Skip to main content
Top
Published in: Cancer and Metastasis Reviews 2-3/2014

01-09-2014

Recent progress on nutraceutical research in prostate cancer

Authors: Yiwei Li, Aamir Ahmad, Dejuan Kong, Bin Bao, Fazlul H. Sarkar

Published in: Cancer and Metastasis Reviews | Issue 2-3/2014

Login to get access

Abstract

Recently, nutraceuticals have received increasing attention as the agents for cancer prevention and supplement with conventional therapy. Prostate cancer (PCa) is the most frequently diagnosed cancer and second leading cause of cancer-related death in men in the US. Growing evidences from epidemiological studies, in vitro experimental studies, animal studies, and clinical trials have shown that nutraceuticals could be very useful for the prevention and treatment of PCa. Several nutraceuticals including isoflavone, indole-3-carbinol, 3,3′-diindolylmethane, lycopene, (−)-epigallocatechin-3-gallate, and curcumin are known to downregulate the signal transductions in AR, Akt, NF-κB, and other signal transduction pathways which are vital for the development of PCa and the progression of PCa from androgen-sensitive to castrate-resistant PCa. Therefore, nutraceutical treatment in combination with conventional therapeutics could achieve better treatment outcome in prostate cancer therapy. Interestingly, some nutraceuticals could regulate the function of cancer stem cell (CSC)-related miRNAs and associated molecules, leading to the inhibition of prostatic CSCs which are responsible for drug resistance, tumor progression, and recurrence of PCa. Hence, nutraceuticals may serve as powerful agents for the prevention of PCa progression and they could also be useful in combination with chemotherapeutics or radiotherapy. Such strategy could become a promising newer approach for the treatment of metastatic PCa with better treatment outcome by improving overall survival.
Literature
1.
go back to reference Siegel, R., Naishadham, D., & Jemal, A. (2013). Cancer statistics, 2013. CA Cancer J Clin, 63, 11–30.PubMedCrossRef Siegel, R., Naishadham, D., & Jemal, A. (2013). Cancer statistics, 2013. CA Cancer J Clin, 63, 11–30.PubMedCrossRef
2.
go back to reference Kolonel, L. N., Hankin, J. H., Whittemore, A. S., et al. (2000). Vegetables, fruits, legumes and prostate cancer: a multiethnic case–control study. Cancer Epidemiol Biomarkers Prev, 9, 795–804.PubMed Kolonel, L. N., Hankin, J. H., Whittemore, A. S., et al. (2000). Vegetables, fruits, legumes and prostate cancer: a multiethnic case–control study. Cancer Epidemiol Biomarkers Prev, 9, 795–804.PubMed
3.
go back to reference Namiki, M., Akaza, H., Lee, S. E., et al. (2010). Prostate cancer working group report. Jpn J Clin Oncol, 40(Suppl 1), i70–i75.PubMedCrossRef Namiki, M., Akaza, H., Lee, S. E., et al. (2010). Prostate cancer working group report. Jpn J Clin Oncol, 40(Suppl 1), i70–i75.PubMedCrossRef
4.
go back to reference Brower, V. (1998). Nutraceuticals: poised for a healthy slice of the healthcare market? Nat Biotechnol, 16, 728–731.PubMedCrossRef Brower, V. (1998). Nutraceuticals: poised for a healthy slice of the healthcare market? Nat Biotechnol, 16, 728–731.PubMedCrossRef
5.
go back to reference Yan, L., & Spitznagel, E. L. (2009). Soy consumption and prostate cancer risk in men: a revisit of a meta-analysis. Am J Clin Nutr, 89, 1155–1163.PubMedCrossRef Yan, L., & Spitznagel, E. L. (2009). Soy consumption and prostate cancer risk in men: a revisit of a meta-analysis. Am J Clin Nutr, 89, 1155–1163.PubMedCrossRef
6.
go back to reference Jacobsen, B. K., Knutsen, S. F., & Fraser, G. E. (1998). Does high soy milk intake reduce prostate cancer incidence? The Adventist Health Study (United States). Cancer Causes Control, 9, 553–557.PubMedCrossRef Jacobsen, B. K., Knutsen, S. F., & Fraser, G. E. (1998). Does high soy milk intake reduce prostate cancer incidence? The Adventist Health Study (United States). Cancer Causes Control, 9, 553–557.PubMedCrossRef
7.
go back to reference Kurahashi, N., Iwasaki, M., Sasazuki, S., et al. (2007). Soy product and isoflavone consumption in relation to prostate cancer in Japanese men. Cancer Epidemiol Biomarkers Prev, 16, 538–545.PubMedCrossRef Kurahashi, N., Iwasaki, M., Sasazuki, S., et al. (2007). Soy product and isoflavone consumption in relation to prostate cancer in Japanese men. Cancer Epidemiol Biomarkers Prev, 16, 538–545.PubMedCrossRef
8.
go back to reference Lee, M. M., Gomez, S. L., Chang, J. S., et al. (2003). Soy and isoflavone consumption in relation to prostate cancer risk in China. Cancer Epidemiol Biomarkers Prev, 12, 665–668.PubMed Lee, M. M., Gomez, S. L., Chang, J. S., et al. (2003). Soy and isoflavone consumption in relation to prostate cancer risk in China. Cancer Epidemiol Biomarkers Prev, 12, 665–668.PubMed
9.
go back to reference Liu, B., Mao, Q., Cao, M., et al. (2012). Cruciferous vegetables intake and risk of prostate cancer: a meta-analysis. Int J Urol, 19, 134–141.PubMedCrossRef Liu, B., Mao, Q., Cao, M., et al. (2012). Cruciferous vegetables intake and risk of prostate cancer: a meta-analysis. Int J Urol, 19, 134–141.PubMedCrossRef
10.
go back to reference Cohen, J. H., Kristal, A. R., & Stanford, J. L. (2000). Fruit and vegetable intakes and prostate cancer risk. J Natl Cancer Inst, 92, 61–68.PubMedCrossRef Cohen, J. H., Kristal, A. R., & Stanford, J. L. (2000). Fruit and vegetable intakes and prostate cancer risk. J Natl Cancer Inst, 92, 61–68.PubMedCrossRef
11.
go back to reference Richman, E. L., Carroll, P. R., & Chan, J. M. (2012). Vegetable and fruit intake after diagnosis and risk of prostate cancer progression. Int J Cancer, 131, 201–210.PubMedCentralPubMedCrossRef Richman, E. L., Carroll, P. R., & Chan, J. M. (2012). Vegetable and fruit intake after diagnosis and risk of prostate cancer progression. Int J Cancer, 131, 201–210.PubMedCentralPubMedCrossRef
12.
go back to reference Kirsh, V. A., Peters, U., Mayne, S. T., et al. (2007). Prospective study of fruit and vegetable intake and risk of prostate cancer. J Natl Cancer Inst, 99, 1200–1209.PubMedCrossRef Kirsh, V. A., Peters, U., Mayne, S. T., et al. (2007). Prospective study of fruit and vegetable intake and risk of prostate cancer. J Natl Cancer Inst, 99, 1200–1209.PubMedCrossRef
13.
go back to reference Gann, P. H., Ma, J., Giovannucci, E., et al. (1999). Lower prostate cancer risk in men with elevated plasma lycopene levels: results of a prospective analysis. Cancer Res, 59, 1225–1230.PubMed Gann, P. H., Ma, J., Giovannucci, E., et al. (1999). Lower prostate cancer risk in men with elevated plasma lycopene levels: results of a prospective analysis. Cancer Res, 59, 1225–1230.PubMed
14.
go back to reference Lu, Q. Y., Hung, J. C., Heber, D., et al. (2001). Inverse associations between plasma lycopene and other carotenoids and prostate cancer. Cancer Epidemiol Biomarkers Prev, 10, 749–756.PubMed Lu, Q. Y., Hung, J. C., Heber, D., et al. (2001). Inverse associations between plasma lycopene and other carotenoids and prostate cancer. Cancer Epidemiol Biomarkers Prev, 10, 749–756.PubMed
15.
go back to reference Giovannucci, E., Rimm, E. B., Liu, Y., et al. (2002). A prospective study of tomato products, lycopene, and prostate cancer risk. J Natl Cancer Inst, 94, 391–398.PubMedCrossRef Giovannucci, E., Rimm, E. B., Liu, Y., et al. (2002). A prospective study of tomato products, lycopene, and prostate cancer risk. J Natl Cancer Inst, 94, 391–398.PubMedCrossRef
16.
go back to reference Etminan, M., Takkouche, B., & Caamano-Isorna, F. (2004). The role of tomato products and lycopene in the prevention of prostate cancer: a meta-analysis of observational studies. Cancer Epidemiol Biomarkers Prev, 13, 340–345.PubMed Etminan, M., Takkouche, B., & Caamano-Isorna, F. (2004). The role of tomato products and lycopene in the prevention of prostate cancer: a meta-analysis of observational studies. Cancer Epidemiol Biomarkers Prev, 13, 340–345.PubMed
17.
go back to reference Peters, U., Leitzmann, M. F., Chatterjee, N., et al. (2007). Serum lycopene, other carotenoids, and prostate cancer risk: a nested case–control study in the prostate, lung, colorectal, and ovarian cancer screening trial. Cancer Epidemiol Biomarkers Prev, 16, 962–968.PubMedCrossRef Peters, U., Leitzmann, M. F., Chatterjee, N., et al. (2007). Serum lycopene, other carotenoids, and prostate cancer risk: a nested case–control study in the prostate, lung, colorectal, and ovarian cancer screening trial. Cancer Epidemiol Biomarkers Prev, 16, 962–968.PubMedCrossRef
18.
go back to reference Mazdak, H., Mazdak, M., Jamali, L., et al. (2012). Determination of prostate cancer risk factors in Isfahan, Iran: a case–control study. Med Arh, 66, 45–48.PubMedCrossRef Mazdak, H., Mazdak, M., Jamali, L., et al. (2012). Determination of prostate cancer risk factors in Isfahan, Iran: a case–control study. Med Arh, 66, 45–48.PubMedCrossRef
19.
go back to reference Salem, S., Salahi, M., Mohseni, M., et al. (2011). Major dietary factors and prostate cancer risk: a prospective multicenter case–control study. Nutr Cancer, 63, 21–27.PubMed Salem, S., Salahi, M., Mohseni, M., et al. (2011). Major dietary factors and prostate cancer risk: a prospective multicenter case–control study. Nutr Cancer, 63, 21–27.PubMed
20.
go back to reference Jian, L., Xie, L. P., Lee, A. H., et al. (2004). Protective effect of green tea against prostate cancer: a case–control study in southeast China. Int J Cancer, 108, 130–135.PubMedCrossRef Jian, L., Xie, L. P., Lee, A. H., et al. (2004). Protective effect of green tea against prostate cancer: a case–control study in southeast China. Int J Cancer, 108, 130–135.PubMedCrossRef
21.
go back to reference Kurahashi, N., Sasazuki, S., Iwasaki, M., et al. (2008). Green tea consumption and prostate cancer risk in Japanese men: a prospective study. Am J Epidemiol, 167, 71–77.PubMedCrossRef Kurahashi, N., Sasazuki, S., Iwasaki, M., et al. (2008). Green tea consumption and prostate cancer risk in Japanese men: a prospective study. Am J Epidemiol, 167, 71–77.PubMedCrossRef
22.
go back to reference Kikuchi, N., Ohmori, K., Shimazu, T., et al. (2006). No association between green tea and prostate cancer risk in Japanese men: the Ohsaki Cohort Study. Br J Cancer, 95, 371–373.PubMedCentralPubMedCrossRef Kikuchi, N., Ohmori, K., Shimazu, T., et al. (2006). No association between green tea and prostate cancer risk in Japanese men: the Ohsaki Cohort Study. Br J Cancer, 95, 371–373.PubMedCentralPubMedCrossRef
23.
go back to reference Zheng, J., Yang, B., Huang, T., et al. (2011). Green tea and black tea consumption and prostate cancer risk: an exploratory meta-analysis of observational studies. Nutr Cancer, 63, 663–672.PubMedCrossRef Zheng, J., Yang, B., Huang, T., et al. (2011). Green tea and black tea consumption and prostate cancer risk: an exploratory meta-analysis of observational studies. Nutr Cancer, 63, 663–672.PubMedCrossRef
24.
go back to reference Jian, L., Lee, A. H., & Binns, C. W. (2007). Tea and lycopene protect against prostate cancer. Asia Pac J Clin Nutr, 16(Suppl 1), 453–457.PubMed Jian, L., Lee, A. H., & Binns, C. W. (2007). Tea and lycopene protect against prostate cancer. Asia Pac J Clin Nutr, 16(Suppl 1), 453–457.PubMed
25.
26.
go back to reference Donovan, M. J., Osman, I., Khan, F. M., et al. (2010). Androgen receptor expression is associated with prostate cancer-specific survival in castrate patients with metastatic disease. BJU Int, 105, 462–467.PubMedCrossRef Donovan, M. J., Osman, I., Khan, F. M., et al. (2010). Androgen receptor expression is associated with prostate cancer-specific survival in castrate patients with metastatic disease. BJU Int, 105, 462–467.PubMedCrossRef
27.
go back to reference Sircar, K., Yoshimoto, M., Monzon, F. A., et al. (2009). PTEN genomic deletion is associated with p-Akt and AR signaling in poorer outcome, hormone refractory prostate cancer. J Pathol, 218, 505–513.PubMedCrossRef Sircar, K., Yoshimoto, M., Monzon, F. A., et al. (2009). PTEN genomic deletion is associated with p-Akt and AR signaling in poorer outcome, hormone refractory prostate cancer. J Pathol, 218, 505–513.PubMedCrossRef
28.
go back to reference Attar, R. M., Takimoto, C. H., & Gottardis, M. M. (2009). Castration-resistant prostate cancer: locking up the molecular escape routes. Clin Cancer Res, 15, 3251–3255.PubMedCrossRef Attar, R. M., Takimoto, C. H., & Gottardis, M. M. (2009). Castration-resistant prostate cancer: locking up the molecular escape routes. Clin Cancer Res, 15, 3251–3255.PubMedCrossRef
29.
go back to reference Debes, J. D., & Tindall, D. J. (2004). Mechanisms of androgen-refractory prostate cancer. N Engl J Med, 351, 1488–1490.PubMedCrossRef Debes, J. D., & Tindall, D. J. (2004). Mechanisms of androgen-refractory prostate cancer. N Engl J Med, 351, 1488–1490.PubMedCrossRef
30.
go back to reference Oh, H. Y., Leem, J., Yoon, S. J., et al. (2010). Lipid raft cholesterol and genistein inhibit the cell viability of prostate cancer cells via the partial contribution of EGFR-Akt/p70S6k pathway and downregulation of androgen receptor. Biochem Biophys Res Commun, 393, 319–324.PubMedCrossRef Oh, H. Y., Leem, J., Yoon, S. J., et al. (2010). Lipid raft cholesterol and genistein inhibit the cell viability of prostate cancer cells via the partial contribution of EGFR-Akt/p70S6k pathway and downregulation of androgen receptor. Biochem Biophys Res Commun, 393, 319–324.PubMedCrossRef
31.
go back to reference Basak, S., Pookot, D., Noonan, E. J., et al. (2008). Genistein downregulates androgen receptor by modulating HDAC6-Hsp90 chaperone function. Mol Cancer Ther, 7, 3195–3202.PubMedCrossRef Basak, S., Pookot, D., Noonan, E. J., et al. (2008). Genistein downregulates androgen receptor by modulating HDAC6-Hsp90 chaperone function. Mol Cancer Ther, 7, 3195–3202.PubMedCrossRef
32.
go back to reference Li, Y., Wang, Z., Kong, D., et al. (2008). Regulation of Akt/FOXO3a/GSK-3beta/AR signaling network by isoflavone in prostate cancer cells. J Biol Chem, 283, 27707–27716.PubMedCentralPubMedCrossRef Li, Y., Wang, Z., Kong, D., et al. (2008). Regulation of Akt/FOXO3a/GSK-3beta/AR signaling network by isoflavone in prostate cancer cells. J Biol Chem, 283, 27707–27716.PubMedCentralPubMedCrossRef
33.
go back to reference Jagadeesh, S., Kyo, S., & Banerjee, P. P. (2006). Genistein represses telomerase activity via both transcriptional and posttranslational mechanisms in human prostate cancer cells. Cancer Res, 66, 2107–2115.PubMedCrossRef Jagadeesh, S., Kyo, S., & Banerjee, P. P. (2006). Genistein represses telomerase activity via both transcriptional and posttranslational mechanisms in human prostate cancer cells. Cancer Res, 66, 2107–2115.PubMedCrossRef
34.
go back to reference Li, Y., Ahmed, F., Ali, S., et al. (2005). Inactivation of nuclear factor kappaB by soy isoflavone genistein contributes to increased apoptosis induced by chemotherapeutic agents in human cancer cells. Cancer Res, 65, 6934–6942.PubMedCrossRef Li, Y., Ahmed, F., Ali, S., et al. (2005). Inactivation of nuclear factor kappaB by soy isoflavone genistein contributes to increased apoptosis induced by chemotherapeutic agents in human cancer cells. Cancer Res, 65, 6934–6942.PubMedCrossRef
35.
go back to reference Wang, Y., Wang, H., Zhang, W., et al. (2013). Genistein sensitizes bladder cancer cells to HCPT treatment in vitro and in vivo via ATM/NF-kappaB/IKK pathway-induced apoptosis. PLoS One, 8, e50175.PubMedCentralPubMedCrossRef Wang, Y., Wang, H., Zhang, W., et al. (2013). Genistein sensitizes bladder cancer cells to HCPT treatment in vitro and in vivo via ATM/NF-kappaB/IKK pathway-induced apoptosis. PLoS One, 8, e50175.PubMedCentralPubMedCrossRef
36.
go back to reference Legg, R. L., Tolman, J. R., Lovinger, C. T., et al. (2008). Diets high in selenium and isoflavones decrease androgen-regulated gene expression in healthy rat dorsolateral prostate. Reprod Biol Endocrinol, 6, 57.PubMedCentralPubMedCrossRef Legg, R. L., Tolman, J. R., Lovinger, C. T., et al. (2008). Diets high in selenium and isoflavones decrease androgen-regulated gene expression in healthy rat dorsolateral prostate. Reprod Biol Endocrinol, 6, 57.PubMedCentralPubMedCrossRef
37.
go back to reference Fritz, W. A., Wang, J., Eltoum, I. E., et al. (2002). Dietary genistein downregulates androgen and estrogen receptor expression in the rat prostate. Mol Cell Endocrinol, 186, 89–99.PubMedCrossRef Fritz, W. A., Wang, J., Eltoum, I. E., et al. (2002). Dietary genistein downregulates androgen and estrogen receptor expression in the rat prostate. Mol Cell Endocrinol, 186, 89–99.PubMedCrossRef
38.
go back to reference Phillip, C. J., Giardina, C. K., Bilir, B., et al. (2012). Genistein cooperates with the histone deacetylase inhibitor vorinostat to induce cell death in prostate cancer cells. BMC Cancer, 12, 145.PubMedCentralPubMedCrossRef Phillip, C. J., Giardina, C. K., Bilir, B., et al. (2012). Genistein cooperates with the histone deacetylase inhibitor vorinostat to induce cell death in prostate cancer cells. BMC Cancer, 12, 145.PubMedCentralPubMedCrossRef
39.
go back to reference Zhang, L., Li, L., Jiao, M., et al. (2012). Genistein inhibits the stemness properties of prostate cancer cells through targeting Hedgehog-Gli1 pathway. Cancer Lett, 323, 48–57.PubMedCrossRef Zhang, L., Li, L., Jiao, M., et al. (2012). Genistein inhibits the stemness properties of prostate cancer cells through targeting Hedgehog-Gli1 pathway. Cancer Lett, 323, 48–57.PubMedCrossRef
40.
go back to reference Chang, K. L., Cheng, H. L., Huang, L. W., et al. (2009). Combined effects of terazosin and genistein on a metastatic, hormone-independent human prostate cancer cell line. Cancer Lett, 276, 14–20.PubMedCrossRef Chang, K. L., Cheng, H. L., Huang, L. W., et al. (2009). Combined effects of terazosin and genistein on a metastatic, hormone-independent human prostate cancer cell line. Cancer Lett, 276, 14–20.PubMedCrossRef
41.
go back to reference Burich, R. A., Holland, W. S., Vinall, R. L., et al. (2008). Genistein combined polysaccharide enhances activity of docetaxel, bicalutamide, and Src kinase inhibition in androgen-dependent and independent prostate cancer cell lines. BJU Int, 102, 1458–1466.PubMed Burich, R. A., Holland, W. S., Vinall, R. L., et al. (2008). Genistein combined polysaccharide enhances activity of docetaxel, bicalutamide, and Src kinase inhibition in androgen-dependent and independent prostate cancer cell lines. BJU Int, 102, 1458–1466.PubMed
42.
go back to reference Wang, Y., Raffoul, J. J., Che, M., et al. (2006). Prostate cancer treatment is enhanced by genistein in vitro and in vivo in a syngeneic orthotopic tumor model. Radiat Res, 166, 73–80.PubMedCrossRef Wang, Y., Raffoul, J. J., Che, M., et al. (2006). Prostate cancer treatment is enhanced by genistein in vitro and in vivo in a syngeneic orthotopic tumor model. Radiat Res, 166, 73–80.PubMedCrossRef
43.
go back to reference Raffoul, J. J., Wang, Y., Kucuk, O., et al. (2006). Genistein inhibits radiation-induced activation of NF-kappaB in prostate cancer cells promoting apoptosis and G2/M cell cycle arrest. BMC Cancer, 6, 107.PubMedCentralPubMedCrossRef Raffoul, J. J., Wang, Y., Kucuk, O., et al. (2006). Genistein inhibits radiation-induced activation of NF-kappaB in prostate cancer cells promoting apoptosis and G2/M cell cycle arrest. BMC Cancer, 6, 107.PubMedCentralPubMedCrossRef
44.
go back to reference Singh-Gupta, V., Zhang, H., Banerjee, S., et al. (2009). Radiation-induced HIF-1alpha cell survival pathway is inhibited by soy isoflavones in prostate cancer cells. Int J Cancer, 124, 1675–1684.PubMedCentralPubMedCrossRef Singh-Gupta, V., Zhang, H., Banerjee, S., et al. (2009). Radiation-induced HIF-1alpha cell survival pathway is inhibited by soy isoflavones in prostate cancer cells. Int J Cancer, 124, 1675–1684.PubMedCentralPubMedCrossRef
45.
go back to reference Busby, M. G., Jeffcoat, A. R., Bloedon, L. T., et al. (2002). Clinical characteristics and pharmacokinetics of purified soy isoflavones: single-dose administration to healthy men. Am J Clin Nutr, 75, 126–136.PubMed Busby, M. G., Jeffcoat, A. R., Bloedon, L. T., et al. (2002). Clinical characteristics and pharmacokinetics of purified soy isoflavones: single-dose administration to healthy men. Am J Clin Nutr, 75, 126–136.PubMed
46.
go back to reference Fischer, L., Mahoney, C., Jeffcoat, A. R., et al. (2004). Clinical characteristics and pharmacokinetics of purified soy isoflavones: multiple-dose administration to men with prostate neoplasia. Nutr Cancer, 48, 160–170.PubMedCrossRef Fischer, L., Mahoney, C., Jeffcoat, A. R., et al. (2004). Clinical characteristics and pharmacokinetics of purified soy isoflavones: multiple-dose administration to men with prostate neoplasia. Nutr Cancer, 48, 160–170.PubMedCrossRef
47.
go back to reference Kumar, N. B., Cantor, A., Allen, K., et al. (2004). The specific role of isoflavones in reducing prostate cancer risk. Prostate, 59, 141–147.PubMedCrossRef Kumar, N. B., Cantor, A., Allen, K., et al. (2004). The specific role of isoflavones in reducing prostate cancer risk. Prostate, 59, 141–147.PubMedCrossRef
48.
go back to reference Kumar, N. B., Krischer, J. P., Allen, K., et al. (2007). Safety of purified isoflavones in men with clinically localized prostate cancer. Nutr Cancer, 59, 169–175.PubMedCentralPubMedCrossRef Kumar, N. B., Krischer, J. P., Allen, K., et al. (2007). Safety of purified isoflavones in men with clinically localized prostate cancer. Nutr Cancer, 59, 169–175.PubMedCentralPubMedCrossRef
49.
go back to reference Kumar, N. B., Krischer, J. P., Allen, K., et al. (2007). A phase II randomized, placebo-controlled clinical trial of purified isoflavones in modulating steroid hormones in men diagnosed with localized prostate cancer. Nutr Cancer, 59, 163–168.PubMedCentralPubMedCrossRef Kumar, N. B., Krischer, J. P., Allen, K., et al. (2007). A phase II randomized, placebo-controlled clinical trial of purified isoflavones in modulating steroid hormones in men diagnosed with localized prostate cancer. Nutr Cancer, 59, 163–168.PubMedCentralPubMedCrossRef
50.
go back to reference Takimoto, C. H., Glover, K., Huang, X., et al. (2003). Phase I pharmacokinetic and pharmacodynamic analysis of unconjugated soy isoflavones administered to individuals with cancer. Cancer Epidemiol Biomarkers Prev, 12, 1213–1221.PubMed Takimoto, C. H., Glover, K., Huang, X., et al. (2003). Phase I pharmacokinetic and pharmacodynamic analysis of unconjugated soy isoflavones administered to individuals with cancer. Cancer Epidemiol Biomarkers Prev, 12, 1213–1221.PubMed
51.
go back to reference Hussain, M., Banerjee, M., Sarkar, F. H., et al. (2003). Soy isoflavones in the treatment of prostate cancer. Nutr Cancer, 47, 111–117.PubMedCrossRef Hussain, M., Banerjee, M., Sarkar, F. H., et al. (2003). Soy isoflavones in the treatment of prostate cancer. Nutr Cancer, 47, 111–117.PubMedCrossRef
52.
go back to reference Bhuiyan, M. M., Li, Y., Banerjee, S., et al. (2006). Downregulation of androgen receptor by 3,3′-diindolylmethane contributes to inhibition of cell proliferation and induction of apoptosis in both hormone-sensitive LNCaP and insensitive C4-2B prostate cancer cells. Cancer Res, 66, 10064–10072.PubMedCrossRef Bhuiyan, M. M., Li, Y., Banerjee, S., et al. (2006). Downregulation of androgen receptor by 3,3′-diindolylmethane contributes to inhibition of cell proliferation and induction of apoptosis in both hormone-sensitive LNCaP and insensitive C4-2B prostate cancer cells. Cancer Res, 66, 10064–10072.PubMedCrossRef
53.
go back to reference Hsu, J. C., Zhang, J., Dev, A., et al. (2005). Indole-3-carbinol inhibition of androgen receptor expression and downregulation of androgen responsiveness in human prostate cancer cells. Carcinogenesis, 26, 1896–1904.PubMedCrossRef Hsu, J. C., Zhang, J., Dev, A., et al. (2005). Indole-3-carbinol inhibition of androgen receptor expression and downregulation of androgen responsiveness in human prostate cancer cells. Carcinogenesis, 26, 1896–1904.PubMedCrossRef
54.
go back to reference Le, H. T., Schaldach, C. M., Firestone, G. L., et al. (2003). Plant-derived 3,3′-diindolylmethane is a strong androgen antagonist in human prostate cancer cells. J Biol Chem, 278, 21136–21145.PubMedCrossRef Le, H. T., Schaldach, C. M., Firestone, G. L., et al. (2003). Plant-derived 3,3′-diindolylmethane is a strong androgen antagonist in human prostate cancer cells. J Biol Chem, 278, 21136–21145.PubMedCrossRef
55.
go back to reference Li, Y., Wang, Z., Kong, D., et al. (2007). Regulation of FOXO3a/beta-catenin/GSK-3beta signaling by 3,3′-diindolylmethane contributes to inhibition of cell proliferation and induction of apoptosis in prostate cancer cells. J Biol Chem, 282, 21542–21550.PubMedCrossRef Li, Y., Wang, Z., Kong, D., et al. (2007). Regulation of FOXO3a/beta-catenin/GSK-3beta signaling by 3,3′-diindolylmethane contributes to inhibition of cell proliferation and induction of apoptosis in prostate cancer cells. J Biol Chem, 282, 21542–21550.PubMedCrossRef
56.
go back to reference Li, Y., Kong, D., Wang, Z., et al. (2011). Inactivation of AR/TMPRSS2-ERG/Wnt signaling networks attenuates the aggressive behavior of prostate cancer cells. Cancer Prev Res (Phila), 4, 1495–1506.CrossRef Li, Y., Kong, D., Wang, Z., et al. (2011). Inactivation of AR/TMPRSS2-ERG/Wnt signaling networks attenuates the aggressive behavior of prostate cancer cells. Cancer Prev Res (Phila), 4, 1495–1506.CrossRef
57.
go back to reference Li, Y., Chinni, S. R., & Sarkar, F. H. (2005). Selective growth regulatory and proapoptotic effects of DIM is mediated by AKT and NF-kappaB pathways in prostate cancer cells. Front Biosci, 10, 236–243.PubMedCrossRef Li, Y., Chinni, S. R., & Sarkar, F. H. (2005). Selective growth regulatory and proapoptotic effects of DIM is mediated by AKT and NF-kappaB pathways in prostate cancer cells. Front Biosci, 10, 236–243.PubMedCrossRef
58.
go back to reference Wang, T. T., Schoene, N. W., Milner, J. A., et al. (2012). Broccoli-derived phytochemicals indole-3-carbinol and 3,3′-diindolylmethane exerts concentration-dependent pleiotropic effects on prostate cancer cells: comparison with other cancer-preventive phytochemicals. Mol Carcinog, 51, 244–256.PubMedCrossRef Wang, T. T., Schoene, N. W., Milner, J. A., et al. (2012). Broccoli-derived phytochemicals indole-3-carbinol and 3,3′-diindolylmethane exerts concentration-dependent pleiotropic effects on prostate cancer cells: comparison with other cancer-preventive phytochemicals. Mol Carcinog, 51, 244–256.PubMedCrossRef
59.
go back to reference Ahmad, A., Kong, D., Sarkar, S. H., et al. (2009). Inactivation of uPA and its receptor uPAR by 3,3′-diindolylmethane (DIM) leads to the inhibition of prostate cancer cell growth and migration. J Cell Biochem, 107, 516–527.PubMedCentralPubMedCrossRef Ahmad, A., Kong, D., Sarkar, S. H., et al. (2009). Inactivation of uPA and its receptor uPAR by 3,3′-diindolylmethane (DIM) leads to the inhibition of prostate cancer cell growth and migration. J Cell Biochem, 107, 516–527.PubMedCentralPubMedCrossRef
60.
go back to reference Azmi, A. S., Ahmad, A., Banerjee, S., et al. (2008). Chemoprevention of pancreatic cancer: characterization of Par-4 and its modulation by 3,3′ diindolylmethane (DIM). Pharm Res, 25, 2117–2124.PubMedCentralPubMedCrossRef Azmi, A. S., Ahmad, A., Banerjee, S., et al. (2008). Chemoprevention of pancreatic cancer: characterization of Par-4 and its modulation by 3,3′ diindolylmethane (DIM). Pharm Res, 25, 2117–2124.PubMedCentralPubMedCrossRef
61.
go back to reference Beaver, L. M., Yu, T. W., Sokolowski, E. I., et al. (2012). 3,3′-Diindolylmethane, but not indole-3-carbinol, inhibits histone deacetylase activity in prostate cancer cells. Toxicol Appl Pharmacol, 263, 345–351.PubMedCentralPubMedCrossRef Beaver, L. M., Yu, T. W., Sokolowski, E. I., et al. (2012). 3,3′-Diindolylmethane, but not indole-3-carbinol, inhibits histone deacetylase activity in prostate cancer cells. Toxicol Appl Pharmacol, 263, 345–351.PubMedCentralPubMedCrossRef
62.
go back to reference Chen, D., Banerjee, S., Cui, Q. C., et al. (2012). Activation of AMP-activated protein kinase by 3,3′-diindolylmethane (DIM) is associated with human prostate cancer cell death in vitro and in vivo. PLoS One, 7, e47186.PubMedCentralPubMedCrossRef Chen, D., Banerjee, S., Cui, Q. C., et al. (2012). Activation of AMP-activated protein kinase by 3,3′-diindolylmethane (DIM) is associated with human prostate cancer cell death in vitro and in vivo. PLoS One, 7, e47186.PubMedCentralPubMedCrossRef
63.
go back to reference Duhon, D., Bigelow, R. L., Coleman, D. T., et al. (2010). The polyphenol epigallocatechin-3-gallate affects lipid rafts to block activation of the c-Met receptor in prostate cancer cells. Mol Carcinog, 49, 739–749.PubMed Duhon, D., Bigelow, R. L., Coleman, D. T., et al. (2010). The polyphenol epigallocatechin-3-gallate affects lipid rafts to block activation of the c-Met receptor in prostate cancer cells. Mol Carcinog, 49, 739–749.PubMed
64.
go back to reference Kong, D., Li, Y., Wang, Z., et al. (2007). Inhibition of angiogenesis and invasion by 3,3′-diindolylmethane is mediated by the nuclear factor-kappaB downstream target genes MMP-9 and uPA that regulated bioavailability of vascular endothelial growth factor in prostate cancer. Cancer Res, 67, 3310–3319.PubMedCrossRef Kong, D., Li, Y., Wang, Z., et al. (2007). Inhibition of angiogenesis and invasion by 3,3′-diindolylmethane is mediated by the nuclear factor-kappaB downstream target genes MMP-9 and uPA that regulated bioavailability of vascular endothelial growth factor in prostate cancer. Cancer Res, 67, 3310–3319.PubMedCrossRef
65.
go back to reference Kong, D., Heath, E., Chen, W., et al. (2012). Loss of let-7 upregulates EZH2 in prostate cancer consistent with the acquisition of cancer stem cell signatures that are attenuated by BR-DIM. PLoS One, 7, e33729.PubMedCentralPubMedCrossRef Kong, D., Heath, E., Chen, W., et al. (2012). Loss of let-7 upregulates EZH2 in prostate cancer consistent with the acquisition of cancer stem cell signatures that are attenuated by BR-DIM. PLoS One, 7, e33729.PubMedCentralPubMedCrossRef
66.
go back to reference Fan, S., Meng, Q., Auborn, K., et al. (2006). BRCA1 and BRCA2 as molecular targets for phytochemicals indole-3-carbinol and genistein in breast and prostate cancer cells. Br J Cancer, 94, 407–426.PubMedCentralPubMedCrossRef Fan, S., Meng, Q., Auborn, K., et al. (2006). BRCA1 and BRCA2 as molecular targets for phytochemicals indole-3-carbinol and genistein in breast and prostate cancer cells. Br J Cancer, 94, 407–426.PubMedCentralPubMedCrossRef
67.
go back to reference Sarkar, F. H., & Li, Y. (2004). Indole-3-carbinol and prostate cancer. J Nutr, 134, 3493S–3498S.PubMed Sarkar, F. H., & Li, Y. (2004). Indole-3-carbinol and prostate cancer. J Nutr, 134, 3493S–3498S.PubMed
68.
go back to reference Kumi-Diaka, J. (2002). Chemosensitivity of human prostate cancer cells PC3 and LNCaP to genistein isoflavone and beta-lapachone. Biol Cell, 94, 37–44.PubMedCrossRef Kumi-Diaka, J. (2002). Chemosensitivity of human prostate cancer cells PC3 and LNCaP to genistein isoflavone and beta-lapachone. Biol Cell, 94, 37–44.PubMedCrossRef
69.
go back to reference Kumi-Diaka, J., Merchant, K., Haces, A., et al. (2010). Genistein-selenium combination induces growth arrest in prostate cancer cells. J Med Food, 13, 842–850.PubMedCrossRef Kumi-Diaka, J., Merchant, K., Haces, A., et al. (2010). Genistein-selenium combination induces growth arrest in prostate cancer cells. J Med Food, 13, 842–850.PubMedCrossRef
70.
go back to reference Rahman, K. M., Banerjee, S., Ali, S., et al. (2009). 3,3′-Diindolylmethane enhances taxotere-induced apoptosis in hormone-refractory prostate cancer cells through survivin downregulation. Cancer Res, 69, 4468–4475.PubMedCrossRef Rahman, K. M., Banerjee, S., Ali, S., et al. (2009). 3,3′-Diindolylmethane enhances taxotere-induced apoptosis in hormone-refractory prostate cancer cells through survivin downregulation. Cancer Res, 69, 4468–4475.PubMedCrossRef
71.
go back to reference Reed, G. A., Sunega, J. M., Sullivan, D. K., et al. (2008). Single-dose pharmacokinetics and tolerability of absorption-enhanced 3,3′-diindolylmethane in healthy subjects. Cancer Epidemiol Biomarkers Prev, 17, 2619–2624.PubMedCentralPubMedCrossRef Reed, G. A., Sunega, J. M., Sullivan, D. K., et al. (2008). Single-dose pharmacokinetics and tolerability of absorption-enhanced 3,3′-diindolylmethane in healthy subjects. Cancer Epidemiol Biomarkers Prev, 17, 2619–2624.PubMedCentralPubMedCrossRef
72.
go back to reference Heath, E. I., Heilbrun, L. K., Li, J., et al. (2010). A phase I dose-escalation study of oral BR-DIM (BioResponse 3,3′-diindolylmethane) in castrate-resistant, non-metastatic prostate cancer. Am J Transl Res, 2, 402–411.PubMedCentralPubMed Heath, E. I., Heilbrun, L. K., Li, J., et al. (2010). A phase I dose-escalation study of oral BR-DIM (BioResponse 3,3′-diindolylmethane) in castrate-resistant, non-metastatic prostate cancer. Am J Transl Res, 2, 402–411.PubMedCentralPubMed
73.
go back to reference Hadad, N., & Levy, R. (2012). The synergistic anti-inflammatory effects of lycopene, lutein, beta-carotene, and carnosic acid combinations via redox-based inhibition of NF-kappaB signaling. Free Radic Biol Med, 53, 1381–1391.PubMedCrossRef Hadad, N., & Levy, R. (2012). The synergistic anti-inflammatory effects of lycopene, lutein, beta-carotene, and carnosic acid combinations via redox-based inhibition of NF-kappaB signaling. Free Radic Biol Med, 53, 1381–1391.PubMedCrossRef
74.
go back to reference Palozza, P., Colangelo, M., Simone, R., et al. (2010). Lycopene induces cell growth inhibition by altering mevalonate pathway and Ras signaling in cancer cell lines. Carcinogenesis, 31, 1813–1821.PubMedCrossRef Palozza, P., Colangelo, M., Simone, R., et al. (2010). Lycopene induces cell growth inhibition by altering mevalonate pathway and Ras signaling in cancer cell lines. Carcinogenesis, 31, 1813–1821.PubMedCrossRef
75.
go back to reference Liu, X., Allen, J. D., Arnold, J. T., et al. (2008). Lycopene inhibits IGF-I signal transduction and growth in normal prostate epithelial cells by decreasing DHT-modulated IGF-I production in co-cultured reactive stromal cells. Carcinogenesis, 29, 816–823.PubMedCrossRef Liu, X., Allen, J. D., Arnold, J. T., et al. (2008). Lycopene inhibits IGF-I signal transduction and growth in normal prostate epithelial cells by decreasing DHT-modulated IGF-I production in co-cultured reactive stromal cells. Carcinogenesis, 29, 816–823.PubMedCrossRef
76.
go back to reference Zhang, X., Wang, Q., Neil, B., et al. (2010). Effect of lycopene on androgen receptor and prostate-specific antigen velocity. Chin Med J (Engl), 123, 2231–2236. Zhang, X., Wang, Q., Neil, B., et al. (2010). Effect of lycopene on androgen receptor and prostate-specific antigen velocity. Chin Med J (Engl), 123, 2231–2236.
77.
go back to reference Tang, Y., Parmakhtiar, B., Simoneau, A. R., et al. (2011). Lycopene enhances docetaxel's effect in castration-resistant prostate cancer associated with insulin-like growth factor I receptor levels. Neoplasia, 13, 108–119.PubMedCentralPubMed Tang, Y., Parmakhtiar, B., Simoneau, A. R., et al. (2011). Lycopene enhances docetaxel's effect in castration-resistant prostate cancer associated with insulin-like growth factor I receptor levels. Neoplasia, 13, 108–119.PubMedCentralPubMed
78.
go back to reference Kumar, N. B., Besterman-Dahan, K., Kang, L., et al. (2008). Results of a randomized clinical trial of the action of several doses of lycopene in localized prostate cancer: administration prior to radical prostatectomy. Clin Med Urol, 1, 1–14.PubMedCentralPubMed Kumar, N. B., Besterman-Dahan, K., Kang, L., et al. (2008). Results of a randomized clinical trial of the action of several doses of lycopene in localized prostate cancer: administration prior to radical prostatectomy. Clin Med Urol, 1, 1–14.PubMedCentralPubMed
79.
go back to reference Kucuk, O., Sarkar, F. H., Sakr, W., et al. (2001). Phase II randomized clinical trial of lycopene supplementation before radical prostatectomy. Cancer Epidemiol Biomarkers Prev, 10, 861–868.PubMed Kucuk, O., Sarkar, F. H., Sakr, W., et al. (2001). Phase II randomized clinical trial of lycopene supplementation before radical prostatectomy. Cancer Epidemiol Biomarkers Prev, 10, 861–868.PubMed
80.
go back to reference Kucuk, O., Sarkar, F. H., Djuric, Z., et al. (2002). Effects of lycopene supplementation in patients with localized prostate cancer. Exp Biol Med (Maywood), 227, 881–885. Kucuk, O., Sarkar, F. H., Djuric, Z., et al. (2002). Effects of lycopene supplementation in patients with localized prostate cancer. Exp Biol Med (Maywood), 227, 881–885.
81.
go back to reference Grainger, E. M., Schwartz, S. J., Wang, S., et al. (2008). A combination of tomato and soy products for men with recurring prostate cancer and rising prostate-specific antigen. Nutr Cancer, 60, 145–154.PubMedCrossRef Grainger, E. M., Schwartz, S. J., Wang, S., et al. (2008). A combination of tomato and soy products for men with recurring prostate cancer and rising prostate-specific antigen. Nutr Cancer, 60, 145–154.PubMedCrossRef
82.
go back to reference Hastak, K., Gupta, S., Ahmad, N., et al. (2003). Role of p53 and NF-kappaB in epigallocatechin-3-gallate-induced apoptosis of LNCaP cells. Oncogene, 22, 4851–4859.PubMedCrossRef Hastak, K., Gupta, S., Ahmad, N., et al. (2003). Role of p53 and NF-kappaB in epigallocatechin-3-gallate-induced apoptosis of LNCaP cells. Oncogene, 22, 4851–4859.PubMedCrossRef
83.
go back to reference Vayalil, P. K., & Katiyar, S. K. (2004). Treatment of epigallocatechin-3-gallate inhibits matrix metalloproteinases-2 and -9 via inhibition of activation of mitogen-activated protein kinases, c-jun, and NF-kappaB in human prostate carcinoma DU-145 cells. Prostate, 59, 33–42.PubMedCrossRef Vayalil, P. K., & Katiyar, S. K. (2004). Treatment of epigallocatechin-3-gallate inhibits matrix metalloproteinases-2 and -9 via inhibition of activation of mitogen-activated protein kinases, c-jun, and NF-kappaB in human prostate carcinoma DU-145 cells. Prostate, 59, 33–42.PubMedCrossRef
84.
go back to reference Siddiqui, I. A., Adhami, V. M., Afaq, F., et al. (2004). Modulation of phosphatidylinositol-3-kinase/protein kinase B- and mitogen-activated protein kinase-pathways by tea polyphenols in human prostate cancer cells. J Cell Biochem, 91, 232–242.PubMedCrossRef Siddiqui, I. A., Adhami, V. M., Afaq, F., et al. (2004). Modulation of phosphatidylinositol-3-kinase/protein kinase B- and mitogen-activated protein kinase-pathways by tea polyphenols in human prostate cancer cells. J Cell Biochem, 91, 232–242.PubMedCrossRef
85.
go back to reference Ren, F., Zhang, S., Mitchell, S. H., et al. (2000). Tea polyphenols downregulate the expression of the androgen receptor in LNCaP prostate cancer cells. Oncogene, 19, 1924–1932.PubMedCrossRef Ren, F., Zhang, S., Mitchell, S. H., et al. (2000). Tea polyphenols downregulate the expression of the androgen receptor in LNCaP prostate cancer cells. Oncogene, 19, 1924–1932.PubMedCrossRef
86.
go back to reference Siddiqui, I. A., Asim, M., Hafeez, B. B., et al. (2011). Green tea polyphenol EGCG blunts androgen receptor function in prostate cancer. FASEB J, 25, 1198–1207.PubMedCentralPubMedCrossRef Siddiqui, I. A., Asim, M., Hafeez, B. B., et al. (2011). Green tea polyphenol EGCG blunts androgen receptor function in prostate cancer. FASEB J, 25, 1198–1207.PubMedCentralPubMedCrossRef
87.
go back to reference Lee, Y. H., Kwak, J., Choi, H. K., et al. (2012). EGCG suppresses prostate cancer cell growth modulating acetylation of androgen receptor by anti-histone acetyltransferase activity. Int J Mol Med, 30, 69–74.PubMed Lee, Y. H., Kwak, J., Choi, H. K., et al. (2012). EGCG suppresses prostate cancer cell growth modulating acetylation of androgen receptor by anti-histone acetyltransferase activity. Int J Mol Med, 30, 69–74.PubMed
88.
go back to reference Stearns, M. E., Amatangelo, M. D., Varma, D., et al. (2010). Combination therapy with epigallocatechin-3-gallate and doxorubicin in human prostate tumor modeling studies: inhibition of metastatic tumor growth in severe combined immunodeficiency mice. Am J Pathol, 177, 3169–3179.PubMedCentralPubMedCrossRef Stearns, M. E., Amatangelo, M. D., Varma, D., et al. (2010). Combination therapy with epigallocatechin-3-gallate and doxorubicin in human prostate tumor modeling studies: inhibition of metastatic tumor growth in severe combined immunodeficiency mice. Am J Pathol, 177, 3169–3179.PubMedCentralPubMedCrossRef
89.
go back to reference Stearns, M. E., & Wang, M. (2011). Synergistic effects of the green tea extract epigallocatechin-3-gallate and taxane in eradication of malignant human prostate tumors. Transl Oncol, 4, 147–156.PubMedCentralPubMedCrossRef Stearns, M. E., & Wang, M. (2011). Synergistic effects of the green tea extract epigallocatechin-3-gallate and taxane in eradication of malignant human prostate tumors. Transl Oncol, 4, 147–156.PubMedCentralPubMedCrossRef
90.
go back to reference Siddiqui, I. A., Malik, A., Adhami, V. M., et al. (2008). Green tea polyphenol EGCG sensitizes human prostate carcinoma LNCaP cells to TRAIL-mediated apoptosis and synergistically inhibits biomarkers associated with angiogenesis and metastasis. Oncogene, 27, 2055–2063.PubMedCrossRef Siddiqui, I. A., Malik, A., Adhami, V. M., et al. (2008). Green tea polyphenol EGCG sensitizes human prostate carcinoma LNCaP cells to TRAIL-mediated apoptosis and synergistically inhibits biomarkers associated with angiogenesis and metastasis. Oncogene, 27, 2055–2063.PubMedCrossRef
91.
go back to reference Adhami, V. M., Malik, A., Zaman, N., et al. (2007). Combined inhibitory effects of green tea polyphenols and selective cyclooxygenase-2 inhibitors on the growth of human prostate cancer cells both in vitro and in vivo. Clin Cancer Res, 13, 1611–1619.PubMedCrossRef Adhami, V. M., Malik, A., Zaman, N., et al. (2007). Combined inhibitory effects of green tea polyphenols and selective cyclooxygenase-2 inhibitors on the growth of human prostate cancer cells both in vitro and in vivo. Clin Cancer Res, 13, 1611–1619.PubMedCrossRef
92.
go back to reference Wang, P., Aronson, W. J., Huang, M., et al. (2010). Green tea polyphenols and metabolites in prostatectomy tissue: implications for cancer prevention. Cancer Prev Res (Phila), 3, 985–993.CrossRef Wang, P., Aronson, W. J., Huang, M., et al. (2010). Green tea polyphenols and metabolites in prostatectomy tissue: implications for cancer prevention. Cancer Prev Res (Phila), 3, 985–993.CrossRef
93.
go back to reference McLarty, J., Bigelow, R. L., Smith, M., et al. (2009). Tea polyphenols decrease serum levels of prostate-specific antigen, hepatocyte growth factor, and vascular endothelial growth factor in prostate cancer patients and inhibit production of hepatocyte growth factor and vascular endothelial growth factor in vitro. Cancer Prev Res (Phila), 2, 673–682.CrossRef McLarty, J., Bigelow, R. L., Smith, M., et al. (2009). Tea polyphenols decrease serum levels of prostate-specific antigen, hepatocyte growth factor, and vascular endothelial growth factor in prostate cancer patients and inhibit production of hepatocyte growth factor and vascular endothelial growth factor in vitro. Cancer Prev Res (Phila), 2, 673–682.CrossRef
94.
go back to reference Mukhopadhyay, A., Bueso-Ramos, C., Chatterjee, D., et al. (2001). Curcumin downregulates cell survival mechanisms in human prostate cancer cell lines. Oncogene, 20, 7597–7609.PubMedCrossRef Mukhopadhyay, A., Bueso-Ramos, C., Chatterjee, D., et al. (2001). Curcumin downregulates cell survival mechanisms in human prostate cancer cell lines. Oncogene, 20, 7597–7609.PubMedCrossRef
95.
go back to reference Chaudhary, L. R., & Hruska, K. A. (2003). Inhibition of cell survival signal protein kinase B/Akt by curcumin in human prostate cancer cells. J Cell Biochem, 89, 1–5.PubMedCrossRef Chaudhary, L. R., & Hruska, K. A. (2003). Inhibition of cell survival signal protein kinase B/Akt by curcumin in human prostate cancer cells. J Cell Biochem, 89, 1–5.PubMedCrossRef
96.
go back to reference Kumar, A. P., Garcia, G. E., Ghosh, R., et al. (2003). 4-Hydroxy-3-methoxybenzoic acid methyl ester: a curcumin derivative targets Akt/NF kappa B cell survival signaling pathway: potential for prostate cancer management. Neoplasia, 5, 255–266.PubMedCentralPubMedCrossRef Kumar, A. P., Garcia, G. E., Ghosh, R., et al. (2003). 4-Hydroxy-3-methoxybenzoic acid methyl ester: a curcumin derivative targets Akt/NF kappa B cell survival signaling pathway: potential for prostate cancer management. Neoplasia, 5, 255–266.PubMedCentralPubMedCrossRef
97.
go back to reference Nakamura, K., Yasunaga, Y., Segawa, T., et al. (2002). Curcumin downregulates AR gene expression and activation in prostate cancer cell lines. Int J Oncol, 21, 825–830.PubMed Nakamura, K., Yasunaga, Y., Segawa, T., et al. (2002). Curcumin downregulates AR gene expression and activation in prostate cancer cell lines. Int J Oncol, 21, 825–830.PubMed
98.
go back to reference Tsui, K. H., Feng, T. H., Lin, C. M., et al. (2008). Curcumin blocks the activation of androgen and interlukin-6 on prostate-specific antigen expression in human prostatic carcinoma cells. J Androl, 29, 661–668.PubMedCrossRef Tsui, K. H., Feng, T. H., Lin, C. M., et al. (2008). Curcumin blocks the activation of androgen and interlukin-6 on prostate-specific antigen expression in human prostatic carcinoma cells. J Androl, 29, 661–668.PubMedCrossRef
99.
go back to reference Choi, H. Y., Lim, J. E., & Hong, J. H. (2010). Curcumin interrupts the interaction between the androgen receptor and Wnt/beta-catenin signaling pathway in LNCaP prostate cancer cells. Prostate Cancer Prostatic Dis, 13, 343–349.PubMedCrossRef Choi, H. Y., Lim, J. E., & Hong, J. H. (2010). Curcumin interrupts the interaction between the androgen receptor and Wnt/beta-catenin signaling pathway in LNCaP prostate cancer cells. Prostate Cancer Prostatic Dis, 13, 343–349.PubMedCrossRef
100.
go back to reference Cabrespine-Faugeras, A., Bayet-Robert, M., Bay, J. O., et al. (2010). Possible benefits of curcumin regimen in combination with taxane chemotherapy for hormone-refractory prostate cancer treatment. Nutr Cancer, 62, 148–153.PubMedCrossRef Cabrespine-Faugeras, A., Bayet-Robert, M., Bay, J. O., et al. (2010). Possible benefits of curcumin regimen in combination with taxane chemotherapy for hormone-refractory prostate cancer treatment. Nutr Cancer, 62, 148–153.PubMedCrossRef
101.
go back to reference Deeb, D., Xu, Y. X., Jiang, H., et al. (2003). Curcumin (diferuloyl-methane) enhances tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in LNCaP prostate cancer cells. Mol Cancer Ther, 2, 95–103.PubMedCrossRef Deeb, D., Xu, Y. X., Jiang, H., et al. (2003). Curcumin (diferuloyl-methane) enhances tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in LNCaP prostate cancer cells. Mol Cancer Ther, 2, 95–103.PubMedCrossRef
102.
go back to reference Shankar, S., Ganapathy, S., Chen, Q., et al. (2008). Curcumin sensitizes TRAIL-resistant xenografts: molecular mechanisms of apoptosis, metastasis, and angiogenesis. Mol Cancer, 7, 16.PubMedCentralPubMedCrossRef Shankar, S., Ganapathy, S., Chen, Q., et al. (2008). Curcumin sensitizes TRAIL-resistant xenografts: molecular mechanisms of apoptosis, metastasis, and angiogenesis. Mol Cancer, 7, 16.PubMedCentralPubMedCrossRef
103.
go back to reference Chendil, D., Ranga, R. S., Meigooni, D., et al. (2004). Curcumin confers radiosensitizing effect in prostate cancer cell line PC-3. Oncogene, 23, 1599–1607.PubMedCrossRef Chendil, D., Ranga, R. S., Meigooni, D., et al. (2004). Curcumin confers radiosensitizing effect in prostate cancer cell line PC-3. Oncogene, 23, 1599–1607.PubMedCrossRef
104.
go back to reference Ide, H., Tokiwa, S., Sakamaki, K., et al. (2010). Combined inhibitory effects of soy isoflavones and curcumin on the production of prostate-specific antigen. Prostate, 70, 1127–1133.PubMedCrossRef Ide, H., Tokiwa, S., Sakamaki, K., et al. (2010). Combined inhibitory effects of soy isoflavones and curcumin on the production of prostate-specific antigen. Prostate, 70, 1127–1133.PubMedCrossRef
Metadata
Title
Recent progress on nutraceutical research in prostate cancer
Authors
Yiwei Li
Aamir Ahmad
Dejuan Kong
Bin Bao
Fazlul H. Sarkar
Publication date
01-09-2014
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 2-3/2014
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-013-9478-9

Other articles of this Issue 2-3/2014

Cancer and Metastasis Reviews 2-3/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine