Skip to main content
Top
Published in: Cancer and Metastasis Reviews 4/2015

01-12-2015 | NON-THEMATIC REVIEW

The origin of prostate metastases: emerging insights

Authors: Matteo Santoni, Francesco Piva, Marina Scarpelli, Liang Cheng, Antonio Lopez-Beltran, Francesco Massari, Roberto Iacovelli, Rossana Berardi, Daniele Santini, Rodolfo Montironi

Published in: Cancer and Metastasis Reviews | Issue 4/2015

Login to get access

Abstract

The outcome of patients with prostate cancer (PCa) is mainly dependent on the presence or absence of distant metastases. Although several advances have been made in understanding the biological basis of this tumor, the mechanisms underlying PCa metastatic spread are not fully clear. The lack of a clear origin for PCa metastasis may be partially due to the evidence of PCa heterogeneity between primary tumor and metastases and among different metastatic sites. Cross-metastatic seeding and the de novo monoclonal seeding of daughter metastases have been proposed as crucial events during metastasis. This process requires the contribution of tumor environment, which modulates cancer cell homing and growth, and involves several components including cancer stem cells (CSCs), tumor secreted microvesicles, circulating tumor cells (CTCs), and immune cells. In this review, we have focused on the recent findings on the origin of prostate metastasis, showing the contribution of tumor microenvironment to this evolutionary process.
Literature
1.
go back to reference Aus, G., Robinson, D., Rosell, J., Sandblom, G., & Varenhorst, E. (2005). Survival in prostate carcinoma—outcomes from a prospective, population-based cohort of 8887 men with up to 15 years of follow-up. Cancer, 103(5), 943–951.PubMedCrossRef Aus, G., Robinson, D., Rosell, J., Sandblom, G., & Varenhorst, E. (2005). Survival in prostate carcinoma—outcomes from a prospective, population-based cohort of 8887 men with up to 15 years of follow-up. Cancer, 103(5), 943–951.PubMedCrossRef
2.
go back to reference Wyatt, A. W., Mo, F., Wang, Y., & Collins, C. C. (2013). The diverse heterogeneity of molecular alterations in prostate cancer identified through next-generation sequencing. Asian Journal of Andrology, 15(3), 301–308.PubMedCentralPubMedCrossRef Wyatt, A. W., Mo, F., Wang, Y., & Collins, C. C. (2013). The diverse heterogeneity of molecular alterations in prostate cancer identified through next-generation sequencing. Asian Journal of Andrology, 15(3), 301–308.PubMedCentralPubMedCrossRef
3.
go back to reference Berger, M. F., Lawrence, M. S., Demichelis, F., Drier, Y., Cibulskis, K., Sivachenko, A. Y., et al. (2011). The genomic complexity of primary human prostate cancer. Nature, 470(7333), 214–220.PubMedCentralPubMedCrossRef Berger, M. F., Lawrence, M. S., Demichelis, F., Drier, Y., Cibulskis, K., Sivachenko, A. Y., et al. (2011). The genomic complexity of primary human prostate cancer. Nature, 470(7333), 214–220.PubMedCentralPubMedCrossRef
4.
go back to reference Baca, S. C., Prandi, D., Lawrence, M. S., Mosquera, J. M., Romanel, A., Drier, Y., et al. (2013). Punctuated evolution of prostate cancer genomes. Cell, 153(3), 666–677.PubMedCentralPubMedCrossRef Baca, S. C., Prandi, D., Lawrence, M. S., Mosquera, J. M., Romanel, A., Drier, Y., et al. (2013). Punctuated evolution of prostate cancer genomes. Cell, 153(3), 666–677.PubMedCentralPubMedCrossRef
5.
go back to reference Tomlins, S. A., Laxman, B., Varambally, S., Cao, X., Yu, J., & Helgeson, B. E. (2008). Role of the TMPRSS2-ERG gene fusion in prostate cancer. Neoplasia, 10(2), 177–188.PubMedCentralPubMedCrossRef Tomlins, S. A., Laxman, B., Varambally, S., Cao, X., Yu, J., & Helgeson, B. E. (2008). Role of the TMPRSS2-ERG gene fusion in prostate cancer. Neoplasia, 10(2), 177–188.PubMedCentralPubMedCrossRef
6.
go back to reference Wang, L., Williamson, S. R., Zhang, S., Huang, J., Montironi, R., & Davison, D. D. (2014). Increased androgen receptor gene copy number is associated with TMPRSS2-ERG rearrangement in prostatic small cell carcinoma. Molecular Carcinogenesis. doi:10.1002/mc.22162. Wang, L., Williamson, S. R., Zhang, S., Huang, J., Montironi, R., & Davison, D. D. (2014). Increased androgen receptor gene copy number is associated with TMPRSS2-ERG rearrangement in prostatic small cell carcinoma. Molecular Carcinogenesis. doi:10.​1002/​mc.​22162.
7.
go back to reference Attard, G., Jameson, C., Moreira, J., Flohr, P., Parker, C., & Dearnaley, D. (2009). Hormone-sensitive prostate cancer: a case of ETS gene fusion heterogeneity. Journal of Clinical Pathology, 62(4), 373–376.PubMedCrossRef Attard, G., Jameson, C., Moreira, J., Flohr, P., Parker, C., & Dearnaley, D. (2009). Hormone-sensitive prostate cancer: a case of ETS gene fusion heterogeneity. Journal of Clinical Pathology, 62(4), 373–376.PubMedCrossRef
8.
go back to reference Lindberg, J., Kristiansen, A., Wiklund, P., Grönberg, H., & Egevad, L. (2015). Tracking the origin of metastatic prostate cancer. European Urology, 67(5), 819–822.PubMedCrossRef Lindberg, J., Kristiansen, A., Wiklund, P., Grönberg, H., & Egevad, L. (2015). Tracking the origin of metastatic prostate cancer. European Urology, 67(5), 819–822.PubMedCrossRef
9.
go back to reference Trudel, D., Downes, M. R., Sykes, J., Kron, K. J., Trachtenberg, J., & van der Kwast, T. H. (2014). Prognostic impact of intraductal carcinoma and large cribriform carcinoma architecture after prostatectomy in a contemporary cohort. European Journal of Cancer, 50(9), 1610–1616.PubMedCrossRef Trudel, D., Downes, M. R., Sykes, J., Kron, K. J., Trachtenberg, J., & van der Kwast, T. H. (2014). Prognostic impact of intraductal carcinoma and large cribriform carcinoma architecture after prostatectomy in a contemporary cohort. European Journal of Cancer, 50(9), 1610–1616.PubMedCrossRef
10.
go back to reference Gundem, G., Van Loo, P., Kremeyer, B., Alexandrov, L. B., Tubio, J. M., Papaemmanuil, E., et al. (2015). The evolutionary history of lethal metastatic prostate cancer. Nature, 520(7547), 353–357.PubMedCentralPubMedCrossRef Gundem, G., Van Loo, P., Kremeyer, B., Alexandrov, L. B., Tubio, J. M., Papaemmanuil, E., et al. (2015). The evolutionary history of lethal metastatic prostate cancer. Nature, 520(7547), 353–357.PubMedCentralPubMedCrossRef
11.
go back to reference Hong, M. K., Macintyre, G., Wedge, D. C., Van Loo, P., Patel, K., & Lunke, S. (2015). Tracking the origins and drivers of subclonal metastatic expansion in prostate cancer. Nature Communications, 6, 6605.PubMedCentralPubMedCrossRef Hong, M. K., Macintyre, G., Wedge, D. C., Van Loo, P., Patel, K., & Lunke, S. (2015). Tracking the origins and drivers of subclonal metastatic expansion in prostate cancer. Nature Communications, 6, 6605.PubMedCentralPubMedCrossRef
12.
go back to reference Piva, F., Santoni, M., Scarpelli, M., Briganti, A., Montorsi, F., & Montironi, R. (2015). Re: Johan Lindberg, Anna Kristiansen, Peter Wiklund, Henrik Grönberg, Lars Egevad. Tracking the origin of metastatic prostate cancer. European Urology. doi:10.1016/j.eururo.2015.07.011. Piva, F., Santoni, M., Scarpelli, M., Briganti, A., Montorsi, F., & Montironi, R. (2015). Re: Johan Lindberg, Anna Kristiansen, Peter Wiklund, Henrik Grönberg, Lars Egevad. Tracking the origin of metastatic prostate cancer. European Urology. doi:10.​1016/​j.​eururo.​2015.​07.​011.
13.
go back to reference Geem, Z. W., Kim, J. H., & Loganathan, G. V. (2001). A new heuristic optimization algorithm: harmony search. SIMULATION, 76(2), 60–68.CrossRef Geem, Z. W., Kim, J. H., & Loganathan, G. V. (2001). A new heuristic optimization algorithm: harmony search. SIMULATION, 76(2), 60–68.CrossRef
14.
go back to reference Chen, X. S., Ong, Y. S., & Lim, M. H. (2010). Research frontier: memetic computation—past, present & future. IEEE Computational Intelligence Magazine, 5(2), 24–36.CrossRef Chen, X. S., Ong, Y. S., & Lim, M. H. (2010). Research frontier: memetic computation—past, present & future. IEEE Computational Intelligence Magazine, 5(2), 24–36.CrossRef
15.
go back to reference Casás-Selves, M., & Degregori, J. (2011). How cancer shapes evolution, and how evolution shapes cancer. Evolution (NY), 4(4), 624–634. Casás-Selves, M., & Degregori, J. (2011). How cancer shapes evolution, and how evolution shapes cancer. Evolution (NY), 4(4), 624–634.
16.
go back to reference Jordan, C. T., Guzman, M. L., & Noble, M. (2006). Cancer stem cells. The New England Journal of Medicine, 355(12), 1253–1261.PubMedCrossRef Jordan, C. T., Guzman, M. L., & Noble, M. (2006). Cancer stem cells. The New England Journal of Medicine, 355(12), 1253–1261.PubMedCrossRef
17.
go back to reference Dean, M., Fojo, T., & Bates, S. (2005). Tumour stem cells and drug resistance. Nature Reviews Cancer, 5(4), 275–284.PubMedCrossRef Dean, M., Fojo, T., & Bates, S. (2005). Tumour stem cells and drug resistance. Nature Reviews Cancer, 5(4), 275–284.PubMedCrossRef
18.
go back to reference Rybak, A. P., Bristow, R. G., & Kapoor, A. (2015). Prostate cancer stem cells: deciphering the origins and pathways involved in prostate tumorigenesis and aggression. Oncotarget, 6(4), 1900–1919.PubMedCentralPubMedCrossRef Rybak, A. P., Bristow, R. G., & Kapoor, A. (2015). Prostate cancer stem cells: deciphering the origins and pathways involved in prostate tumorigenesis and aggression. Oncotarget, 6(4), 1900–1919.PubMedCentralPubMedCrossRef
19.
go back to reference Hermann, P. C., Huber, S. L., Herrler, T., Aicher, A., Ellwart, J. W., Guba, M., et al. (2007). Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell, 1(3), 313–323.PubMedCrossRef Hermann, P. C., Huber, S. L., Herrler, T., Aicher, A., Ellwart, J. W., Guba, M., et al. (2007). Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell, 1(3), 313–323.PubMedCrossRef
20.
go back to reference Bonnet, D., & Dick, J. E. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine, 3(7), 730–737.PubMedCrossRef Bonnet, D., & Dick, J. E. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine, 3(7), 730–737.PubMedCrossRef
21.
go back to reference van der Pluijm, G. (2011). Epithelial plasticity, cancer stem cells and bone metastasis formation. Bone, 48(1), 37–43.PubMedCrossRef van der Pluijm, G. (2011). Epithelial plasticity, cancer stem cells and bone metastasis formation. Bone, 48(1), 37–43.PubMedCrossRef
22.
go back to reference Wen, S., Niu, Y., Yeh, S., & Chang, C. (2015). BM-MSCs promote prostate cancer progression via the conversion of normal fibroblasts to cancer-associated fibroblasts. International Journal of Oncolology. doi:10.3892/ijo.2015.3060. Wen, S., Niu, Y., Yeh, S., & Chang, C. (2015). BM-MSCs promote prostate cancer progression via the conversion of normal fibroblasts to cancer-associated fibroblasts. International Journal of Oncolology. doi:10.​3892/​ijo.​2015.​3060.
23.
go back to reference Tang, K.D., Holzapfel, B.M., Liu, J., Lee, T.K., Ma, S., Jovanovic, L. (2015). Tie-2 regulates the stemness and metastatic properties of prostate cancer cells. Oncotarget, in press. Tang, K.D., Holzapfel, B.M., Liu, J., Lee, T.K., Ma, S., Jovanovic, L. (2015). Tie-2 regulates the stemness and metastatic properties of prostate cancer cells. Oncotarget, in press.
24.
go back to reference Marian, L., Katarina, K., & Vladimir, B. (2013). Essentials of circulating tumor cells for clinical research and practice. Critival Reviews in Oncology/Hematology, 88(2), 338–356.CrossRef Marian, L., Katarina, K., & Vladimir, B. (2013). Essentials of circulating tumor cells for clinical research and practice. Critival Reviews in Oncology/Hematology, 88(2), 338–356.CrossRef
25.
go back to reference Danila, D. C., Heller, G., Gignac, G. A., Gonzalez-Espinoza, R., Anand, A., & Tanaka, E. (2007). Circulating tumor cell number and prognosis in progressive castration-resistant prostate cancer. Clinical Cancer Research, 13(23), 7053–7058.PubMedCrossRef Danila, D. C., Heller, G., Gignac, G. A., Gonzalez-Espinoza, R., Anand, A., & Tanaka, E. (2007). Circulating tumor cell number and prognosis in progressive castration-resistant prostate cancer. Clinical Cancer Research, 13(23), 7053–7058.PubMedCrossRef
26.
go back to reference Okegawa, T., Nutahara, K., & Higashihara, E. (2009). Prognostic significance of circulating tumor cells in patients with hormone refractory prostate cancer. The Journal of Urology, 181(3), 1091–1097.PubMedCrossRef Okegawa, T., Nutahara, K., & Higashihara, E. (2009). Prognostic significance of circulating tumor cells in patients with hormone refractory prostate cancer. The Journal of Urology, 181(3), 1091–1097.PubMedCrossRef
27.
go back to reference Moreno, J. G., Miller, M. C., Gross, S., Allard, W. J., Gomella, L. G., & Terstappen, L. W. (2005). Circulating tumor cells predict survival in patients with metastatic prostate cancer. Urology, 65(4), 713–718.PubMedCrossRef Moreno, J. G., Miller, M. C., Gross, S., Allard, W. J., Gomella, L. G., & Terstappen, L. W. (2005). Circulating tumor cells predict survival in patients with metastatic prostate cancer. Urology, 65(4), 713–718.PubMedCrossRef
28.
go back to reference Scher, H. I., Jia, X., de Bono, J. S., Fleisher, M., Pienta, K. J., Raghavan, D., et al. (2009). Circulating tumour cells as prognostic markers in progressive, castration-resistant prostate cancer: a reanalysis of IMMC38 trial data. The Lancet Oncology, 10(3), 233–239.PubMedCentralPubMedCrossRef Scher, H. I., Jia, X., de Bono, J. S., Fleisher, M., Pienta, K. J., Raghavan, D., et al. (2009). Circulating tumour cells as prognostic markers in progressive, castration-resistant prostate cancer: a reanalysis of IMMC38 trial data. The Lancet Oncology, 10(3), 233–239.PubMedCentralPubMedCrossRef
29.
go back to reference Abe, Y., Matsumoto, S., Kito, K., & Ueda, N. (2000). Cloning and expression of a novel MAPKK-like protein kinase, lymphokine-activated killer T-cell-originated protein kinase, specifically expressed in the testis and activated lymphoid cells. The Journal of Biological Chemistry, 275(28), 21525–21531.PubMedCrossRef Abe, Y., Matsumoto, S., Kito, K., & Ueda, N. (2000). Cloning and expression of a novel MAPKK-like protein kinase, lymphokine-activated killer T-cell-originated protein kinase, specifically expressed in the testis and activated lymphoid cells. The Journal of Biological Chemistry, 275(28), 21525–21531.PubMedCrossRef
30.
go back to reference Sun, H., Zhang, L., Shi, C., Hu, P., Yan, W., & Wang, Z. (2015). TOPK is highly expressed in circulating tumor cells, enabling metastasis of prostate cancer. Oncotarget, 6(14), 12392–12404.PubMedCentralPubMedCrossRef Sun, H., Zhang, L., Shi, C., Hu, P., Yan, W., & Wang, Z. (2015). TOPK is highly expressed in circulating tumor cells, enabling metastasis of prostate cancer. Oncotarget, 6(14), 12392–12404.PubMedCentralPubMedCrossRef
31.
go back to reference Luga, V., Zhang, L., Viloria-Petit, A. M., Ogunjimi, A. A., Inanlou, M. R., & Chiu, E. (2012). Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell, 151(7), 1542–1556.PubMedCrossRef Luga, V., Zhang, L., Viloria-Petit, A. M., Ogunjimi, A. A., Inanlou, M. R., & Chiu, E. (2012). Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell, 151(7), 1542–1556.PubMedCrossRef
32.
go back to reference Peinado, H., Aleckovic, M., Lavotshkin, S., Matei, I., Costa-Silva, B., & Moreno-Bueno, G. (2012). Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nature Medicine, 18(6), 883–891.PubMedCentralPubMedCrossRef Peinado, H., Aleckovic, M., Lavotshkin, S., Matei, I., Costa-Silva, B., & Moreno-Bueno, G. (2012). Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nature Medicine, 18(6), 883–891.PubMedCentralPubMedCrossRef
33.
go back to reference Chowdhury, R., Webber, J. P., Gurney, M., Mason, M. D., Tabi, Z., & Clayton, A. (2015). Cancer exosomes trigger mesenchymal stem cell differentiation into pro-angiogenic and pro-invasive myofibroblasts. Oncotarget, 6(2), 715–731.PubMedCentralPubMedCrossRef Chowdhury, R., Webber, J. P., Gurney, M., Mason, M. D., Tabi, Z., & Clayton, A. (2015). Cancer exosomes trigger mesenchymal stem cell differentiation into pro-angiogenic and pro-invasive myofibroblasts. Oncotarget, 6(2), 715–731.PubMedCentralPubMedCrossRef
34.
go back to reference Lundholm, M., Schröder, M., Nagaeva, O., Baranov, V., Widmark, A., Mincheva-Nilsson, L., et al. (2014). Prostate tumor-derived exosomes down-regulate NKG2D expression on natural killer cells and CD8+ T cells: mechanism of immune evasion. PLoS One, 9(9), e108925.PubMedCentralPubMedCrossRef Lundholm, M., Schröder, M., Nagaeva, O., Baranov, V., Widmark, A., Mincheva-Nilsson, L., et al. (2014). Prostate tumor-derived exosomes down-regulate NKG2D expression on natural killer cells and CD8+ T cells: mechanism of immune evasion. PLoS One, 9(9), e108925.PubMedCentralPubMedCrossRef
35.
go back to reference Kawakami, K., Fujita, Y., Kato, T., Mizutani, K., Kameyama, K., Tsumoto, H., et al. (2015). Integrin β4 and vinculin contained in exosomes are potential markers for progression of prostate cancer associated with taxane-resistance. International Journal of Oncology, 47(1), 384–390.PubMed Kawakami, K., Fujita, Y., Kato, T., Mizutani, K., Kameyama, K., Tsumoto, H., et al. (2015). Integrin β4 and vinculin contained in exosomes are potential markers for progression of prostate cancer associated with taxane-resistance. International Journal of Oncology, 47(1), 384–390.PubMed
36.
go back to reference Trerotola, M., Ganguly, K. K., Fazli, L., Fedele, C., Lu, H., Dutta, A., et al. (2015). Trop-2 is up-regulated in invasive prostate cancer and displaces FAK from focal contacts. Oncotarget, 6(16), 14318–14328.PubMedCentralPubMedCrossRef Trerotola, M., Ganguly, K. K., Fazli, L., Fedele, C., Lu, H., Dutta, A., et al. (2015). Trop-2 is up-regulated in invasive prostate cancer and displaces FAK from focal contacts. Oncotarget, 6(16), 14318–14328.PubMedCentralPubMedCrossRef
37.
go back to reference Sandvig, K., & Llorente, A. (2012). Proteomic analysis of microvesicles released by the human prostate cancer cell line PC-3. Molelucar & Cellular Proteomics, 11(7), M111.012914.CrossRef Sandvig, K., & Llorente, A. (2012). Proteomic analysis of microvesicles released by the human prostate cancer cell line PC-3. Molelucar & Cellular Proteomics, 11(7), M111.012914.CrossRef
38.
go back to reference Deryugina, E. I., Conn, E. M., Wortmann, A., Partridge, J. J., Kupriyanova, T. A., Ardi, V. C., et al. (2009). Functional role of cell surface CUB domain-containing protein 1 in tumor cell dissemination. Molecular Cancer Research, 7(8), 1197–1211.PubMedCentralPubMedCrossRef Deryugina, E. I., Conn, E. M., Wortmann, A., Partridge, J. J., Kupriyanova, T. A., Ardi, V. C., et al. (2009). Functional role of cell surface CUB domain-containing protein 1 in tumor cell dissemination. Molecular Cancer Research, 7(8), 1197–1211.PubMedCentralPubMedCrossRef
39.
go back to reference Zöller, M. (2009). Tetraspanins: push and pull in suppressing and promoting metastasis. Nature Reviews Cancer, 9(1), 40–55.PubMedCrossRef Zöller, M. (2009). Tetraspanins: push and pull in suppressing and promoting metastasis. Nature Reviews Cancer, 9(1), 40–55.PubMedCrossRef
40.
go back to reference Tang, Y., Kesavan, P., Nakada, M. T., & Yan, L. (2004). Tumor-stroma interaction: positive feedback regulation of extracellular matrix metalloproteinase inducer (EMMPRIN) expression and matrix metalloproteinase-dependent generation of soluble EMMPRIN. Molecular Cancer Research, 2(2), 73–80.PubMed Tang, Y., Kesavan, P., Nakada, M. T., & Yan, L. (2004). Tumor-stroma interaction: positive feedback regulation of extracellular matrix metalloproteinase inducer (EMMPRIN) expression and matrix metalloproteinase-dependent generation of soluble EMMPRIN. Molecular Cancer Research, 2(2), 73–80.PubMed
41.
go back to reference Zhong, W. D., Liang, Y. X., Lin, S. X., Li, L., He, H. C., Bi, X. C., et al. (2012). Expression of CD147 is associated with prostate cancer progression. International Journal of Cancer, 130(2), 300–308.CrossRef Zhong, W. D., Liang, Y. X., Lin, S. X., Li, L., He, H. C., Bi, X. C., et al. (2012). Expression of CD147 is associated with prostate cancer progression. International Journal of Cancer, 130(2), 300–308.CrossRef
42.
go back to reference Gnanasekar, M., Thirugnanam, S., Zheng, G., Chen, A., & Ramaswamy, K. (2009). Gene silencing of translationally controlled tumor protein (TCTP) by siRNA inhibits cell growth and induces apoptosis of human prostate cancer cells. International Journal of Oncology, 34(5), 1241–1246.PubMed Gnanasekar, M., Thirugnanam, S., Zheng, G., Chen, A., & Ramaswamy, K. (2009). Gene silencing of translationally controlled tumor protein (TCTP) by siRNA inhibits cell growth and induces apoptosis of human prostate cancer cells. International Journal of Oncology, 34(5), 1241–1246.PubMed
43.
go back to reference Miao, H. Q., Lee, P., Lin, H., Soker, S., & Klagsbrun, M. (2000). Neuropilin-1 expression by tumor cells promotes tumor angiogenesis and progression. The FASEB Journal, 14(15), 2532–2539.PubMedCrossRef Miao, H. Q., Lee, P., Lin, H., Soker, S., & Klagsbrun, M. (2000). Neuropilin-1 expression by tumor cells promotes tumor angiogenesis and progression. The FASEB Journal, 14(15), 2532–2539.PubMedCrossRef
44.
go back to reference Jia, H., Cheng, L., Tickner, M., Bagherzadeh, A., Selwood, D., & Zachary, I. (2010). Neuropilin-1 antagonism in human carcinoma cells inhibits migration and enhances chemosensitivity. British Journal of Cancer, 102(3), 541–552.PubMedCentralPubMedCrossRef Jia, H., Cheng, L., Tickner, M., Bagherzadeh, A., Selwood, D., & Zachary, I. (2010). Neuropilin-1 antagonism in human carcinoma cells inhibits migration and enhances chemosensitivity. British Journal of Cancer, 102(3), 541–552.PubMedCentralPubMedCrossRef
45.
go back to reference Øverbye, A., Skotland, T., Koehler, C.J., Thiede, B., Seierstad, T., Berge, V. (2015). Identification of prostate cancer biomarkers in urinary exosomes. Oncotarget, in press. Øverbye, A., Skotland, T., Koehler, C.J., Thiede, B., Seierstad, T., Berge, V. (2015). Identification of prostate cancer biomarkers in urinary exosomes. Oncotarget, in press.
46.
go back to reference Bar-Peled, L., Schweitzer, L.D., Zoncu, R., Sabatini, D.M. Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell, 150(6), 1196–1208. Bar-Peled, L., Schweitzer, L.D., Zoncu, R., Sabatini, D.M. Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell, 150(6), 1196–1208.
47.
go back to reference Gu, T. L., Cherry, J., Tucker, M., Wu, J., Reeves, C., & Polakiewicz, R. D. (2010). Identification of activated Tnk1 kinase in Hodgkin’s lymphoma. Leukemia, 24(4), 861–865.PubMedCrossRef Gu, T. L., Cherry, J., Tucker, M., Wu, J., Reeves, C., & Polakiewicz, R. D. (2010). Identification of activated Tnk1 kinase in Hodgkin’s lymphoma. Leukemia, 24(4), 861–865.PubMedCrossRef
48.
go back to reference Llorente, A., Skotland, T., Sylvänne, T., Kauhanen, D., Róg, T., Orlowski, A., et al. (2013). Molecular lipidomics of exosomes released by PC-3 prostate cancer cells. Biochima et Biophysica Acta, 1831(7), 1302–1309.CrossRef Llorente, A., Skotland, T., Sylvänne, T., Kauhanen, D., Róg, T., Orlowski, A., et al. (2013). Molecular lipidomics of exosomes released by PC-3 prostate cancer cells. Biochima et Biophysica Acta, 1831(7), 1302–1309.CrossRef
49.
go back to reference Hessvik, N. P., Phuyal, S., Brech, A., Sandvig, K., & Llorente, A. (2012). Profiling of microRNAs in exosomes released from PC-3 prostate cancer cells. Biochimica et Biophysica Acta, 1819, 1154–1163.PubMedCrossRef Hessvik, N. P., Phuyal, S., Brech, A., Sandvig, K., & Llorente, A. (2012). Profiling of microRNAs in exosomes released from PC-3 prostate cancer cells. Biochimica et Biophysica Acta, 1819, 1154–1163.PubMedCrossRef
50.
go back to reference Fedele, C., Singh, A., Zerlanko, B. J., Iozzo, R. V., & Languino, L. R. (2015). The αvβ6 integrin is transferred intercellularly via exosomes. The Journal of Biological Chemistry, 290(8), 4545–4551.PubMedCrossRef Fedele, C., Singh, A., Zerlanko, B. J., Iozzo, R. V., & Languino, L. R. (2015). The αvβ6 integrin is transferred intercellularly via exosomes. The Journal of Biological Chemistry, 290(8), 4545–4551.PubMedCrossRef
51.
go back to reference De Marzo, A. M., Platz, E. A., Sutcliffe, S., Xu, J., Grönberg, H., Drake, C. G., et al. (2007). Inflammation in prostate carcinogenesis. Nature Reviews Cancer, 7(4), 256–269.PubMedCentralPubMedCrossRef De Marzo, A. M., Platz, E. A., Sutcliffe, S., Xu, J., Grönberg, H., Drake, C. G., et al. (2007). Inflammation in prostate carcinogenesis. Nature Reviews Cancer, 7(4), 256–269.PubMedCentralPubMedCrossRef
52.
go back to reference Vignozzi, L., & Maggi, M. (2004). Prostate cancer: intriguing data on inflammation and prostate cancer. Nature Reviews. Urology, 11(7), 369–370.CrossRef Vignozzi, L., & Maggi, M. (2004). Prostate cancer: intriguing data on inflammation and prostate cancer. Nature Reviews. Urology, 11(7), 369–370.CrossRef
53.
go back to reference Sfanos, K. S., Hempe, H. A., & De Marzo, A. M. (2014). The role of inflammation in prostate cancer. Advances in Experimental Medicine and Biology, 816, 153–181.PubMedCrossRef Sfanos, K. S., Hempe, H. A., & De Marzo, A. M. (2014). The role of inflammation in prostate cancer. Advances in Experimental Medicine and Biology, 816, 153–181.PubMedCrossRef
54.
go back to reference Wang, W., Bergh, A., & Damber, J. E. (2009). Morphological transition of proliferative inflammatory atrophy to high-grade intraepithelial neoplasia and cancer in human prostate. Prostate, 69(13), 1378–1386.PubMedCrossRef Wang, W., Bergh, A., & Damber, J. E. (2009). Morphological transition of proliferative inflammatory atrophy to high-grade intraepithelial neoplasia and cancer in human prostate. Prostate, 69(13), 1378–1386.PubMedCrossRef
55.
go back to reference Nguyen, D. P., Li, J., Yadav, S. S., & Tewari, A. K. (2014). Recent insights into NF-κB signalling pathways and the link between inflammation and prostate cancer. BJU International, 114(2), 168–176.PubMedCrossRef Nguyen, D. P., Li, J., Yadav, S. S., & Tewari, A. K. (2014). Recent insights into NF-κB signalling pathways and the link between inflammation and prostate cancer. BJU International, 114(2), 168–176.PubMedCrossRef
56.
go back to reference Vidal, A. C., Howard, L. E., Moreira, D. M., Castro-Santamaria, R., Andriole, G. L., & Freedland, S. J. (2015). Aspirin, NSAIDs, and risk of prostate cancer: results from the REDUCE study. Clinical Cancer Research, 21(4), 756–762.PubMedCrossRef Vidal, A. C., Howard, L. E., Moreira, D. M., Castro-Santamaria, R., Andriole, G. L., & Freedland, S. J. (2015). Aspirin, NSAIDs, and risk of prostate cancer: results from the REDUCE study. Clinical Cancer Research, 21(4), 756–762.PubMedCrossRef
57.
go back to reference Zarif, J. C., Taichman, R. S., & Pienta, K. J. (2014). TAM macrophages promote growth and metastasis within the cancer ecosystem. Oncoimmunology, 3;3(7), e941734.CrossRef Zarif, J. C., Taichman, R. S., & Pienta, K. J. (2014). TAM macrophages promote growth and metastasis within the cancer ecosystem. Oncoimmunology, 3;3(7), e941734.CrossRef
58.
go back to reference Soki, F. N., Koh, A. J., Jones, J. D., Kim, Y. W., Dai, J., Keller, E. T., Pienta, K. J., et al. (2014). Polarization of prostate cancer-associated macrophages is induced by milk fat globule-EGF factor 8 (MFG-E8)-mediated efferocytosis. The Journal of Biological Chemistry, 289, 24560–24572.PubMedCentralPubMedCrossRef Soki, F. N., Koh, A. J., Jones, J. D., Kim, Y. W., Dai, J., Keller, E. T., Pienta, K. J., et al. (2014). Polarization of prostate cancer-associated macrophages is induced by milk fat globule-EGF factor 8 (MFG-E8)-mediated efferocytosis. The Journal of Biological Chemistry, 289, 24560–24572.PubMedCentralPubMedCrossRef
59.
go back to reference Ding, X., Yang, D. R., Xia, L., Chen, B., Yu, S., Niu, Y., et al. (2015). Targeting TR4 nuclear receptor suppresses prostate cancer invasion via reduction of infiltrating macrophages with alteration of the TIMP-1/MMP2/MMP9 signals. Molecular Cancer, 14, 16.PubMedCentralPubMedCrossRef Ding, X., Yang, D. R., Xia, L., Chen, B., Yu, S., Niu, Y., et al. (2015). Targeting TR4 nuclear receptor suppresses prostate cancer invasion via reduction of infiltrating macrophages with alteration of the TIMP-1/MMP2/MMP9 signals. Molecular Cancer, 14, 16.PubMedCentralPubMedCrossRef
60.
go back to reference Roca, H., Varsos, Z. S., Sud, S., Craig, M. J., Ying, C., & Pienta, K. J. (2009). CCL2 and interleukin-6 promote survival of human CD11b + peripheral blood mononuclear cells and induce M2-type macrophage polarization. The Journal of Biological Chemistry, 284(49), 34342–34354.PubMedCentralPubMedCrossRef Roca, H., Varsos, Z. S., Sud, S., Craig, M. J., Ying, C., & Pienta, K. J. (2009). CCL2 and interleukin-6 promote survival of human CD11b + peripheral blood mononuclear cells and induce M2-type macrophage polarization. The Journal of Biological Chemistry, 284(49), 34342–34354.PubMedCentralPubMedCrossRef
62.
go back to reference Luo, Y., Jiang, Q.W., Wu, J.Y., Qiu, J.G., Zhang, W.J., Mei, X.L., et al. (2015). Regulation of migration and invasion by Toll-like receptor-9 signaling network in prostate cancer. Oncotarget, in press. Luo, Y., Jiang, Q.W., Wu, J.Y., Qiu, J.G., Zhang, W.J., Mei, X.L., et al. (2015). Regulation of migration and invasion by Toll-like receptor-9 signaling network in prostate cancer. Oncotarget, in press.
63.
go back to reference Santoni, M., Bracarda, S., Nabissi, M., Massari, F., Conti, A., Bria, E., et al. (2014). CXC and CC chemokines as angiogenic modulators in non-haematological tumors. Biomed Research International, 768758. Santoni, M., Bracarda, S., Nabissi, M., Massari, F., Conti, A., Bria, E., et al. (2014). CXC and CC chemokines as angiogenic modulators in non-haematological tumors. Biomed Research International, 768758.
64.
go back to reference Izumi, K., Fang, L. Y., Mizokami, A., Namiki, M., Li, L., Lin, W. J., et al. (2013). Targeting the androgen receptor with siRNA promotes prostate cancer metastasis through enhanced macrophage recruitment via CCL2/CCR2-induced STAT3 activation. EMBO Molecular Medicine, 5(9), 1383–1401.PubMedCentralPubMedCrossRef Izumi, K., Fang, L. Y., Mizokami, A., Namiki, M., Li, L., Lin, W. J., et al. (2013). Targeting the androgen receptor with siRNA promotes prostate cancer metastasis through enhanced macrophage recruitment via CCL2/CCR2-induced STAT3 activation. EMBO Molecular Medicine, 5(9), 1383–1401.PubMedCentralPubMedCrossRef
65.
go back to reference Santoni, M., Conti, A., Piva, F., Massari, F., Ciccarese, C., Burattini, L., et al. (2015). Role of STAT3 pathway in genitourinary tumors. Future Science, in press. Santoni, M., Conti, A., Piva, F., Massari, F., Ciccarese, C., Burattini, L., et al. (2015). Role of STAT3 pathway in genitourinary tumors. Future Science, in press.
66.
go back to reference Zhang, K., Zhao, H., Ji, Z., Zhang, C., Zhou, P., Wang, L., et al. (2015). Shp2 promotes metastasis of prostate cancer by attenuating the PAR3/PAR6/aPKC polarity protein complex and enhancing epithelial-to-mesenchymal transition. Oncogene. doi:10.1038/onc.2015.184. Zhang, K., Zhao, H., Ji, Z., Zhang, C., Zhou, P., Wang, L., et al. (2015). Shp2 promotes metastasis of prostate cancer by attenuating the PAR3/PAR6/aPKC polarity protein complex and enhancing epithelial-to-mesenchymal transition. Oncogene. doi:10.​1038/​onc.​2015.​184.
67.
go back to reference Kolijn, K., Verhoef, E.I., van Leenders, G.J. (2015) Morphological and immunohistochemical identification of epithelial-to-mesenchymal transition in clinical prostate cancer. Oncotarget, in press. Kolijn, K., Verhoef, E.I., van Leenders, G.J. (2015) Morphological and immunohistochemical identification of epithelial-to-mesenchymal transition in clinical prostate cancer. Oncotarget, in press.
68.
go back to reference Lin, T. H., Izumi, K., Lee, S. O., Lin, W. J., Yeh, S., & Chang, C. (2013). Anti-androgen receptor ASC-J9 versus anti-androgens MDV3100 (Enzalutamide) or Casodex (Bicalutamide) leads to opposite effects on prostate cancer metastasis via differential modulation of macrophage infiltration and STAT3-CCL2 signaling. Cell Death & Disease. doi:10.1038/cddis.2013.270. Lin, T. H., Izumi, K., Lee, S. O., Lin, W. J., Yeh, S., & Chang, C. (2013). Anti-androgen receptor ASC-J9 versus anti-androgens MDV3100 (Enzalutamide) or Casodex (Bicalutamide) leads to opposite effects on prostate cancer metastasis via differential modulation of macrophage infiltration and STAT3-CCL2 signaling. Cell Death & Disease. doi:10.​1038/​cddis.​2013.​270.
69.
go back to reference Chen, Y., Tian, Y., Ji, Z., Liu, Z., & Shang, D. (2015). CC-chemokine receptor 7 is overexpressed and correlates with growth and metastasis in prostate cancer. Tumour Biology, 36(7), 5537–5541.PubMedCrossRef Chen, Y., Tian, Y., Ji, Z., Liu, Z., & Shang, D. (2015). CC-chemokine receptor 7 is overexpressed and correlates with growth and metastasis in prostate cancer. Tumour Biology, 36(7), 5537–5541.PubMedCrossRef
70.
go back to reference Zalucha, J. L., Jung, Y., Joseph, J., Wang, J., Berry, J. E., Shiozawa, Y., et al. (2015). The role of osteoclasts in early dissemination of prostate cancer tumor cells. Journal of Cancer Stem Cell Research, 3, e1005.PubMedCentralPubMedCrossRef Zalucha, J. L., Jung, Y., Joseph, J., Wang, J., Berry, J. E., Shiozawa, Y., et al. (2015). The role of osteoclasts in early dissemination of prostate cancer tumor cells. Journal of Cancer Stem Cell Research, 3, e1005.PubMedCentralPubMedCrossRef
71.
go back to reference Arnold, R. S., Fedewa, S. A., Goodman, M., Osunkoya, A. O., Kissick, H. T., Morrissey, C., et al. (2015). Bone metastasis in prostate cancer: recurring mitochondrial DNA mutation reveals selective pressure exerted by the bone microenvironment. Bone, 78, 81–86.PubMedCrossRef Arnold, R. S., Fedewa, S. A., Goodman, M., Osunkoya, A. O., Kissick, H. T., Morrissey, C., et al. (2015). Bone metastasis in prostate cancer: recurring mitochondrial DNA mutation reveals selective pressure exerted by the bone microenvironment. Bone, 78, 81–86.PubMedCrossRef
72.
go back to reference Vicente-Dueñas, C., Gutiérrez de Diego, J., Rodríguez, F. D., Jiménez, R., & Cobaleda, C. (2009). The role of cellular plasticity in cancer development. Current Medicinal Chemistry, 16(28), 3676–3685.PubMedCrossRef Vicente-Dueñas, C., Gutiérrez de Diego, J., Rodríguez, F. D., Jiménez, R., & Cobaleda, C. (2009). The role of cellular plasticity in cancer development. Current Medicinal Chemistry, 16(28), 3676–3685.PubMedCrossRef
73.
go back to reference Bishop, J. L., Davies, A., Ketola, K., & Zoubeidi, A. (2015). Regulation of tumor cell plasticity by the androgen receptor in prostate cancer. Endocrine Related Cancer, 22(3), R165–182.PubMedCrossRef Bishop, J. L., Davies, A., Ketola, K., & Zoubeidi, A. (2015). Regulation of tumor cell plasticity by the androgen receptor in prostate cancer. Endocrine Related Cancer, 22(3), R165–182.PubMedCrossRef
74.
go back to reference Santoni, M., Conti, A., Burattini, L., Berardi, R., Scarpelli, M., Cheng, L., et al. (2014). Neuroendocrine differentiation in prostate cancer: novel morphological insights and future therapeutic perspectives. Biochimica et Biophysica Acta-Reviews of Cancer, 1846(2), 630–637.CrossRef Santoni, M., Conti, A., Burattini, L., Berardi, R., Scarpelli, M., Cheng, L., et al. (2014). Neuroendocrine differentiation in prostate cancer: novel morphological insights and future therapeutic perspectives. Biochimica et Biophysica Acta-Reviews of Cancer, 1846(2), 630–637.CrossRef
75.
76.
go back to reference Xu, J., Wang, R., Xie, Z. H., Odero-Marah, V., Pathak, S., Multani, A., et al. (2006). Prostate cancer metastasis: role of the host microenvironment in promoting epithelial to mesenchymal transition and increased bone and adrenal gland metastasis. Prostate, 66(15), 1664–1673.PubMedCrossRef Xu, J., Wang, R., Xie, Z. H., Odero-Marah, V., Pathak, S., Multani, A., et al. (2006). Prostate cancer metastasis: role of the host microenvironment in promoting epithelial to mesenchymal transition and increased bone and adrenal gland metastasis. Prostate, 66(15), 1664–1673.PubMedCrossRef
77.
go back to reference Josson, S., Sharp, S., Sung, S. Y., Johnstone, P. A., Aneja, R., Wang, R., et al. (2010). Tumor-stromal interactions influence radiation sensitivity in epithelial- versus mesenchymal-like prostate cancer cells. Journal of Oncology. doi:10.1155/2010/232831.PubMedCentralPubMed Josson, S., Sharp, S., Sung, S. Y., Johnstone, P. A., Aneja, R., Wang, R., et al. (2010). Tumor-stromal interactions influence radiation sensitivity in epithelial- versus mesenchymal-like prostate cancer cells. Journal of Oncology. doi:10.​1155/​2010/​232831.PubMedCentralPubMed
78.
go back to reference D'Amico, L., Patanè, S., Grange, C., Bussolati, B., Isella, C., Fontani, L., et al. (2013). Primary breast cancer stem-like cells metastasise to bone, switch phenotype and acquire a bone tropism signature. British Journal of Cancer, 108(12), 2525–2536.PubMedCentralPubMedCrossRef D'Amico, L., Patanè, S., Grange, C., Bussolati, B., Isella, C., Fontani, L., et al. (2013). Primary breast cancer stem-like cells metastasise to bone, switch phenotype and acquire a bone tropism signature. British Journal of Cancer, 108(12), 2525–2536.PubMedCentralPubMedCrossRef
79.
go back to reference Shiozawa, Y., Pedersen, E. A., Havens, A. M., Jung, Y., Mishra, A., Joseph, J., et al. (2011). Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. The Journal of Clinical Investigation, 121(4), 1298–1312.PubMedCentralPubMedCrossRef Shiozawa, Y., Pedersen, E. A., Havens, A. M., Jung, Y., Mishra, A., Joseph, J., et al. (2011). Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. The Journal of Clinical Investigation, 121(4), 1298–1312.PubMedCentralPubMedCrossRef
80.
go back to reference Eaton, C. L., Colombel, M., van der Pluijm, G., Cecchini, M., Wetterwald, A., Lippitt, J., et al. (2010). Evaluation of the frequency of putative prostate cancer stem cells in primary and metastatic prostate cancer. Prostate, 70(8), 875–882.PubMed Eaton, C. L., Colombel, M., van der Pluijm, G., Cecchini, M., Wetterwald, A., Lippitt, J., et al. (2010). Evaluation of the frequency of putative prostate cancer stem cells in primary and metastatic prostate cancer. Prostate, 70(8), 875–882.PubMed
81.
go back to reference Fournier, P. G., Juárez, P., Jiang, G., Clines, G. A., Niewolna, M., Kim, H. S., et al. (2015). The TGF-β signaling regulator PMEPA1 suppresses prostate cancer metastases to bone. Cancer Cell, 27(6), 809–821.PubMedCrossRef Fournier, P. G., Juárez, P., Jiang, G., Clines, G. A., Niewolna, M., Kim, H. S., et al. (2015). The TGF-β signaling regulator PMEPA1 suppresses prostate cancer metastases to bone. Cancer Cell, 27(6), 809–821.PubMedCrossRef
82.
83.
go back to reference Chang, Y. S., Chen, W. Y., Yin, J. J., Sheppard-Tillman, H., Huang, J., & Liu, Y. N. (2015). EGF receptor promotes prostate cancer bone metastasis by downregulating miR-1 and activating TWIST1. Cancer Research, 75(15), 3077–3086.PubMedCrossRef Chang, Y. S., Chen, W. Y., Yin, J. J., Sheppard-Tillman, H., Huang, J., & Liu, Y. N. (2015). EGF receptor promotes prostate cancer bone metastasis by downregulating miR-1 and activating TWIST1. Cancer Research, 75(15), 3077–3086.PubMedCrossRef
84.
go back to reference Li, X., Liu, Y., Wu, B., Dong, Z., Wang, Y., Lu, J., et al. (2014). Potential role of the OPG/RANK/RANKL axis in prostate cancer invasion and bone metastasis. Oncology Report, 32(6), 2605–2611. Li, X., Liu, Y., Wu, B., Dong, Z., Wang, Y., Lu, J., et al. (2014). Potential role of the OPG/RANK/RANKL axis in prostate cancer invasion and bone metastasis. Oncology Report, 32(6), 2605–2611.
85.
go back to reference Hall, C. L., Kang, S., MacDougald, O. A., & Keller, E. T. (2006). Role of Wnts in prostate cancer bone metastases. Journal of Cellular Biochemestry, 97(4), 661–672.CrossRef Hall, C. L., Kang, S., MacDougald, O. A., & Keller, E. T. (2006). Role of Wnts in prostate cancer bone metastases. Journal of Cellular Biochemestry, 97(4), 661–672.CrossRef
86.
go back to reference Iuliani, M., Pantano, F., Buttigliero, C., Fioramonti, M., Bertaglia, V., Vincenzi, B., et al. (2015). Biological and clinical effects of abiraterone on anti-resorptive and anabolic activity in bone microenvironment. Oncotarget, 6(14), 12520–12528.PubMedCentralPubMedCrossRef Iuliani, M., Pantano, F., Buttigliero, C., Fioramonti, M., Bertaglia, V., Vincenzi, B., et al. (2015). Biological and clinical effects of abiraterone on anti-resorptive and anabolic activity in bone microenvironment. Oncotarget, 6(14), 12520–12528.PubMedCentralPubMedCrossRef
88.
go back to reference Santoni, M., Scarpelli, M., Mazzucchelli, R., Lopez-Beltran, A., Cheng, L., Epstein, J. I., et al. (2015). Current histopathologic and molecular characterizations of prostate cancer: towards individualized prognosis and therapies. European Urology. doi:10.1016/j.eururo.2015.05.041. Santoni, M., Scarpelli, M., Mazzucchelli, R., Lopez-Beltran, A., Cheng, L., Epstein, J. I., et al. (2015). Current histopathologic and molecular characterizations of prostate cancer: towards individualized prognosis and therapies. European Urology. doi:10.​1016/​j.​eururo.​2015.​05.​041.
Metadata
Title
The origin of prostate metastases: emerging insights
Authors
Matteo Santoni
Francesco Piva
Marina Scarpelli
Liang Cheng
Antonio Lopez-Beltran
Francesco Massari
Roberto Iacovelli
Rossana Berardi
Daniele Santini
Rodolfo Montironi
Publication date
01-12-2015
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 4/2015
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-015-9597-6

Other articles of this Issue 4/2015

Cancer and Metastasis Reviews 4/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine