bayuh, R., Levy, L., Zolotarov, L., Michaeli, J., & Fridlender, Z. G. (2013). Tumor-associated neutrophils (TAN) develop pro-tumorigenic properties during tumor progression. Cancer Immunology, Immunotherapy, 62(11), 1745–1756.PubMedCrossRef
103.
go back to reference Wu, Q. D., Wang, J. H., Condron, C., Bouchier-Hayes, D., & Redmond, H. P. (2001). Human neutrophils facilitate tumor cell transendothelial migration. American Journal of Physiology - Cellular Physiology, 280(4), C814–822. Wu, Q. D., Wang, J. H., Condron, C., Bouchier-Hayes, D., & Redmond, H. P. (2001). Human neutrophils facilitate tumor cell transendothelial migration. American Journal of Physiology - Cellular Physiology, 280(4), C814–822.
104.
go back to reference Wislez, M., Fleury-Feith, J., Rabbe, N., Moreau, J., Cesari, D., Milleron, B., et al. (2001). Tumor-derived granulocyte-macrophage colony-stimulating factor and granulocyte colony-stimulating factor prolong the survival of neutrophils infiltrating bronchoalveolar subtype pulmonary adenocarcinoma. American Journal of Pathology, 159(4), 1423–1433.PubMedCentralPubMedCrossRef Wislez, M., Fleury-Feith, J., Rabbe, N., Moreau, J., Cesari, D., Milleron, B., et al. (2001). Tumor-derived granulocyte-macrophage colony-stimulating factor and granulocyte colony-stimulating factor prolong the survival of neutrophils infiltrating bronchoalveolar subtype pulmonary adenocarcinoma. American Journal of Pathology, 159(4), 1423–1433.PubMedCentralPubMedCrossRef
105.
go back to reference Balkwill, F., & Mantovani, A. (2001). Inflammation and cancer: back to Virchow? Lancet, 357(9255), 539–545.PubMedCrossRef Balkwill, F., & Mantovani, A. (2001). Inflammation and cancer: back to Virchow? Lancet, 357(9255), 539–545.PubMedCrossRef
106.
go back to reference Hannelien, V., Karel, G., Jo, V. D., & Sofie, S. (2011). The role of CXC chemokines in the transition of chronic inflammation to esophageal and gastric cancer. Biochimica et Biophysica Acta, 1825(1), 117–129.PubMed Hannelien, V., Karel, G., Jo, V. D., & Sofie, S. (2011). The role of CXC chemokines in the transition of chronic inflammation to esophageal and gastric cancer. Biochimica et Biophysica Acta, 1825(1), 117–129.PubMed
107.
go back to reference Murdoch, C., & Finn, A. (2000). Chemokine receptors and their role in inflammation and infectious diseases. Blood, 95(10), 3032–3043.PubMed Murdoch, C., & Finn, A. (2000). Chemokine receptors and their role in inflammation and infectious diseases. Blood, 95(10), 3032–3043.PubMed
108.
go back to reference Waugh, D. J., & Wilson, C. (2008). The interleukin-8 pathway in cancer. Clinical Cancer Research, 14(21), 6735–6741.PubMedCrossRef Waugh, D. J., & Wilson, C. (2008). The interleukin-8 pathway in cancer. Clinical Cancer Research, 14(21), 6735–6741.PubMedCrossRef
109.
go back to reference Eck, M., Schmausser, B., Scheller, K., Brandlein, S., & Muller-Hermelink, H. K. (2003). Pleiotropic effects of CXC chemokines in gastric carcinoma: differences in CXCL8 and CXCL1 expression between diffuse and intestinal types of gastric carcinoma. Clinical and Experimental Immunology, 134(3), 508–515.PubMedCentralPubMedCrossRef Eck, M., Schmausser, B., Scheller, K., Brandlein, S., & Muller-Hermelink, H. K. (2003). Pleiotropic effects of CXC chemokines in gastric carcinoma: differences in CXCL8 and CXCL1 expression between diffuse and intestinal types of gastric carcinoma. Clinical and Experimental Immunology, 134(3), 508–515.PubMedCentralPubMedCrossRef
110.
go back to reference Bieche, I., Chavey, C., Andrieu, C., Busson, M., Vacher, S., Le Corre, L., et al. (2007). CXC chemokines located in the 4q21 region are up-regulated in breast cancer. Endocrine-Related Cancer, 14(4), 1039–1052.PubMedCrossRef Bieche, I., Chavey, C., Andrieu, C., Busson, M., Vacher, S., Le Corre, L., et al. (2007). CXC chemokines located in the 4q21 region are up-regulated in breast cancer. Endocrine-Related Cancer, 14(4), 1039–1052.PubMedCrossRef
111.
go back to reference Cheng, W. L., Wang, C. S., Huang, Y. H., Tsai, M. M., Liang, Y., & Lin, K. H. (2011). Overexpression of CXCL1 and its receptor CXCR2 promote tumor invasion in gastric cancer. Annals of Oncology, 22(10), 2267–2276.PubMedCrossRef Cheng, W. L., Wang, C. S., Huang, Y. H., Tsai, M. M., Liang, Y., & Lin, K. H. (2011). Overexpression of CXCL1 and its receptor CXCR2 promote tumor invasion in gastric cancer. Annals of Oncology, 22(10), 2267–2276.PubMedCrossRef
112.
go back to reference Strell, C., Lang, K., Niggemann, B., Zaenker, K. S., & Entschladen, F. (2010). Neutrophil granulocytes promote the migratory activity of MDA-MB-468 human breast carcinoma cells via ICAM-1. Experimental Cell Research, 316(1), 138–148.PubMedCrossRef Strell, C., Lang, K., Niggemann, B., Zaenker, K. S., & Entschladen, F. (2010). Neutrophil granulocytes promote the migratory activity of MDA-MB-468 human breast carcinoma cells via ICAM-1. Experimental Cell Research, 316(1), 138–148.PubMedCrossRef
113.
go back to reference di Celle, P. F., Carbone, A., Marchis, D., Zhou, D., Sozzani, S., Zupo, S., et al. (1994). Cytokine gene expression in B-cell chronic lymphocytic leukemia: evidence of constitutive interleukin-8 (IL-8) mRNA expression and secretion of biologically active IL-8 protein. Blood, 84(1), 220–228.PubMed di Celle, P. F., Carbone, A., Marchis, D., Zhou, D., Sozzani, S., Zupo, S., et al. (1994). Cytokine gene expression in B-cell chronic lymphocytic leukemia: evidence of constitutive interleukin-8 (IL-8) mRNA expression and secretion of biologically active IL-8 protein. Blood, 84(1), 220–228.PubMed
114.
go back to reference Green, A. R., Green, V. L., White, M. C., & Speirs, V. (1997). Expression of cytokine messenger RNA in normal and neoplastic human breast tissue: identification of interleukin-8 as a potential regulatory factor in breast tumours. International Journal of Cancer, 72(6), 937–941.CrossRef Green, A. R., Green, V. L., White, M. C., & Speirs, V. (1997). Expression of cytokine messenger RNA in normal and neoplastic human breast tissue: identification of interleukin-8 as a potential regulatory factor in breast tumours. International Journal of Cancer, 72(6), 937–941.CrossRef
115.
go back to reference Tjiong, M. Y., van der Vange, N., ten Kate, F. J., Tjong, A. H. S. P., ter Schegget, J., Burger, M. P., et al. (1999). Increased IL-6 and IL-8 levels in cervicovaginal secretions of patients with cervical cancer. Gynecologic Oncology, 73(2), 285–291.PubMedCrossRef Tjiong, M. Y., van der Vange, N., ten Kate, F. J., Tjong, A. H. S. P., ter Schegget, J., Burger, M. P., et al. (1999). Increased IL-6 and IL-8 levels in cervicovaginal secretions of patients with cervical cancer. Gynecologic Oncology, 73(2), 285–291.PubMedCrossRef
116.
go back to reference Scheibenbogen, C., Mohler, T., Haefele, J., Hunstein, W., & Keilholz, U. (1995). Serum interleukin-8 (IL-8) is elevated in patients with metastatic melanoma and correlates with tumour load. Melanoma Research, 5(3), 179–181.PubMedCrossRef Scheibenbogen, C., Mohler, T., Haefele, J., Hunstein, W., & Keilholz, U. (1995). Serum interleukin-8 (IL-8) is elevated in patients with metastatic melanoma and correlates with tumour load. Melanoma Research, 5(3), 179–181.PubMedCrossRef
117.
go back to reference Haqqani, A. S., Sandhu, J. K., & Birnboim, H. C. (2000). Expression of interleukin-8 promotes neutrophil infiltration and genetic instability in mutatect tumors. Neoplasia, 2(6), 561–568.PubMedCentralPubMedCrossRef Haqqani, A. S., Sandhu, J. K., & Birnboim, H. C. (2000). Expression of interleukin-8 promotes neutrophil infiltration and genetic instability in mutatect tumors. Neoplasia, 2(6), 561–568.PubMedCentralPubMedCrossRef
118.
go back to reference Schaider, H., Oka, M., Bogenrieder, T., Nesbit, M., Satyamoorthy, K., Berking, C., et al. (2003). Differential response of primary and metastatic melanomas to neutrophils attracted by IL-8. International Journal of Cancer, 103(3), 335–343.CrossRef Schaider, H., Oka, M., Bogenrieder, T., Nesbit, M., Satyamoorthy, K., Berking, C., et al. (2003). Differential response of primary and metastatic melanomas to neutrophils attracted by IL-8. International Journal of Cancer, 103(3), 335–343.CrossRef
119.
go back to reference Yao, C., Lin, Y., Chua, M. S., Ye, C. S., Bi, J., Li, W., et al. (2007). Interleukin-8 modulates growth and invasiveness of estrogen receptor-negative breast cancer cells. International Journal of Cancer, 121(9), 1949–1957.CrossRef Yao, C., Lin, Y., Chua, M. S., Ye, C. S., Bi, J., Li, W., et al. (2007). Interleukin-8 modulates growth and invasiveness of estrogen receptor-negative breast cancer cells. International Journal of Cancer, 121(9), 1949–1957.CrossRef
120.
go back to reference Maus, U. A., Waelsch, K., Kuziel, W. A., Delbeck, T., Mack, M., Blackwell, T. S., et al. (2003). Monocytes are potent facilitators of alveolar neutrophil emigration during lung inflammation: role of the CCL2-CCR2 axis. Journal of Immunology, 170(6), 3273–3278.CrossRef Maus, U. A., Waelsch, K., Kuziel, W. A., Delbeck, T., Mack, M., Blackwell, T. S., et al. (2003). Monocytes are potent facilitators of alveolar neutrophil emigration during lung inflammation: role of the CCL2-CCR2 axis. Journal of Immunology, 170(6), 3273–3278.CrossRef
121.
go back to reference Vlodavsky, I., Fuks, Z., Ishai-Michaeli, R., Bashkin, P., Levi, E., Korner, G., et al. (1991). Extracellular matrix-resident basic fibroblast growth factor: implication for the control of angiogenesis. Journal of Cellular Biochemistry, 45(2), 167–176.PubMedCrossRef Vlodavsky, I., Fuks, Z., Ishai-Michaeli, R., Bashkin, P., Levi, E., Korner, G., et al. (1991). Extracellular matrix-resident basic fibroblast growth factor: implication for the control of angiogenesis. Journal of Cellular Biochemistry, 45(2), 167–176.PubMedCrossRef
122.
123.
go back to reference Lawrence, M. B., & Springer, T. A. (1993). Neutrophils roll on E-selectin. Journal of Immunology, 151(11), 6338–6346. Lawrence, M. B., & Springer, T. A. (1993). Neutrophils roll on E-selectin. Journal of Immunology, 151(11), 6338–6346.
124.
go back to reference Woodfin, A., Voisin, M. B., & Nourshargh, S. (2010). Recent developments and complexities in neutrophil transmigration. Current Opinion in Hematology, 17(1), 9–17.PubMedCentralPubMedCrossRef Woodfin, A., Voisin, M. B., & Nourshargh, S. (2010). Recent developments and complexities in neutrophil transmigration. Current Opinion in Hematology, 17(1), 9–17.PubMedCentralPubMedCrossRef
125.
go back to reference Opdenakker, G., & Van Damme, J. (2004). The countercurrent principle in invasion and metastasis of cancer cells. Recent insights on the roles of chemokines. International Journal of Developmental Biology, 48(5–6), 519–527.PubMedCrossRef Opdenakker, G., & Van Damme, J. (2004). The countercurrent principle in invasion and metastasis of cancer cells. Recent insights on the roles of chemokines. International Journal of Developmental Biology, 48(5–6), 519–527.PubMedCrossRef
126.
go back to reference Piccard, H., Muschel, R. J., & Opdenakker, G. (2012). On the dual roles and polarized phenotypes of neutrophils in tumor development and progression. Critical Reviews in Oncology/Hematology, 82(3), 296–309.PubMedCrossRef Piccard, H., Muschel, R. J., & Opdenakker, G. (2012). On the dual roles and polarized phenotypes of neutrophils in tumor development and progression. Critical Reviews in Oncology/Hematology, 82(3), 296–309.PubMedCrossRef
127.
go back to reference Pham, C. T. (2006). Neutrophil serine proteases: specific regulators of inflammation. Nature Reviews Immunology, 6(7), 541–550.PubMedCrossRef Pham, C. T. (2006). Neutrophil serine proteases: specific regulators of inflammation. Nature Reviews Immunology, 6(7), 541–550.PubMedCrossRef
128.
go back to reference Hager, M., Cowland, J. B., & Borregaard, N. (2010). Neutrophil granules in health and disease. Journal of Internal Medicine, 268(1), 25–34.PubMed Hager, M., Cowland, J. B., & Borregaard, N. (2010). Neutrophil granules in health and disease. Journal of Internal Medicine, 268(1), 25–34.PubMed
129.
go back to reference Belaaouaj, A., McCarthy, R., Baumann, M., Gao, Z., Ley, T. J., Abraham, S. N., et al. (1998). Mice lacking neutrophil elastase reveal impaired host defense against gram negative bacterial sepsis. Nature Medicine, 4(5), 615–618.PubMedCrossRef Belaaouaj, A., McCarthy, R., Baumann, M., Gao, Z., Ley, T. J., Abraham, S. N., et al. (1998). Mice lacking neutrophil elastase reveal impaired host defense against gram negative bacterial sepsis. Nature Medicine, 4(5), 615–618.PubMedCrossRef
130.
go back to reference Lee, W. L., & Downey, G. P. (2001). Leukocyte elastase: physiological functions and role in acute lung injury. American Journal of Respiratory and Critical Care Medicine, 164(5), 896–904.PubMedCrossRef Lee, W. L., & Downey, G. P. (2001). Leukocyte elastase: physiological functions and role in acute lung injury. American Journal of Respiratory and Critical Care Medicine, 164(5), 896–904.PubMedCrossRef
131.
go back to reference Houghton, A. M., Rzymkiewicz, D. M., Ji, H., Gregory, A. D., Egea, E. E., Metz, H. E., et al. (2010). Neutrophil elastase-mediated degradation of IRS-1 accelerates lung tumor growth. Nature Medicine, 16(2), 219–223.PubMedCentralPubMedCrossRef Houghton, A. M., Rzymkiewicz, D. M., Ji, H., Gregory, A. D., Egea, E. E., Metz, H. E., et al. (2010). Neutrophil elastase-mediated degradation of IRS-1 accelerates lung tumor growth. Nature Medicine, 16(2), 219–223.PubMedCentralPubMedCrossRef
132.
go back to reference Wada, Y., Yoshida, K., Hihara, J., Konishi, K., Tanabe, K., Ukon, K., et al. (2006). Sivelestat, a specific neutrophil elastase inhibitor, suppresses the growth of gastric carcinoma cells by preventing the release of transforming growth factor-alpha. Cancer Science, 97(10), 1037–1043.PubMedCrossRef Wada, Y., Yoshida, K., Hihara, J., Konishi, K., Tanabe, K., Ukon, K., et al. (2006). Sivelestat, a specific neutrophil elastase inhibitor, suppresses the growth of gastric carcinoma cells by preventing the release of transforming growth factor-alpha. Cancer Science, 97(10), 1037–1043.PubMedCrossRef
133.
go back to reference Gong, L., Cumpian, A. M., Caetano, M. S., Ochoa, C. E., De la Garza, M. M., Lapid, D. J., et al. (2013). Promoting effect of neutrophils on lung tumorigenesis is mediated by CXCR2 and neutrophil elastase. Molecular Cancer, 12(1), 154.PubMedCentralPubMedCrossRef Gong, L., Cumpian, A. M., Caetano, M. S., Ochoa, C. E., De la Garza, M. M., Lapid, D. J., et al. (2013). Promoting effect of neutrophils on lung tumorigenesis is mediated by CXCR2 and neutrophil elastase. Molecular Cancer, 12(1), 154.PubMedCentralPubMedCrossRef
134.
go back to reference Clavel, C., Polette, M., Doco, M., Binninger, I., & Birembaut, P. (1992). Immunolocalization of matrix metallo-proteinases and their tissue inhibitor in human mammary pathology. Bulletin du Cancer, 79(3), 261–270.PubMed Clavel, C., Polette, M., Doco, M., Binninger, I., & Birembaut, P. (1992). Immunolocalization of matrix metallo-proteinases and their tissue inhibitor in human mammary pathology. Bulletin du Cancer, 79(3), 261–270.PubMed
135.
go back to reference Hojilla, C. V., Wood, G. A., & Khokha, R. (2008). Inflammation and breast cancer: metalloproteinases as common effectors of inflammation and extracellular matrix breakdown in breast cancer. Breast Cancer Research, 10(2), 205.PubMedCentralPubMedCrossRef Hojilla, C. V., Wood, G. A., & Khokha, R. (2008). Inflammation and breast cancer: metalloproteinases as common effectors of inflammation and extracellular matrix breakdown in breast cancer. Breast Cancer Research, 10(2), 205.PubMedCentralPubMedCrossRef
136.
137.
go back to reference Nielsen, B. S., Timshel, S., Kjeldsen, L., Sehested, M., Pyke, C., Borregaard, N., et al. (1996). 92 kDa type IV collagenase (MMP-9) is expressed in neutrophils and macrophages but not in malignant epithelial cells in human colon cancer. International Journal of Cancer, 65(1), 57–62.CrossRef Nielsen, B. S., Timshel, S., Kjeldsen, L., Sehested, M., Pyke, C., Borregaard, N., et al. (1996). 92 kDa type IV collagenase (MMP-9) is expressed in neutrophils and macrophages but not in malignant epithelial cells in human colon cancer. International Journal of Cancer, 65(1), 57–62.CrossRef
138.
go back to reference Nozawa, H., Chiu, C., & Hanahan, D. (2006). Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America, 103(33), 12493–12498.PubMedCentralPubMedCrossRef Nozawa, H., Chiu, C., & Hanahan, D. (2006). Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America, 103(33), 12493–12498.PubMedCentralPubMedCrossRef
139.
go back to reference Bausch, D., Pausch, T., Krauss, T., Hopt, U. T., Fernandez-del-Castillo, C., Warshaw, A. L., et al. (2011). Neutrophil granulocyte derived MMP-9 is a VEGF independent functional component of the angiogenic switch in pancreatic ductal adenocarcinoma. Angiogenesis, 14(3), 235–243.PubMedCentralPubMedCrossRef Bausch, D., Pausch, T., Krauss, T., Hopt, U. T., Fernandez-del-Castillo, C., Warshaw, A. L., et al. (2011). Neutrophil granulocyte derived MMP-9 is a VEGF independent functional component of the angiogenic switch in pancreatic ductal adenocarcinoma. Angiogenesis, 14(3), 235–243.PubMedCentralPubMedCrossRef
140.
go back to reference Bekes, E. M., Schweighofer, B., Kupriyanova, T. A., Zajac, E., Ardi, V. C., Quigley, J. P., et al. (2011). Tumor-recruited neutrophils and neutrophil TIMP-free MMP-9 regulate coordinately the levels of tumor angiogenesis and efficiency of malignant cell intravasation. American Journal of Pathology, 179(3), 1455–1470.PubMedCentralPubMedCrossRef Bekes, E. M., Schweighofer, B., Kupriyanova, T. A., Zajac, E., Ardi, V. C., Quigley, J. P., et al. (2011). Tumor-recruited neutrophils and neutrophil TIMP-free MMP-9 regulate coordinately the levels of tumor angiogenesis and efficiency of malignant cell intravasation. American Journal of Pathology, 179(3), 1455–1470.PubMedCentralPubMedCrossRef
141.
go back to reference Nakamura, T., Kuwai, T., Kim, J. S., Fan, D., Kim, S. J., & Fidler, I. J. (2007). Stromal metalloproteinase-9 is essential to angiogenesis and progressive growth of orthotopic human pancreatic cancer in parabiont nude mice. Neoplasia, 9(11), 979–986.PubMedCentralPubMedCrossRef Nakamura, T., Kuwai, T., Kim, J. S., Fan, D., Kim, S. J., & Fidler, I. J. (2007). Stromal metalloproteinase-9 is essential to angiogenesis and progressive growth of orthotopic human pancreatic cancer in parabiont nude mice. Neoplasia, 9(11), 979–986.PubMedCentralPubMedCrossRef
142.
go back to reference Starkey, J. R., Liggitt, H. D., Jones, W., & Hosick, H. L. (1984). Influence of migratory blood cells on the attachment of tumor cells to vascular endothelium. International Journal of Cancer, 34(4), 535–543.CrossRef Starkey, J. R., Liggitt, H. D., Jones, W., & Hosick, H. L. (1984). Influence of migratory blood cells on the attachment of tumor cells to vascular endothelium. International Journal of Cancer, 34(4), 535–543.CrossRef
143.
go back to reference Huh, S. J., Liang, S., Sharma, A., Dong, C., & Robertson, G. P. (2010). Transiently entrapped circulating tumor cells interact with neutrophils to facilitate lung metastasis development. Cancer Research, 70(14), 6071–6082.PubMedCentralPubMedCrossRef Huh, S. J., Liang, S., Sharma, A., Dong, C., & Robertson, G. P. (2010). Transiently entrapped circulating tumor cells interact with neutrophils to facilitate lung metastasis development. Cancer Research, 70(14), 6071–6082.PubMedCentralPubMedCrossRef
144.
go back to reference Carmeliet, P., & Jain, R. K. (2000). Angiogenesis in cancer and other diseases. Nature, 407(6801), 249–257.PubMedCrossRef Carmeliet, P., & Jain, R. K. (2000). Angiogenesis in cancer and other diseases. Nature, 407(6801), 249–257.PubMedCrossRef
145.
go back to reference Folkman, J. (2002). Role of angiogenesis in tumor growth and metastasis. Seminars in Oncology, 29(6 Suppl 16), 15–18.PubMedCrossRef Folkman, J. (2002). Role of angiogenesis in tumor growth and metastasis. Seminars in Oncology, 29(6 Suppl 16), 15–18.PubMedCrossRef
146.
go back to reference Cassatella, M. A. (1999). Neutrophil-derived proteins: selling cytokines by the pound. Advances in Immunology, 73, 369–509.PubMedCrossRef Cassatella, M. A. (1999). Neutrophil-derived proteins: selling cytokines by the pound. Advances in Immunology, 73, 369–509.PubMedCrossRef
147.
go back to reference Benelli, R., Albini, A., & Noonan, D. (2003). Neutrophils and angiogenesis: potential initiators of the angiogenic cascade. Chemical Immunology and Allergy, 83, 167–181.PubMedCrossRef Benelli, R., Albini, A., & Noonan, D. (2003). Neutrophils and angiogenesis: potential initiators of the angiogenic cascade. Chemical Immunology and Allergy, 83, 167–181.PubMedCrossRef
148.
go back to reference Scapini, P., Morini, M., Tecchio, C., Minghelli, S., Di Carlo, E., Tanghetti, E., et al. (2004). CXCL1/macrophage inflammatory protein-2-induced angiogenesis in vivo is mediated by neutrophil-derived vascular endothelial growth factor-A. Journal of Immunology, 172(8), 5034–5040.CrossRef Scapini, P., Morini, M., Tecchio, C., Minghelli, S., Di Carlo, E., Tanghetti, E., et al. (2004). CXCL1/macrophage inflammatory protein-2-induced angiogenesis in vivo is mediated by neutrophil-derived vascular endothelial growth factor-A. Journal of Immunology, 172(8), 5034–5040.CrossRef
149.
go back to reference Van Coillie, E., Van Aelst, I., Wuyts, A., Vercauteren, R., Devos, R., De Wolf-Peeters, C., et al. (2001). Tumor angiogenesis induced by granulocyte chemotactic protein-2 as a countercurrent principle. American Journal of Pathology, 159(4), 1405–1414.PubMedCentralPubMedCrossRef Van Coillie, E., Van Aelst, I., Wuyts, A., Vercauteren, R., Devos, R., De Wolf-Peeters, C., et al. (2001). Tumor angiogenesis induced by granulocyte chemotactic protein-2 as a countercurrent principle. American Journal of Pathology, 159(4), 1405–1414.PubMedCentralPubMedCrossRef
150.
go back to reference Coussens, L. M., Tinkle, C. L., Hanahan, D., & Werb, Z. (2000). MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell, 103(3), 481–490.PubMedCentralPubMedCrossRef Coussens, L. M., Tinkle, C. L., Hanahan, D., & Werb, Z. (2000). MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell, 103(3), 481–490.PubMedCentralPubMedCrossRef
151.
go back to reference Coussens, L. M., & Werb, Z. (1996). Matrix metalloproteinases and the development of cancer. Chemical Biology, 3(11), 895–904.CrossRef Coussens, L. M., & Werb, Z. (1996). Matrix metalloproteinases and the development of cancer. Chemical Biology, 3(11), 895–904.CrossRef
152.
go back to reference Bergers, G., & Benjamin, L. E. (2003). Tumorigenesis and the angiogenic switch. Nature Reviews Cancer, 3(6), 401–410.PubMedCrossRef Bergers, G., & Benjamin, L. E. (2003). Tumorigenesis and the angiogenic switch. Nature Reviews Cancer, 3(6), 401–410.PubMedCrossRef
153.
go back to reference Egeblad, M., & Werb, Z. (2002). New functions for the matrix metalloproteinases in cancer progression. Nature Reviews Cancer, 2(3), 161–174.PubMedCrossRef Egeblad, M., & Werb, Z. (2002). New functions for the matrix metalloproteinases in cancer progression. Nature Reviews Cancer, 2(3), 161–174.PubMedCrossRef
154.
go back to reference Opdenakker, G., Van den Steen, P. E., Dubois, B., Nelissen, I., Van Coillie, E., Masure, S., et al. (2001). Gelatinase B functions as regulator and effector in leukocyte biology. Journal of Leukocyte Biology, 69(6), 851–859.PubMed Opdenakker, G., Van den Steen, P. E., Dubois, B., Nelissen, I., Van Coillie, E., Masure, S., et al. (2001). Gelatinase B functions as regulator and effector in leukocyte biology. Journal of Leukocyte Biology, 69(6), 851–859.PubMed
155.
go back to reference Ardi, V. C., Kupriyanova, T. A., Deryugina, E. I., & Quigley, J. P. (2007). Human neutrophils uniquely release TIMP-free MMP-9 to provide a potent catalytic stimulator of angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 104(51), 20262–20267.PubMedCentralPubMedCrossRef Ardi, V. C., Kupriyanova, T. A., Deryugina, E. I., & Quigley, J. P. (2007). Human neutrophils uniquely release TIMP-free MMP-9 to provide a potent catalytic stimulator of angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 104(51), 20262–20267.PubMedCentralPubMedCrossRef
156.
go back to reference Deryugina, E. I., Zajac, E., Juncker-Jensen, A., Kupriyanova, T. A., Welter, L., & Quigley, J. P. (2014). Tissue-infiltrating neutrophils constitute the major in vivo source of angiogenesis-inducing MMP-9 in the tumor microenvironment. Neoplasia, 16(10), 771–788.PubMedCentralPubMedCrossRef Deryugina, E. I., Zajac, E., Juncker-Jensen, A., Kupriyanova, T. A., Welter, L., & Quigley, J. P. (2014). Tissue-infiltrating neutrophils constitute the major in vivo source of angiogenesis-inducing MMP-9 in the tumor microenvironment. Neoplasia, 16(10), 771–788.PubMedCentralPubMedCrossRef
157.
go back to reference Morikawa, K., Kamegaya, S., Yamazaki, M., & Mizuno, D. (1985). Hydrogen peroxide as a tumoricidal mediator of murine polymorphonuclear leukocytes induced by a linear beta-1,3-D-glucan and some other immunomodulators. Cancer Research, 45(8), 3482–3486.PubMed Morikawa, K., Kamegaya, S., Yamazaki, M., & Mizuno, D. (1985). Hydrogen peroxide as a tumoricidal mediator of murine polymorphonuclear leukocytes induced by a linear beta-1,3-D-glucan and some other immunomodulators. Cancer Research, 45(8), 3482–3486.PubMed
158.
go back to reference Lambeth, J. D. (2004). NOX enzymes and the biology of reactive oxygen. Nature Reviews Immunology, 4(3), 181–189.PubMedCrossRef Lambeth, J. D. (2004). NOX enzymes and the biology of reactive oxygen. Nature Reviews Immunology, 4(3), 181–189.PubMedCrossRef
159.
go back to reference Babior, B. M., Lambeth, J. D., & Nauseef, W. (2002). The neutrophil NADPH oxidase. Archives of Biochemistry and Biophysics, 397(2), 342–344.PubMedCrossRef Babior, B. M., Lambeth, J. D., & Nauseef, W. (2002). The neutrophil NADPH oxidase. Archives of Biochemistry and Biophysics, 397(2), 342–344.PubMedCrossRef
160.
go back to reference Fialkow, L., Wang, Y., & Downey, G. P. (2007). Reactive oxygen and nitrogen species as signaling molecules regulating neutrophil function. Free Radical Biology and Medicine, 42(2), 153–164.PubMedCrossRef Fialkow, L., Wang, Y., & Downey, G. P. (2007). Reactive oxygen and nitrogen species as signaling molecules regulating neutrophil function. Free Radical Biology and Medicine, 42(2), 153–164.PubMedCrossRef
161.
go back to reference Evans, T. J., Buttery, L. D., Carpenter, A., Springall, D. R., Polak, J. M., & Cohen, J. (1996). Cytokine-treated human neutrophils contain inducible nitric oxide synthase that produces nitration of ingested bacteria. Proceedings of the National Academy of Sciences of the United States of America, 93(18), 9553–9558.PubMedCentralPubMedCrossRef Evans, T. J., Buttery, L. D., Carpenter, A., Springall, D. R., Polak, J. M., & Cohen, J. (1996). Cytokine-treated human neutrophils contain inducible nitric oxide synthase that produces nitration of ingested bacteria. Proceedings of the National Academy of Sciences of the United States of America, 93(18), 9553–9558.PubMedCentralPubMedCrossRef
162.
go back to reference Wheeler, M. A., Smith, S. D., Garcia-Cardena, G., Nathan, C. F., Weiss, R. M., & Sessa, W. C. (1997). Bacterial infection induces nitric oxide synthase in human neutrophils. Journal of Clinical Investigation, 99(1), 110–116.PubMedCentralPubMedCrossRef Wheeler, M. A., Smith, S. D., Garcia-Cardena, G., Nathan, C. F., Weiss, R. M., & Sessa, W. C. (1997). Bacterial infection induces nitric oxide synthase in human neutrophils. Journal of Clinical Investigation, 99(1), 110–116.PubMedCentralPubMedCrossRef
163.
go back to reference Sandhu, J. K., Privora, H. F., Wenckebach, G., & Birnboim, H. C. (2000). Neutrophils, nitric oxide synthase, and mutations in the mutatect murine tumor model. American Journal of Pathology, 156(2), 509–518.PubMedCentralPubMedCrossRef Sandhu, J. K., Privora, H. F., Wenckebach, G., & Birnboim, H. C. (2000). Neutrophils, nitric oxide synthase, and mutations in the mutatect murine tumor model. American Journal of Pathology, 156(2), 509–518.PubMedCentralPubMedCrossRef
164.
go back to reference Weitzman, S. A., & Gordon, L. I. (1990). Inflammation and cancer: role of phagocyte-generated oxidants in carcinogenesis. Blood, 76(4), 655–663.PubMed Weitzman, S. A., & Gordon, L. I. (1990). Inflammation and cancer: role of phagocyte-generated oxidants in carcinogenesis. Blood, 76(4), 655–663.PubMed
165.
go back to reference Wilkinson, D., Sandhu, J. K., Breneman, J. W., Tucker, J. D., & Birnboim, H. C. (1995). Hprt mutants in a transplantable murine tumour arise more frequently in vivo than in vitro. British Journal of Cancer, 72(5), 1234–1240.PubMedCentralPubMedCrossRef Wilkinson, D., Sandhu, J. K., Breneman, J. W., Tucker, J. D., & Birnboim, H. C. (1995). Hprt mutants in a transplantable murine tumour arise more frequently in vivo than in vitro. British Journal of Cancer, 72(5), 1234–1240.PubMedCentralPubMedCrossRef
166.
go back to reference Tamir, S., & Tannenbaum, S. R. (1996). The role of nitric oxide (NO.) in the carcinogenic process. Biochimica et Biophysica Acta, 1288(2), F31–36.PubMed Tamir, S., & Tannenbaum, S. R. (1996). The role of nitric oxide (NO.) in the carcinogenic process. Biochimica et Biophysica Acta, 1288(2), F31–36.PubMed
167.
go back to reference Knaapen, A. M., Gungor, N., Schins, R. P., Borm, P. J., & Van Schooten, F. J. (2006). Neutrophils and respiratory tract DNA damage and mutagenesis: a review. Mutagenesis, 21(4), 225–236.PubMedCrossRef Knaapen, A. M., Gungor, N., Schins, R. P., Borm, P. J., & Van Schooten, F. J. (2006). Neutrophils and respiratory tract DNA damage and mutagenesis: a review. Mutagenesis, 21(4), 225–236.PubMedCrossRef
168.
go back to reference Bronte, V., & Zanovello, P. (2005). Regulation of immune responses by L-arginine metabolism. Nature Reviews Immunology, 5(8), 641–654.PubMedCrossRef Bronte, V., & Zanovello, P. (2005). Regulation of immune responses by L-arginine metabolism. Nature Reviews Immunology, 5(8), 641–654.PubMedCrossRef
170.
go back to reference Roy, L. D., Ghosh, S., Pathangey, L. B., Tinder, T. L., Gruber, H. E., & Mukherjee, P. (2011). Collagen induced arthritis increases secondary metastasis in MMTV-PyV MT mouse model of mammary cancer. BMC Cancer, 11, 365.PubMedCentralPubMedCrossRef Roy, L. D., Ghosh, S., Pathangey, L. B., Tinder, T. L., Gruber, H. E., & Mukherjee, P. (2011). Collagen induced arthritis increases secondary metastasis in MMTV-PyV MT mouse model of mammary cancer. BMC Cancer, 11, 365.PubMedCentralPubMedCrossRef
171.
172.
go back to reference Yang, L., Huang, J., Ren, X., Gorska, A. E., Chytil, A., Aakre, M., et al. (2008). Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1 + CD11b + myeloid cells that promote metastasis. Cancer Cell, 13(1), 23–35.PubMedCentralPubMedCrossRef Yang, L., Huang, J., Ren, X., Gorska, A. E., Chytil, A., Aakre, M., et al. (2008). Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1 + CD11b + myeloid cells that promote metastasis. Cancer Cell, 13(1), 23–35.PubMedCentralPubMedCrossRef
173.
go back to reference De Larco, J. E., Wuertz, B. R., & Furcht, L. T. (2004). The potential role of neutrophils in promoting the metastatic phenotype of tumors releasing interleukin-8. Clinical Cancer Research, 10(15), 4895–4900.PubMedCrossRef De Larco, J. E., Wuertz, B. R., & Furcht, L. T. (2004). The potential role of neutrophils in promoting the metastatic phenotype of tumors releasing interleukin-8. Clinical Cancer Research, 10(15), 4895–4900.PubMedCrossRef
174.
go back to reference Welch, D. R., Schissel, D. J., Howrey, R. P., & Aeed, P. A. (1989). Tumor-elicited polymorphonuclear cells, in contrast to “normal” circulating polymorphonuclear cells, stimulate invasive and metastatic potentials of rat mammary adenocarcinoma cells. Proceedings of the National Academy of Sciences of the United States of America, 86(15), 5859–5863.PubMedCentralPubMedCrossRef Welch, D. R., Schissel, D. J., Howrey, R. P., & Aeed, P. A. (1989). Tumor-elicited polymorphonuclear cells, in contrast to “normal” circulating polymorphonuclear cells, stimulate invasive and metastatic potentials of rat mammary adenocarcinoma cells. Proceedings of the National Academy of Sciences of the United States of America, 86(15), 5859–5863.PubMedCentralPubMedCrossRef
175.
go back to reference Crissman, J. D., Hatfield, J., Schaldenbrand, M., Sloane, B. F., & Honn, K. V. (1985). Arrest and extravasation of B16 amelanotic melanoma in murine lungs. A light and electron microscopic study. Laboratory Investigation, 53(4), 470–478.PubMed Crissman, J. D., Hatfield, J., Schaldenbrand, M., Sloane, B. F., & Honn, K. V. (1985). Arrest and extravasation of B16 amelanotic melanoma in murine lungs. A light and electron microscopic study. Laboratory Investigation, 53(4), 470–478.PubMed
176.
go back to reference Dong, C., Slattery, M. J., Liang, S., & Peng, H. H. (2005). Melanoma cell extravasation under flow conditions is modulated by leukocytes and endogenously produced interleukin 8. Molecular & Cellular Biomechanics, 2(3), 145–159. Dong, C., Slattery, M. J., Liang, S., & Peng, H. H. (2005). Melanoma cell extravasation under flow conditions is modulated by leukocytes and endogenously produced interleukin 8. Molecular & Cellular Biomechanics, 2(3), 145–159.
177.
go back to reference Slattery, M. J., & Dong, C. (2003). Neutrophils influence melanoma adhesion and migration under flow conditions. International Journal of Cancer, 106(5), 713–722.CrossRef Slattery, M. J., & Dong, C. (2003). Neutrophils influence melanoma adhesion and migration under flow conditions. International Journal of Cancer, 106(5), 713–722.CrossRef
178.
go back to reference Aceto, N., Bardia, A., Miyamoto, D. T., Donaldson, M. C., Wittner, B. S., Spencer, J. A., et al. (2014). Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell, 158(5), 1110–1122.PubMedCentralPubMedCrossRef Aceto, N., Bardia, A., Miyamoto, D. T., Donaldson, M. C., Wittner, B. S., Spencer, J. A., et al. (2014). Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell, 158(5), 1110–1122.PubMedCentralPubMedCrossRef
179.
go back to reference Liotta, L. A., Saidel, M. G., & Kleinerman, J. (1976). The significance of hematogenous tumor cell clumps in the metastatic process. Cancer Research, 36(3), 889–894.PubMed Liotta, L. A., Saidel, M. G., & Kleinerman, J. (1976). The significance of hematogenous tumor cell clumps in the metastatic process. Cancer Research, 36(3), 889–894.PubMed
180.
go back to reference Morimoto-Kamata, R., Mizoguchi, S., Ichisugi, T., & Yui, S. (2012). Cathepsin G induces cell aggregation of human breast cancer MCF-7 cells via a 2-step mechanism: catalytic site-independent binding to the cell surface and enzymatic activity-dependent induction of the cell aggregation. Mediators of Inflammation, 2012, 456462.PubMedCentralPubMedCrossRef Morimoto-Kamata, R., Mizoguchi, S., Ichisugi, T., & Yui, S. (2012). Cathepsin G induces cell aggregation of human breast cancer MCF-7 cells via a 2-step mechanism: catalytic site-independent binding to the cell surface and enzymatic activity-dependent induction of the cell aggregation. Mediators of Inflammation, 2012, 456462.PubMedCentralPubMedCrossRef
181.
go back to reference Yui, S., Tomita, K., Kudo, T., Ando, S., & Yamazaki, M. (2005). Induction of multicellular 3-D spheroids of MCF-7 breast carcinoma cells by neutrophil-derived cathepsin G and elastase. Cancer Science, 96(9), 560–570.PubMedCrossRef Yui, S., Tomita, K., Kudo, T., Ando, S., & Yamazaki, M. (2005). Induction of multicellular 3-D spheroids of MCF-7 breast carcinoma cells by neutrophil-derived cathepsin G and elastase. Cancer Science, 96(9), 560–570.PubMedCrossRef
182.
go back to reference Acuff, H. B., Carter, K. J., Fingleton, B., Gorden, D. L., & Matrisian, L. M. (2006). Matrix metalloproteinase-9 from bone marrow-derived cells contributes to survival but not growth of tumor cells in the lung microenvironment. Cancer Research, 66(1), 259–266.PubMedCentralPubMedCrossRef Acuff, H. B., Carter, K. J., Fingleton, B., Gorden, D. L., & Matrisian, L. M. (2006). Matrix metalloproteinase-9 from bone marrow-derived cells contributes to survival but not growth of tumor cells in the lung microenvironment. Cancer Research, 66(1), 259–266.PubMedCentralPubMedCrossRef
183.
go back to reference Fox, S., Leitch, A. E., Duffin, R., Haslett, C., & Rossi, A. G. (2010). Neutrophil apoptosis: relevance to the innate immune response and inflammatory disease. Journal of Innate Immunity, 2(3), 216–227.PubMedCentralPubMedCrossRef Fox, S., Leitch, A. E., Duffin, R., Haslett, C., & Rossi, A. G. (2010). Neutrophil apoptosis: relevance to the innate immune response and inflammatory disease. Journal of Innate Immunity, 2(3), 216–227.PubMedCentralPubMedCrossRef
184.
go back to reference Filardy, A. A., Pires, D. R., Nunes, M. P., Takiya, C. M., Freire-de-Lima, C. G., Ribeiro-Gomes, F. L., et al. (2010). Proinflammatory clearance of apoptotic neutrophils induces an IL-12(low)IL-10(high) regulatory phenotype in macrophages. Journal of Immunology, 185(4), 2044–2050.CrossRef Filardy, A. A., Pires, D. R., Nunes, M. P., Takiya, C. M., Freire-de-Lima, C. G., Ribeiro-Gomes, F. L., et al. (2010). Proinflammatory clearance of apoptotic neutrophils induces an IL-12(low)IL-10(high) regulatory phenotype in macrophages. Journal of Immunology, 185(4), 2044–2050.CrossRef
185.
go back to reference Broug-Holub, E., Toews, G. B., van Iwaarden, J. F., Strieter, R. M., Kunkel, S. L., Paine, R., 3rd, et al. (1997). Alveolar macrophages are required for protective pulmonary defenses in murine Klebsiella pneumonia: elimination of alveolar macrophages increases neutrophil recruitment but decreases bacterial clearance and survival. Infection and Immunity, 65(4), 1139–1146.PubMedCentralPubMed Broug-Holub, E., Toews, G. B., van Iwaarden, J. F., Strieter, R. M., Kunkel, S. L., Paine, R., 3rd, et al. (1997). Alveolar macrophages are required for protective pulmonary defenses in murine Klebsiella pneumonia: elimination of alveolar macrophages increases neutrophil recruitment but decreases bacterial clearance and survival. Infection and Immunity, 65(4), 1139–1146.PubMedCentralPubMed
186.
go back to reference Pahler, J. C., Tazzyman, S., Erez, N., Chen, Y. Y., Murdoch, C., Nozawa, H., et al. (2008). Plasticity in tumor-promoting inflammation: impairment of macrophage recruitment evokes a compensatory neutrophil response. Neoplasia, 10(4), 329–340.PubMedCentralPubMedCrossRef Pahler, J. C., Tazzyman, S., Erez, N., Chen, Y. Y., Murdoch, C., Nozawa, H., et al. (2008). Plasticity in tumor-promoting inflammation: impairment of macrophage recruitment evokes a compensatory neutrophil response. Neoplasia, 10(4), 329–340.PubMedCentralPubMedCrossRef
187.
go back to reference Silva, M. T. (2011). Macrophage phagocytosis of neutrophils at inflammatory/infectious foci: a cooperative mechanism in the control of infection and infectious inflammation. Journal of Leukocyte Biology, 89(5), 675–683.PubMedCrossRef Silva, M. T. (2011). Macrophage phagocytosis of neutrophils at inflammatory/infectious foci: a cooperative mechanism in the control of infection and infectious inflammation. Journal of Leukocyte Biology, 89(5), 675–683.PubMedCrossRef
188.
go back to reference Allenbach, C., Zufferey, C., Perez, C., Launois, P., Mueller, C., & Tacchini-Cottier, F. (2006). Macrophages induce neutrophil apoptosis through membrane TNF, a process amplified by Leishmania major. Journal of Immunology, 176(11), 6656–6664.CrossRef Allenbach, C., Zufferey, C., Perez, C., Launois, P., Mueller, C., & Tacchini-Cottier, F. (2006). Macrophages induce neutrophil apoptosis through membrane TNF, a process amplified by Leishmania major. Journal of Immunology, 176(11), 6656–6664.CrossRef
189.
go back to reference Swierczak, A., Cook, A. D., Lenzo, J. C., Restall, C. M., Doherty, J. P., Anderson, R. L., et al. (2014). The promotion of breast cancer metastasis caused by inhibition of CSF-1R/CSF-1 signaling is blocked by targeting the G-CSF receptor. Cancer Immunology Research, 2(8), 765–776.PubMedCrossRef Swierczak, A., Cook, A. D., Lenzo, J. C., Restall, C. M., Doherty, J. P., Anderson, R. L., et al. (2014). The promotion of breast cancer metastasis caused by inhibition of CSF-1R/CSF-1 signaling is blocked by targeting the G-CSF receptor. Cancer Immunology Research, 2(8), 765–776.PubMedCrossRef
190.
go back to reference Denardo, D. G., Brennan, D. J., Rexhepaj, E., Ruffell, B., Shiao, S. L., Madden, S. F., et al. (2011). Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discovery, 1, 54–67.PubMedCentralPubMedCrossRef Denardo, D. G., Brennan, D. J., Rexhepaj, E., Ruffell, B., Shiao, S. L., Madden, S. F., et al. (2011). Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discovery, 1, 54–67.PubMedCentralPubMedCrossRef
191.
go back to reference Ries, C. H., Cannarile, M. A., Hoves, S., Benz, J., Wartha, K., Runza, V., et al. (2014). Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell, 25(6), 846–859.PubMedCrossRef Ries, C. H., Cannarile, M. A., Hoves, S., Benz, J., Wartha, K., Runza, V., et al. (2014). Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell, 25(6), 846–859.PubMedCrossRef
192.
go back to reference Geissmann, F., Manz, M. G., Jung, S., Sieweke, M. H., Merad, M., & Ley, K. (2010). Development of monocytes, macrophages, and dendritic cells. Science, 327(5966), 656–661.PubMedCentralPubMedCrossRef Geissmann, F., Manz, M. G., Jung, S., Sieweke, M. H., Merad, M., & Ley, K. (2010). Development of monocytes, macrophages, and dendritic cells. Science, 327(5966), 656–661.PubMedCentralPubMedCrossRef
193.
go back to reference Borregaard, N., & Cowland, J. B. (1997). Granules of the human neutrophilic polymorphonuclear leukocyte. Blood, 89(10), 3503–3521.PubMed Borregaard, N., & Cowland, J. B. (1997). Granules of the human neutrophilic polymorphonuclear leukocyte. Blood, 89(10), 3503–3521.PubMed
194.
go back to reference Tazzyman, S., Lewis, C. E., & Murdoch, C. (2009). Neutrophils: key mediators of tumour angiogenesis. International Journal of Experimental Pathology, 90(3), 222–231.PubMedCentralPubMedCrossRef Tazzyman, S., Lewis, C. E., & Murdoch, C. (2009). Neutrophils: key mediators of tumour angiogenesis. International Journal of Experimental Pathology, 90(3), 222–231.PubMedCentralPubMedCrossRef
195.
go back to reference Arenberg, D. A., Kunkel, S. L., Polverini, P. J., Glass, M., Burdick, M. D., & Strieter, R. M. (1996). Inhibition of interleukin-8 reduces tumorigenesis of human non-small cell lung cancer in SCID mice. Journal of Clinical Investigation, 97(12), 2792–2802.PubMedCentralPubMedCrossRef Arenberg, D. A., Kunkel, S. L., Polverini, P. J., Glass, M., Burdick, M. D., & Strieter, R. M. (1996). Inhibition of interleukin-8 reduces tumorigenesis of human non-small cell lung cancer in SCID mice. Journal of Clinical Investigation, 97(12), 2792–2802.PubMedCentralPubMedCrossRef
196.
go back to reference Huang, S., Mills, L., Mian, B., Tellez, C., McCarty, M., Yang, X. D., et al. (2002). Fully humanized neutralizing antibodies to interleukin-8 (ABX-IL8) inhibit angiogenesis, tumor growth, and metastasis of human melanoma. American Journal of Pathology, 161(1), 125–134.PubMedCentralPubMedCrossRef Huang, S., Mills, L., Mian, B., Tellez, C., McCarty, M., Yang, X. D., et al. (2002). Fully humanized neutralizing antibodies to interleukin-8 (ABX-IL8) inhibit angiogenesis, tumor growth, and metastasis of human melanoma. American Journal of Pathology, 161(1), 125–134.PubMedCentralPubMedCrossRef
197.
go back to reference Walters, I., Austin, C., Austin, R., Bonnert, R., Cage, P., Christie, M., et al. (2008). Evaluation of a series of bicyclic CXCR2 antagonists. Bioorganic and Medicinal Chemistry Letters, 18(2), 798–803.PubMedCrossRef Walters, I., Austin, C., Austin, R., Bonnert, R., Cage, P., Christie, M., et al. (2008). Evaluation of a series of bicyclic CXCR2 antagonists. Bioorganic and Medicinal Chemistry Letters, 18(2), 798–803.PubMedCrossRef
198.
go back to reference Varney, M. L., Singh, S., Li, A., Mayer-Ezell, R., Bond, R., & Singh, R. K. (2011). Small molecule antagonists for CXCR2 and CXCR1 inhibit human colon cancer liver metastases. Cancer Letters, 300(2), 180–188.PubMedCentralPubMedCrossRef Varney, M. L., Singh, S., Li, A., Mayer-Ezell, R., Bond, R., & Singh, R. K. (2011). Small molecule antagonists for CXCR2 and CXCR1 inhibit human colon cancer liver metastases. Cancer Letters, 300(2), 180–188.PubMedCentralPubMedCrossRef
199.
go back to reference Singh, S., Sadanandam, A., Nannuru, K. C., Varney, M. L., Mayer-Ezell, R., Bond, R., et al. (2009). Small-molecule antagonists for CXCR2 and CXCR1 inhibit human melanoma growth by decreasing tumor cell proliferation, survival, and angiogenesis. Clinical Cancer Research, 15(7), 2380–2386.PubMedCentralPubMedCrossRef Singh, S., Sadanandam, A., Nannuru, K. C., Varney, M. L., Mayer-Ezell, R., Bond, R., et al. (2009). Small-molecule antagonists for CXCR2 and CXCR1 inhibit human melanoma growth by decreasing tumor cell proliferation, survival, and angiogenesis. Clinical Cancer Research, 15(7), 2380–2386.PubMedCentralPubMedCrossRef
200.
go back to reference Ning, Y., Labonte, M. J., Zhang, W., Bohanes, P. O., Gerger, A., Yang, D., et al. (2012). The CXCR2 antagonist, SCH-527123, shows antitumor activity and sensitizes cells to oxaliplatin in preclinical colon cancer models. Molecular Cancer Therapeutics, 11(6), 1353–1364.PubMedCrossRef Ning, Y., Labonte, M. J., Zhang, W., Bohanes, P. O., Gerger, A., Yang, D., et al. (2012). The CXCR2 antagonist, SCH-527123, shows antitumor activity and sensitizes cells to oxaliplatin in preclinical colon cancer models. Molecular Cancer Therapeutics, 11(6), 1353–1364.PubMedCrossRef
201.
go back to reference Coffelt, S. B., Kersten, K., Doornebal, C. W., Weiden, J., Vrijland, K., Hau, C. S., et al. (2015). IL-17-producing gammadelta T cells and neutrophils conspire to promote breast cancer metastasis. Nature, 522(7556), 345–8.PubMedCrossRef Coffelt, S. B., Kersten, K., Doornebal, C. W., Weiden, J., Vrijland, K., Hau, C. S., et al. (2015). IL-17-producing gammadelta T cells and neutrophils conspire to promote breast cancer metastasis. Nature, 522(7556), 345–8.PubMedCrossRef
202.
go back to reference Gadducci, A., Sergiampietri, C., & Guiggi, I. (2013). Antiangiogenic agents in advanced, persistent or recurrent endometrial cancer: a novel treatment option. Gynecological Endocrinology, 29(9), 811–6.PubMedCrossRef Gadducci, A., Sergiampietri, C., & Guiggi, I. (2013). Antiangiogenic agents in advanced, persistent or recurrent endometrial cancer: a novel treatment option. Gynecological Endocrinology, 29(9), 811–6.PubMedCrossRef
203.
go back to reference Shojaei, F., Wu, X., Qu, X., Kowanetz, M., Yu, L., Tan, M., et al. (2009). G-CSF-initiated myeloid cell mobilization and angiogenesis mediate tumor refractoriness to anti-VEGF therapy in mouse models. Proceedings of the National Academy of Sciences of the United States of America, 106(16), 6742–6747.PubMedCentralPubMedCrossRef Shojaei, F., Wu, X., Qu, X., Kowanetz, M., Yu, L., Tan, M., et al. (2009). G-CSF-initiated myeloid cell mobilization and angiogenesis mediate tumor refractoriness to anti-VEGF therapy in mouse models. Proceedings of the National Academy of Sciences of the United States of America, 106(16), 6742–6747.PubMedCentralPubMedCrossRef
204.
go back to reference Phan, V. T., Wu, X., Cheng, J. H., Sheng, R. X., Chung, A. S., Zhuang, G., et al. (2013). Oncogenic RAS pathway activation promotes resistance to anti-VEGF therapy through G-CSF-induced neutrophil recruitment. Proceedings of the National Academy of Sciences of the United States of America, 110(15), 6079–6084.PubMedCentralPubMedCrossRef Phan, V. T., Wu, X., Cheng, J. H., Sheng, R. X., Chung, A. S., Zhuang, G., et al. (2013). Oncogenic RAS pathway activation promotes resistance to anti-VEGF therapy through G-CSF-induced neutrophil recruitment. Proceedings of the National Academy of Sciences of the United States of America, 110(15), 6079–6084.PubMedCentralPubMedCrossRef
205.
go back to reference Shojaei, F., & Ferrara, N. (2008). Refractoriness to antivascular endothelial growth factor treatment: role of myeloid cells. Cancer Research, 68(14), 5501–5504.PubMedCrossRef Shojaei, F., & Ferrara, N. (2008). Refractoriness to antivascular endothelial growth factor treatment: role of myeloid cells. Cancer Research, 68(14), 5501–5504.PubMedCrossRef
206.
go back to reference Sanford, M. A., Yan, Y., Canfield, S. E., Hassan, W., Selleck, W. A., Atkinson, G., et al. (2001). Independent contributions of GR-1+ leukocytes and Fas/FasL interactions to induce apoptosis following interleukin-12 gene therapy in a metastatic model of prostate cancer. Human Gene Therapy, 12(12), 1485–1498.PubMedCrossRef Sanford, M. A., Yan, Y., Canfield, S. E., Hassan, W., Selleck, W. A., Atkinson, G., et al. (2001). Independent contributions of GR-1+ leukocytes and Fas/FasL interactions to induce apoptosis following interleukin-12 gene therapy in a metastatic model of prostate cancer. Human Gene Therapy, 12(12), 1485–1498.PubMedCrossRef
207.
go back to reference Siders, W. M., Shields, J., Garron, C., Hu, Y., Boutin, P., Shankara, S., et al. (2010). Involvement of neutrophils and natural killer cells in the anti-tumor activity of alemtuzumab in xenograft tumor models. Leukemia and Lymphoma, 51(7), 1293–1304.PubMedCrossRef Siders, W. M., Shields, J., Garron, C., Hu, Y., Boutin, P., Shankara, S., et al. (2010). Involvement of neutrophils and natural killer cells in the anti-tumor activity of alemtuzumab in xenograft tumor models. Leukemia and Lymphoma, 51(7), 1293–1304.PubMedCrossRef
208.
go back to reference Hernandez-Ilizaliturri, F. J., Jupudy, V., Ostberg, J., Oflazoglu, E., Huberman, A., Repasky, E., et al. (2003). Neutrophils contribute to the biological antitumor activity of rituximab in a non-Hodgkin’s lymphoma severe combined immunodeficiency mouse model. Clinical Cancer Research, 9(16 Pt 1), 5866–5873.PubMed Hernandez-Ilizaliturri, F. J., Jupudy, V., Ostberg, J., Oflazoglu, E., Huberman, A., Repasky, E., et al. (2003). Neutrophils contribute to the biological antitumor activity of rituximab in a non-Hodgkin’s lymphoma severe combined immunodeficiency mouse model. Clinical Cancer Research, 9(16 Pt 1), 5866–5873.PubMed
209.
go back to reference Thornton, L. M., Andersen, B. L., & Carson, W. E., 3rd. (2008). Immune, endocrine, and behavioral precursors to breast cancer recurrence: a case–control analysis. Cancer Immunology, Immunotherapy, 57(10), 1471–1481.PubMedCentralPubMedCrossRef Thornton, L. M., Andersen, B. L., & Carson, W. E., 3rd. (2008). Immune, endocrine, and behavioral precursors to breast cancer recurrence: a case–control analysis. Cancer Immunology, Immunotherapy, 57(10), 1471–1481.PubMedCentralPubMedCrossRef
210.
go back to reference Fridlender, Z. G., & Albelda, S. M. (2012). Tumor-associated neutrophils: friend or foe? Carcinogenesis, 33(5), 949–955.PubMedCrossRef Fridlender, Z. G., & Albelda, S. M. (2012). Tumor-associated neutrophils: friend or foe? Carcinogenesis, 33(5), 949–955.PubMedCrossRef
211.
go back to reference Remedi, M. M., Donadio, A. C., & Chiabrando, G. A. (2009). Polymorphonuclear cells stimulate the migration and metastatic potential of rat sarcoma cells. International Journal of Experimental Pathology, 90(1), 44–51.PubMedCentralPubMedCrossRef Remedi, M. M., Donadio, A. C., & Chiabrando, G. A. (2009). Polymorphonuclear cells stimulate the migration and metastatic potential of rat sarcoma cells. International Journal of Experimental Pathology, 90(1), 44–51.PubMedCentralPubMedCrossRef
Metadata
Title
Neutrophils: important contributors to tumor progression and metastasis
Authors
Agnieszka Swierczak
Kellie A. Mouchemore
John A. Hamilton
Robin L. Anderson
Publication date
01-12-2015
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 4/2015
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-015-9594-9

Other articles of this Issue 4/2015

Cancer and Metastasis Reviews 4/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine