Skip to main content
Top
Published in: Cancer and Metastasis Reviews 2-3/2014

Open Access 01-09-2014 | NON-THEMATIC REVIEW

The developing story of Sprouty and cancer

Authors: Samar Masoumi-Moghaddam, Afshin Amini, David Lawson Morris

Published in: Cancer and Metastasis Reviews | Issue 2-3/2014

Login to get access

Abstract

Sprouty proteins are evolutionarily conserved modulators of MAPK/ERK pathway. Through interacting with an increasing number of effectors, mediators, and regulators with ultimate influence on multiple targets within or beyond ERK, Sprouty orchestrates a complex, multilayered regulatory system and mediates a crosstalk among different signaling pathways for a coordinated cellular response. As such, Sprouty has been implicated in various developmental and physiological processes. Evidence shows that ERK is aberrantly activated in malignant conditions. Accordingly, Sprouty deregulation has been reported in different cancer types and shown to impact cancer development, progression, and metastasis. In this article, we have tried to provide an overview of the current knowledge about the Sprouty physiology and its regulatory functions in health, as well as an updated review of the Sprouty status in cancer. Putative implications of Sprouty in cancer biology, their clinical relevance, and their proposed applications are also revisited. As a developing story, however, role of Sprouty in cancer remains to be further elucidated.
Literature
1.
go back to reference Hacohen, N., Kramer, S., Sutherland, D., Hiromi, Y., & Krasnow, M. A. (1998). Sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the Drosophila airways. Cell, 92(2), 253–263.PubMed Hacohen, N., Kramer, S., Sutherland, D., Hiromi, Y., & Krasnow, M. A. (1998). Sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the Drosophila airways. Cell, 92(2), 253–263.PubMed
2.
go back to reference Kramer, S., Okabe, M., Hacohen, N., Krasnow, M. A., & Hiromi, Y. (1999). Sprouty: a common antagonist of FGF and EGF signaling pathways in Drosophila. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Development, 126(11), 2515–2525.PubMed Kramer, S., Okabe, M., Hacohen, N., Krasnow, M. A., & Hiromi, Y. (1999). Sprouty: a common antagonist of FGF and EGF signaling pathways in Drosophila. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Development, 126(11), 2515–2525.PubMed
3.
go back to reference de Maximy, A. A., Nakatake, Y., Moncada, S., Itoh, N., Thiery, J. P., & Bellusci, S. (1999). Cloning and expression pattern of a mouse homologue of drosophila sprouty in the mouse embryo. [Research Support, Non-U.S. Gov't]. Mechanisms of Development, 81(1–2), 213–216.PubMed de Maximy, A. A., Nakatake, Y., Moncada, S., Itoh, N., Thiery, J. P., & Bellusci, S. (1999). Cloning and expression pattern of a mouse homologue of drosophila sprouty in the mouse embryo. [Research Support, Non-U.S. Gov't]. Mechanisms of Development, 81(1–2), 213–216.PubMed
4.
go back to reference Leeksma, O. C., Van Achterberg, T. A., Tsumura, Y., Toshima, J., Eldering, E., Kroes, W. G., et al. (2002). Human sprouty 4, a new ras antagonist on 5q31, interacts with the dual specificity kinase TESK1. European Journal of Biochemistry, 269(10), 2546–2556.PubMed Leeksma, O. C., Van Achterberg, T. A., Tsumura, Y., Toshima, J., Eldering, E., Kroes, W. G., et al. (2002). Human sprouty 4, a new ras antagonist on 5q31, interacts with the dual specificity kinase TESK1. European Journal of Biochemistry, 269(10), 2546–2556.PubMed
5.
go back to reference Gross, I., Bassit, B., Benezra, M., & Licht, J. D. (2001). Mammalian sprouty proteins inhibit cell growth and differentiation by preventing ras activation. Journal of Biological Chemistry, 276(49), 46460–46468. doi:10.1074/jbc.M108234200.PubMed Gross, I., Bassit, B., Benezra, M., & Licht, J. D. (2001). Mammalian sprouty proteins inhibit cell growth and differentiation by preventing ras activation. Journal of Biological Chemistry, 276(49), 46460–46468. doi:10.​1074/​jbc.​M108234200.PubMed
6.
go back to reference Impagnatiello, M. A., Weitzer, S., Gannon, G., Compagni, A., Cotten, M., & Christofori, G. (2001). Mammalian sprouty-1 and -2 are membrane-anchored phosphoprotein inhibitors of growth factor signaling in endothelial cells. Journal of Cell Biology, 152(5), 1087–1098.PubMedCentralPubMed Impagnatiello, M. A., Weitzer, S., Gannon, G., Compagni, A., Cotten, M., & Christofori, G. (2001). Mammalian sprouty-1 and -2 are membrane-anchored phosphoprotein inhibitors of growth factor signaling in endothelial cells. Journal of Cell Biology, 152(5), 1087–1098.PubMedCentralPubMed
7.
go back to reference Wong, E. S., Fong, C. W., Lim, J., Yusoff, P., Low, B. C., Langdon, W. Y., et al. (2002). Sprouty2 attenuates epidermal growth factor receptor ubiquitylation and endocytosis, and consequently enhances Ras/ERK signalling. EMBO Journal, 21(18), 4796–4808.PubMedCentralPubMed Wong, E. S., Fong, C. W., Lim, J., Yusoff, P., Low, B. C., Langdon, W. Y., et al. (2002). Sprouty2 attenuates epidermal growth factor receptor ubiquitylation and endocytosis, and consequently enhances Ras/ERK signalling. EMBO Journal, 21(18), 4796–4808.PubMedCentralPubMed
8.
go back to reference Gross, I., Armant, O., Benosman, S., de Aguilar, J. L., Freund, J. N., Kedinger, M., et al. (2007). Sprouty2 inhibits BDNF-induced signaling and modulates neuronal differentiation and survival. Cell Death and Differentiation, 14(10), 1802–1812. doi:10.1038/sj.cdd.4402188.PubMed Gross, I., Armant, O., Benosman, S., de Aguilar, J. L., Freund, J. N., Kedinger, M., et al. (2007). Sprouty2 inhibits BDNF-induced signaling and modulates neuronal differentiation and survival. Cell Death and Differentiation, 14(10), 1802–1812. doi:10.​1038/​sj.​cdd.​4402188.PubMed
9.
10.
go back to reference Minowada, G., Jarvis, L. A., Chi, C. L., Neubuser, A., Sun, X., Hacohen, N., et al. (1999). Vertebrate Sprouty genes are induced by FGF signaling and can cause chondrodysplasia when overexpressed. [Comparative Study Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Research Support, U.S. Gov't, P.H.S.]. Development, 126(20), 4465–4475.PubMed Minowada, G., Jarvis, L. A., Chi, C. L., Neubuser, A., Sun, X., Hacohen, N., et al. (1999). Vertebrate Sprouty genes are induced by FGF signaling and can cause chondrodysplasia when overexpressed. [Comparative Study Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Research Support, U.S. Gov't, P.H.S.]. Development, 126(20), 4465–4475.PubMed
11.
go back to reference Ding, W., Bellusci, S., Shi, W., & Warburton, D. (2004). Genomic structure and promoter characterization of the human Sprouty4 gene, a novel regulator of lung morphogenesis. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. American Journal of Physiology - Lung Cellular and Molecular Physiology, 287(1), L52–L59. doi:10.1152/ajplung.00430.2003.PubMed Ding, W., Bellusci, S., Shi, W., & Warburton, D. (2004). Genomic structure and promoter characterization of the human Sprouty4 gene, a novel regulator of lung morphogenesis. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. American Journal of Physiology - Lung Cellular and Molecular Physiology, 287(1), L52–L59. doi:10.​1152/​ajplung.​00430.​2003.PubMed
12.
go back to reference Tefft, J. D., Lee, M., Smith, S., Leinwand, M., Zhao, J., Bringas, P., Jr., et al. (1999). Conserved function of mSpry-2, a murine homolog of Drosophila sprouty, which negatively modulates respiratory organogenesis. [Research Support, U.S. Gov't, P.H.S.]. Current Biology, 9(4), 219–222.PubMed Tefft, J. D., Lee, M., Smith, S., Leinwand, M., Zhao, J., Bringas, P., Jr., et al. (1999). Conserved function of mSpry-2, a murine homolog of Drosophila sprouty, which negatively modulates respiratory organogenesis. [Research Support, U.S. Gov't, P.H.S.]. Current Biology, 9(4), 219–222.PubMed
13.
go back to reference Katoh, Y., & Katoh, M. (2006). FGF signaling inhibitor, SPRY4, is evolutionarily conserved target of WNT signaling pathway in progenitor cells. International Journal of Molecular Medicine, 17(3), 529–532.PubMed Katoh, Y., & Katoh, M. (2006). FGF signaling inhibitor, SPRY4, is evolutionarily conserved target of WNT signaling pathway in progenitor cells. International Journal of Molecular Medicine, 17(3), 529–532.PubMed
17.
go back to reference Furthauer, M., Reifers, F., Brand, M., Thisse, B., & Thisse, C. (2001). Sprouty4 acts in vivo as a feedback-induced antagonist of FGF signaling in zebrafish. [Research Support, Non-U.S. Gov't]. Development, 128(12), 2175–2186.PubMed Furthauer, M., Reifers, F., Brand, M., Thisse, B., & Thisse, C. (2001). Sprouty4 acts in vivo as a feedback-induced antagonist of FGF signaling in zebrafish. [Research Support, Non-U.S. Gov't]. Development, 128(12), 2175–2186.PubMed
18.
go back to reference Zhang, S., Lin, Y., Itaranta, P., Yagi, A., & Vainio, S. (2001). Expression of Sprouty genes 1, 2 and 4 during mouse organogenesis. Mechanisms of Development, 109(2), 367–370.PubMed Zhang, S., Lin, Y., Itaranta, P., Yagi, A., & Vainio, S. (2001). Expression of Sprouty genes 1, 2 and 4 during mouse organogenesis. Mechanisms of Development, 109(2), 367–370.PubMed
19.
go back to reference Gross, I., Morrison, D. J., Hyink, D. P., Georgas, K., English, M. A., Mericskay, M., et al. (2003). The receptor tyrosine kinase regulator Sprouty1 is a target of the tumor suppressor WT1 and important for kidney development. Journal of Biological Chemistry, 278(42), 41420–41430. doi:10.1074/jbc.M306425200.PubMed Gross, I., Morrison, D. J., Hyink, D. P., Georgas, K., English, M. A., Mericskay, M., et al. (2003). The receptor tyrosine kinase regulator Sprouty1 is a target of the tumor suppressor WT1 and important for kidney development. Journal of Biological Chemistry, 278(42), 41420–41430. doi:10.​1074/​jbc.​M306425200.PubMed
20.
go back to reference Chi, L., Zhang, S., Lin, Y., Prunskaite-Hyyrylainen, R., Vuolteenaho, R., Itaranta, P., et al. (2004). Sprouty proteins regulate ureteric branching by coordinating reciprocal epithelial Wnt11, mesenchymal Gdnf and stromal Fgf7 signalling during kidney development. Development, 131(14), 3345–3356. doi:10.1242/dev.01200.PubMed Chi, L., Zhang, S., Lin, Y., Prunskaite-Hyyrylainen, R., Vuolteenaho, R., Itaranta, P., et al. (2004). Sprouty proteins regulate ureteric branching by coordinating reciprocal epithelial Wnt11, mesenchymal Gdnf and stromal Fgf7 signalling during kidney development. Development, 131(14), 3345–3356. doi:10.​1242/​dev.​01200.PubMed
21.
go back to reference Lo, T. L., Yusoff, P., Fong, C. W., Guo, K., McCaw, B. J., Phillips, W. A., et al. (2004). The ras/mitogen-activated protein kinase pathway inhibitor and likely tumor suppressor proteins, sprouty 1 and sprouty 2 are deregulated in breast cancer. Cancer Research, 64(17), 6127–6136. doi:10.1158/0008-5472.CAN-04-1207.PubMed Lo, T. L., Yusoff, P., Fong, C. W., Guo, K., McCaw, B. J., Phillips, W. A., et al. (2004). The ras/mitogen-activated protein kinase pathway inhibitor and likely tumor suppressor proteins, sprouty 1 and sprouty 2 are deregulated in breast cancer. Cancer Research, 64(17), 6127–6136. doi:10.​1158/​0008-5472.​CAN-04-1207.PubMed
22.
go back to reference Anteby, E. Y., Natanson-Yaron, S., Greenfield, C., Goldman-Wohl, D., Haimov-Kochman, R., Holzer, H., et al. (2005). Human placental Hofbauer cells express sprouty proteins: a possible modulating mechanism of villous branching. Placenta, 26(6), 476–483. doi:10.1016/j.placenta.2004.08.008.PubMed Anteby, E. Y., Natanson-Yaron, S., Greenfield, C., Goldman-Wohl, D., Haimov-Kochman, R., Holzer, H., et al. (2005). Human placental Hofbauer cells express sprouty proteins: a possible modulating mechanism of villous branching. Placenta, 26(6), 476–483. doi:10.​1016/​j.​placenta.​2004.​08.​008.PubMed
23.
go back to reference Haimov-Kochman, R., Ravhon, A., Prus, D., Greenfield, C., Finci-Yeheskel, Z., Goldman-Wohl, D. S., et al. (2005). Expression and regulation of Sprouty-2 in the granulosa-lutein cells of the corpus luteum. Molecular Human Reproduction, 11(8), 537–542. doi:10.1093/molehr/gah203.PubMed Haimov-Kochman, R., Ravhon, A., Prus, D., Greenfield, C., Finci-Yeheskel, Z., Goldman-Wohl, D. S., et al. (2005). Expression and regulation of Sprouty-2 in the granulosa-lutein cells of the corpus luteum. Molecular Human Reproduction, 11(8), 537–542. doi:10.​1093/​molehr/​gah203.PubMed
24.
go back to reference Lin, W., Jing, N., Basson, M. A., Dierich, A., Licht, J., & Ang, S. L. (2005). Synergistic activity of Sef and Sprouty proteins in regulating the expression of Gbx2 in the mid-hindbrain region. Genesis, 41(3), 110–115. doi:10.1002/gene.20103.PubMed Lin, W., Jing, N., Basson, M. A., Dierich, A., Licht, J., & Ang, S. L. (2005). Synergistic activity of Sef and Sprouty proteins in regulating the expression of Gbx2 in the mid-hindbrain region. Genesis, 41(3), 110–115. doi:10.​1002/​gene.​20103.PubMed
25.
go back to reference Shim, K., Minowada, G., Coling, D. E., & Martin, G. R. (2005). Sprouty2, a mouse deafness gene, regulates cell fate decisions in the auditory sensory epithelium by antagonizing FGF signaling. Developmental Cell, 8(4), 553–564. doi:10.1016/j.devcel.2005.02.009.PubMed Shim, K., Minowada, G., Coling, D. E., & Martin, G. R. (2005). Sprouty2, a mouse deafness gene, regulates cell fate decisions in the auditory sensory epithelium by antagonizing FGF signaling. Developmental Cell, 8(4), 553–564. doi:10.​1016/​j.​devcel.​2005.​02.​009.PubMed
26.
go back to reference Basson, M. A., Watson-Johnson, J., Shakya, R., Akbulut, S., Hyink, D., Costantini, F. D., et al. (2006). Branching morphogenesis of the ureteric epithelium during kidney development is coordinated by the opposing functions of GDNF and Sprouty1. Developmental Biology, 299(2), 466–477. doi:10.1016/j.ydbio.2006.08.051.PubMed Basson, M. A., Watson-Johnson, J., Shakya, R., Akbulut, S., Hyink, D., Costantini, F. D., et al. (2006). Branching morphogenesis of the ureteric epithelium during kidney development is coordinated by the opposing functions of GDNF and Sprouty1. Developmental Biology, 299(2), 466–477. doi:10.​1016/​j.​ydbio.​2006.​08.​051.PubMed
27.
go back to reference Boros, J., Newitt, P., Wang, Q., McAvoy, J. W., & Lovicu, F. J. (2006). Sef and Sprouty expression in the developing ocular lens: Implications for regulating lens cell proliferation and differentiation. Seminars in Cell and Developmental Biology, 17(6), 741–752. doi:10.1016/j.semcdb.2006.10.007.PubMedCentralPubMed Boros, J., Newitt, P., Wang, Q., McAvoy, J. W., & Lovicu, F. J. (2006). Sef and Sprouty expression in the developing ocular lens: Implications for regulating lens cell proliferation and differentiation. Seminars in Cell and Developmental Biology, 17(6), 741–752. doi:10.​1016/​j.​semcdb.​2006.​10.​007.PubMedCentralPubMed
28.
go back to reference Chi, L., Itaranta, P., Zhang, S., & Vainio, S. (2006). Sprouty2 is involved in male sex organogenesis by controlling fibroblast growth factor 9-induced mesonephric cell migration to the developing testis. Endocrinology, 147(8), 3777–3788. doi:10.1210/en.2006-0299.PubMed Chi, L., Itaranta, P., Zhang, S., & Vainio, S. (2006). Sprouty2 is involved in male sex organogenesis by controlling fibroblast growth factor 9-induced mesonephric cell migration to the developing testis. Endocrinology, 147(8), 3777–3788. doi:10.​1210/​en.​2006-0299.PubMed
29.
go back to reference Natanson-Yaron, S., Anteby, E. Y., Greenfield, C., Goldman-Wohl, D., Hamani, Y., Hochner-Celnikier, D., et al. (2007). FGF 10 and Sprouty 2 modulate trophoblast invasion and branching morphogenesis. Molecular Human Reproduction, 13(7), 511–519. doi:10.1093/molehr/gam034.PubMed Natanson-Yaron, S., Anteby, E. Y., Greenfield, C., Goldman-Wohl, D., Hamani, Y., Hochner-Celnikier, D., et al. (2007). FGF 10 and Sprouty 2 modulate trophoblast invasion and branching morphogenesis. Molecular Human Reproduction, 13(7), 511–519. doi:10.​1093/​molehr/​gam034.PubMed
30.
go back to reference Price, K. L., Long, D. A., Jina, N., Liapis, H., Hubank, M., Woolf, A. S., et al. (2007). Microarray interrogation of human metanephric mesenchymal cells highlights potentially important molecules in vivo. Physiological Genomics, 28(2), 193–202. doi:10.1152/physiolgenomics.00147.2006.PubMed Price, K. L., Long, D. A., Jina, N., Liapis, H., Hubank, M., Woolf, A. S., et al. (2007). Microarray interrogation of human metanephric mesenchymal cells highlights potentially important molecules in vivo. Physiological Genomics, 28(2), 193–202. doi:10.​1152/​physiolgenomics.​00147.​2006.PubMed
31.
go back to reference Shaw, A. T., Meissner, A., Dowdle, J. A., Crowley, D., Magendantz, M., Ouyang, C., et al. (2007). Sprouty-2 regulates oncogenic K-ras in lung development and tumorigenesis. Genes and Development, 21(6), 694–707. doi:10.1101/gad.1526207.PubMedCentralPubMed Shaw, A. T., Meissner, A., Dowdle, J. A., Crowley, D., Magendantz, M., Ouyang, C., et al. (2007). Sprouty-2 regulates oncogenic K-ras in lung development and tumorigenesis. Genes and Development, 21(6), 694–707. doi:10.​1101/​gad.​1526207.PubMedCentralPubMed
32.
go back to reference Laziz, I., Armand, A. S., Pariset, C., Lecolle, S., Della Gaspera, B., Charbonnier, F., et al. (2007). Sprouty gene expression is regulated by nerve and FGF6 during regeneration of mouse muscles. Growth Factors, 25(3), 151–159. doi:10.1080/08977190701723166.PubMed Laziz, I., Armand, A. S., Pariset, C., Lecolle, S., Della Gaspera, B., Charbonnier, F., et al. (2007). Sprouty gene expression is regulated by nerve and FGF6 during regeneration of mouse muscles. Growth Factors, 25(3), 151–159. doi:10.​1080/​0897719070172316​6.PubMed
33.
go back to reference Hamel, M., Dufort, I., Robert, C., Gravel, C., Leveille, M. C., Leader, A., et al. (2008). Identification of differentially expressed markers in human follicular cells associated with competent oocytes. Human Reproduction, 23(5), 1118–1127. doi:10.1093/humrep/den048.PubMed Hamel, M., Dufort, I., Robert, C., Gravel, C., Leveille, M. C., Leader, A., et al. (2008). Identification of differentially expressed markers in human follicular cells associated with competent oocytes. Human Reproduction, 23(5), 1118–1127. doi:10.​1093/​humrep/​den048.PubMed
34.
go back to reference Klein, O. D., Lyons, D. B., Balooch, G., Marshall, G. W., Basson, M. A., Peterka, M., et al. (2008). An FGF signaling loop sustains the generation of differentiated progeny from stem cells in mouse incisors. Development, 135(2), 377–385. doi:10.1242/dev.015081.PubMedCentralPubMed Klein, O. D., Lyons, D. B., Balooch, G., Marshall, G. W., Basson, M. A., Peterka, M., et al. (2008). An FGF signaling loop sustains the generation of differentiated progeny from stem cells in mouse incisors. Development, 135(2), 377–385. doi:10.​1242/​dev.​015081.PubMedCentralPubMed
35.
go back to reference Jaggi, F., Cabrita, M. A., Perl, A. K., & Christofori, G. (2008). Modulation of endocrine pancreas development but not beta-cell carcinogenesis by Sprouty4. Molecular Cancer Research, 6(3), 468–482. doi:10.1158/1541-7786.mcr-07-0255.PubMed Jaggi, F., Cabrita, M. A., Perl, A. K., & Christofori, G. (2008). Modulation of endocrine pancreas development but not beta-cell carcinogenesis by Sprouty4. Molecular Cancer Research, 6(3), 468–482. doi:10.​1158/​1541-7786.​mcr-07-0255.PubMed
36.
go back to reference Wang, Y., Janicki, P., Koster, I., Berger, C. D., Wenzl, C., Grosshans, J., et al. (2008). Xenopus paraxial protocadherin regulates morphogenesis by antagonizing Sprouty. Genes and Development, 22(7), 878–883. doi:10.1101/gad.452908.PubMedCentralPubMed Wang, Y., Janicki, P., Koster, I., Berger, C. D., Wenzl, C., Grosshans, J., et al. (2008). Xenopus paraxial protocadherin regulates morphogenesis by antagonizing Sprouty. Genes and Development, 22(7), 878–883. doi:10.​1101/​gad.​452908.PubMedCentralPubMed
37.
39.
go back to reference Sieglitz, F., Matzat, T., Yuva-Adyemir, Y., Neuert, H., Altenhein, B., & Klambt, C. (2013). Antagonistic feedback loops involving rau and sprouty in the Drosophila eye control neuronal and glial differentiation. Science Signaling, 6(300), ra96. doi:10.1126/scisignal.2004651.PubMed Sieglitz, F., Matzat, T., Yuva-Adyemir, Y., Neuert, H., Altenhein, B., & Klambt, C. (2013). Antagonistic feedback loops involving rau and sprouty in the Drosophila eye control neuronal and glial differentiation. Science Signaling, 6(300), ra96. doi:10.​1126/​scisignal.​2004651.PubMed
41.
43.
go back to reference Ching, S. T., Cunha, G. R., Baskin, L. S., Basson, M. A., & Klein, O. D. (2014). Coordinated activity of Spry1 and Spry2 is required for normal development of the external genitalia. Developmental Biology, 386(1), 1–11. doi:10.1016/j.ydbio.2013.12.014.PubMed Ching, S. T., Cunha, G. R., Baskin, L. S., Basson, M. A., & Klein, O. D. (2014). Coordinated activity of Spry1 and Spry2 is required for normal development of the external genitalia. Developmental Biology, 386(1), 1–11. doi:10.​1016/​j.​ydbio.​2013.​12.​014.PubMed
44.
go back to reference Lee, S. H., Schloss, D. J., Jarvis, L., Krasnow, M. A., & Swain, J. L. (2001). Inhibition of angiogenesis by a mouse sprouty protein. Journal of Biological Chemistry, 276(6), 4128–4133. doi:10.1074/jbc.M006922200.PubMed Lee, S. H., Schloss, D. J., Jarvis, L., Krasnow, M. A., & Swain, J. L. (2001). Inhibition of angiogenesis by a mouse sprouty protein. Journal of Biological Chemistry, 276(6), 4128–4133. doi:10.​1074/​jbc.​M006922200.PubMed
45.
go back to reference Huebert, R. C., Li, Q., Adhikari, N., Charles, N. J., Han, X., Ezzat, M. K., et al. (2004). Identification and regulation of Sprouty1, a negative inhibitor of the ERK cascade, in the human heart. Physiological Genomics, 18(3), 284–289. doi:10.1152/physiolgenomics.00098.2004.PubMed Huebert, R. C., Li, Q., Adhikari, N., Charles, N. J., Han, X., Ezzat, M. K., et al. (2004). Identification and regulation of Sprouty1, a negative inhibitor of the ERK cascade, in the human heart. Physiological Genomics, 18(3), 284–289. doi:10.​1152/​physiolgenomics.​00098.​2004.PubMed
46.
go back to reference Poppleton, H. M., Edwin, F., Jaggar, L., Ray, R., Johnson, L. R., & Patel, T. B. (2004). Sprouty regulates cell migration by inhibiting the activation of Rac1 GTPase. Biochemical and Biophysical Research Communications, 323(1), 98–103. doi:10.1016/j.bbrc.2004.08.070.PubMed Poppleton, H. M., Edwin, F., Jaggar, L., Ray, R., Johnson, L. R., & Patel, T. B. (2004). Sprouty regulates cell migration by inhibiting the activation of Rac1 GTPase. Biochemical and Biophysical Research Communications, 323(1), 98–103. doi:10.​1016/​j.​bbrc.​2004.​08.​070.PubMed
47.
go back to reference Zhang, C., Chaturvedi, D., Jaggar, L., Magnuson, D., Lee, J. M., & Patel, T. B. (2005). Regulation of vascular smooth muscle cell proliferation and migration by human sprouty 2. Arteriosclerosis, Thrombosis, and Vascular Biology, 25(3), 533–538. doi:10.1161/01.ATV.0000155461.50450.5a.PubMed Zhang, C., Chaturvedi, D., Jaggar, L., Magnuson, D., Lee, J. M., & Patel, T. B. (2005). Regulation of vascular smooth muscle cell proliferation and migration by human sprouty 2. Arteriosclerosis, Thrombosis, and Vascular Biology, 25(3), 533–538. doi:10.​1161/​01.​ATV.​0000155461.​50450.​5a.PubMed
48.
go back to reference de Alvaro, C., Martinez, N., Rojas, J. M., & Lorenzo, M. (2005). Sprouty-2 overexpression in C2C12 cells confers myogenic differentiation properties in the presence of FGF2. Molecular Biology of the Cell, 16(9), 4454–4461. doi:10.1091/mbc.E05-05-0419.PubMedCentralPubMed de Alvaro, C., Martinez, N., Rojas, J. M., & Lorenzo, M. (2005). Sprouty-2 overexpression in C2C12 cells confers myogenic differentiation properties in the presence of FGF2. Molecular Biology of the Cell, 16(9), 4454–4461. doi:10.​1091/​mbc.​E05-05-0419.PubMedCentralPubMed
49.
go back to reference Tsumura, Y., Toshima, J., Leeksma, O. C., Ohashi, K., & Mizuno, K. (2005). Sprouty-4 negatively regulates cell spreading by inhibiting the kinase activity of testicular protein kinase. Biochemical Journal, 387(Pt 3), 627–637. doi:10.1042/BJ20041181.PubMedCentralPubMed Tsumura, Y., Toshima, J., Leeksma, O. C., Ohashi, K., & Mizuno, K. (2005). Sprouty-4 negatively regulates cell spreading by inhibiting the kinase activity of testicular protein kinase. Biochemical Journal, 387(Pt 3), 627–637. doi:10.​1042/​BJ20041181.PubMedCentralPubMed
50.
go back to reference Fong, C. W., Chua, M. S., McKie, A. B., Ling, S. H., Mason, V., Li, R., et al. (2006). Sprouty 2, an inhibitor of mitogen-activated protein kinase signaling, is down-regulated in hepatocellular carcinoma. Cancer Research, 66(4), 2048–2058. doi:10.1158/0008-5472.CAN-05-1072.PubMed Fong, C. W., Chua, M. S., McKie, A. B., Ling, S. H., Mason, V., Li, R., et al. (2006). Sprouty 2, an inhibitor of mitogen-activated protein kinase signaling, is down-regulated in hepatocellular carcinoma. Cancer Research, 66(4), 2048–2058. doi:10.​1158/​0008-5472.​CAN-05-1072.PubMed
51.
go back to reference Wang, J., Thompson, B., Ren, C., Ittmann, M., & Kwabi-Addo, B. (2006). Sprouty4, a suppressor of tumor cell motility, is down regulated by DNA methylation in human prostate cancer. Prostate, 66(6), 613–624. doi:10.1002/pros.20353.PubMed Wang, J., Thompson, B., Ren, C., Ittmann, M., & Kwabi-Addo, B. (2006). Sprouty4, a suppressor of tumor cell motility, is down regulated by DNA methylation in human prostate cancer. Prostate, 66(6), 613–624. doi:10.​1002/​pros.​20353.PubMed
52.
go back to reference Sutterluty, H., Mayer, C. E., Setinek, U., Attems, J., Ovtcharov, S., Mikula, M., et al. (2007). Down-regulation of Sprouty2 in non-small cell lung cancer contributes to tumor malignancy via extracellular signal-regulated kinase pathway-dependent and -independent mechanisms. Molecular Cancer Research, 5(5), 509–520. doi:10.1158/1541-7786.MCR-06-0273.PubMed Sutterluty, H., Mayer, C. E., Setinek, U., Attems, J., Ovtcharov, S., Mikula, M., et al. (2007). Down-regulation of Sprouty2 in non-small cell lung cancer contributes to tumor malignancy via extracellular signal-regulated kinase pathway-dependent and -independent mechanisms. Molecular Cancer Research, 5(5), 509–520. doi:10.​1158/​1541-7786.​MCR-06-0273.PubMed
53.
go back to reference Ding, W., Shi, W., Bellusci, S., Groffen, J., Heisterkamp, N., Minoo, P., et al. (2007). Sprouty2 downregulation plays a pivotal role in mediating crosstalk between TGF-beta1 signaling and EGF as well as FGF receptor tyrosine kinase-ERK pathways in mesenchymal cells. Journal of Cellular Physiology, 212(3), 796–806. doi:10.1002/jcp.21078.PubMed Ding, W., Shi, W., Bellusci, S., Groffen, J., Heisterkamp, N., Minoo, P., et al. (2007). Sprouty2 downregulation plays a pivotal role in mediating crosstalk between TGF-beta1 signaling and EGF as well as FGF receptor tyrosine kinase-ERK pathways in mesenchymal cells. Journal of Cellular Physiology, 212(3), 796–806. doi:10.​1002/​jcp.​21078.PubMed
55.
go back to reference Lito, P., Mets, B. D., Appledorn, D. M., Maher, V. M., & McCormick, J. J. (2009). Sprouty 2 regulates DNA damage-induced apoptosis in Ras-transformed human fibroblasts. Journal of Biological Chemistry, 284(2), 848–854. doi:10.1074/jbc.M808045200.PubMedCentralPubMed Lito, P., Mets, B. D., Appledorn, D. M., Maher, V. M., & McCormick, J. J. (2009). Sprouty 2 regulates DNA damage-induced apoptosis in Ras-transformed human fibroblasts. Journal of Biological Chemistry, 284(2), 848–854. doi:10.​1074/​jbc.​M808045200.PubMedCentralPubMed
56.
go back to reference Tennis, M. A., Van Scoyk, M. M., Freeman, S. V., Vandervest, K. M., Nemenoff, R. A., & Winn, R. A. (2010). Sprouty-4 inhibits transformed cell growth, migration and invasion, and epithelial-mesenchymal transition, and is regulated by Wnt7A through PPARgamma in non-small cell lung cancer. Molecular Cancer Research, 8(6), 833–843. doi:10.1158/1541-7786.mcr-09-0400.PubMedCentralPubMed Tennis, M. A., Van Scoyk, M. M., Freeman, S. V., Vandervest, K. M., Nemenoff, R. A., & Winn, R. A. (2010). Sprouty-4 inhibits transformed cell growth, migration and invasion, and epithelial-mesenchymal transition, and is regulated by Wnt7A through PPARgamma in non-small cell lung cancer. Molecular Cancer Research, 8(6), 833–843. doi:10.​1158/​1541-7786.​mcr-09-0400.PubMedCentralPubMed
57.
go back to reference Jung, J. E., Moon, S. H., Kim, D. K., Choi, C., Song, J., & Park, K. S. (2012). Sprouty1 regulates neural and endothelial differentiation of mouse embryonic stem cells. Stem Cells and Development, 21(4), 554–561. doi:10.1089/scd.2011.0110.PubMed Jung, J. E., Moon, S. H., Kim, D. K., Choi, C., Song, J., & Park, K. S. (2012). Sprouty1 regulates neural and endothelial differentiation of mouse embryonic stem cells. Stem Cells and Development, 21(4), 554–561. doi:10.​1089/​scd.​2011.​0110.PubMed
58.
go back to reference Felfly, H., & Klein, O. D. (2013). Sprouty genes regulate proliferation and survival of human embryonic stem cells. Science Reports, 3, 2277. doi:10.1038/srep02277. Felfly, H., & Klein, O. D. (2013). Sprouty genes regulate proliferation and survival of human embryonic stem cells. Science Reports, 3, 2277. doi:10.​1038/​srep02277.
59.
go back to reference Mekkawy, A. H., & Morris, D. L. (2013). Human Sprouty1 suppresses urokinase receptor-stimulated cell migration and invasion. ISRN Biochem, 2013, 7. doi:10.1155/2013/598251. Mekkawy, A. H., & Morris, D. L. (2013). Human Sprouty1 suppresses urokinase receptor-stimulated cell migration and invasion. ISRN Biochem, 2013, 7. doi:10.​1155/​2013/​598251.
60.
go back to reference Sasaki, A., Taketomi, T., Wakioka, T., Kato, R., & Yoshimura, A. (2001). Identification of a dominant negative mutant of Sprouty that potentiates fibroblast growth factor—but not epidermal growth factor-induced ERK activation. Journal of Biological Chemistry, 276(39), 36804–36808. doi:10.1074/jbc.C100386200.PubMed Sasaki, A., Taketomi, T., Wakioka, T., Kato, R., & Yoshimura, A. (2001). Identification of a dominant negative mutant of Sprouty that potentiates fibroblast growth factor—but not epidermal growth factor-induced ERK activation. Journal of Biological Chemistry, 276(39), 36804–36808. doi:10.​1074/​jbc.​C100386200.PubMed
61.
go back to reference Yigzaw, Y., Cartin, L., Pierre, S., Scholich, K., & Patel, T. B. (2001). The C terminus of sprouty is important for modulation of cellular migration and proliferation. Journal of Biological Chemistry, 276(25), 22742–22747. doi:10.1074/jbc.M100123200.PubMed Yigzaw, Y., Cartin, L., Pierre, S., Scholich, K., & Patel, T. B. (2001). The C terminus of sprouty is important for modulation of cellular migration and proliferation. Journal of Biological Chemistry, 276(25), 22742–22747. doi:10.​1074/​jbc.​M100123200.PubMed
62.
go back to reference Yigzaw, Y., Poppleton, H. M., Sreejayan, N., Hassid, A., & Patel, T. B. (2003). Protein-tyrosine phosphatase-1B (PTP1B) mediates the anti-migratory actions of Sprouty. Journal of Biological Chemistry, 278(1), 284–288. doi:10.1074/jbc.M210359200.PubMed Yigzaw, Y., Poppleton, H. M., Sreejayan, N., Hassid, A., & Patel, T. B. (2003). Protein-tyrosine phosphatase-1B (PTP1B) mediates the anti-migratory actions of Sprouty. Journal of Biological Chemistry, 278(1), 284–288. doi:10.​1074/​jbc.​M210359200.PubMed
63.
go back to reference Lee, C. C., Putnam, A. J., Miranti, C. K., Gustafson, M., Wang, L. M., Vande Woude, G. F., et al. (2004). Overexpression of sprouty 2 inhibits HGF/SF-mediated cell growth, invasion, migration, and cytokinesis. Oncogene, 23(30), 5193–5202. doi:10.1038/sj.onc.1207646.PubMed Lee, C. C., Putnam, A. J., Miranti, C. K., Gustafson, M., Wang, L. M., Vande Woude, G. F., et al. (2004). Overexpression of sprouty 2 inhibits HGF/SF-mediated cell growth, invasion, migration, and cytokinesis. Oncogene, 23(30), 5193–5202. doi:10.​1038/​sj.​onc.​1207646.PubMed
64.
go back to reference Edwin, F., Singh, R., Endersby, R., Baker, S. J., & Patel, T. B. (2006). The tumor suppressor PTEN is necessary for human Sprouty 2-mediated inhibition of cell proliferation. Journal of Biological Chemistry, 281(8), 4816–4822. doi:10.1074/jbc.M508300200.PubMed Edwin, F., Singh, R., Endersby, R., Baker, S. J., & Patel, T. B. (2006). The tumor suppressor PTEN is necessary for human Sprouty 2-mediated inhibition of cell proliferation. Journal of Biological Chemistry, 281(8), 4816–4822. doi:10.​1074/​jbc.​M508300200.PubMed
66.
go back to reference Lee, S. A., Ho, C., Roy, R., Kosinski, C., Patil, M. A., Tward, A. D., et al. (2008). Integration of genomic analysis and in vivo transfection to identify sprouty 2 as a candidate tumor suppressor in liver cancer. Hepatology, 47(4), 1200–1210. doi:10.1002/hep.22169.PubMed Lee, S. A., Ho, C., Roy, R., Kosinski, C., Patil, M. A., Tward, A. D., et al. (2008). Integration of genomic analysis and in vivo transfection to identify sprouty 2 as a candidate tumor suppressor in liver cancer. Hepatology, 47(4), 1200–1210. doi:10.​1002/​hep.​22169.PubMed
67.
go back to reference Frank, M. J., Dawson, D. W., Bensinger, S. J., Hong, J. S., Knosp, W. M., Xu, L., et al. (2009). Expression of sprouty2 inhibits B-cell proliferation and is epigenetically silenced in mouse and human B-cell lymphomas. Blood, 113(11), 2478–2487. doi:10.1182/blood-2008-05-156943.PubMedCentralPubMed Frank, M. J., Dawson, D. W., Bensinger, S. J., Hong, J. S., Knosp, W. M., Xu, L., et al. (2009). Expression of sprouty2 inhibits B-cell proliferation and is epigenetically silenced in mouse and human B-cell lymphomas. Blood, 113(11), 2478–2487. doi:10.​1182/​blood-2008-05-156943.PubMedCentralPubMed
68.
go back to reference Holgren, C., Dougherty, U., Edwin, F., Cerasi, D., Taylor, I., Fichera, A., et al. (2010). Sprouty-2 controls c-Met expression and metastatic potential of colon cancer cells: sprouty/c-Met upregulation in human colonic adenocarcinomas. [Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S.]. Oncogene, 29(38), 5241–5253. doi:10.1038/onc.2010.264.PubMedCentralPubMed Holgren, C., Dougherty, U., Edwin, F., Cerasi, D., Taylor, I., Fichera, A., et al. (2010). Sprouty-2 controls c-Met expression and metastatic potential of colon cancer cells: sprouty/c-Met upregulation in human colonic adenocarcinomas. [Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S.]. Oncogene, 29(38), 5241–5253. doi:10.​1038/​onc.​2010.​264.PubMedCentralPubMed
69.
go back to reference Barbachano, A., Ordonez-Moran, P., Garcia, J. M., Sanchez, A., Pereira, F., Larriba, M. J., et al. (2010). SPROUTY-2 and E-cadherin regulate reciprocally and dictate colon cancer cell tumourigenicity. Oncogene, 29(34), 4800–4813. doi:10.1038/onc.2010.225.PubMed Barbachano, A., Ordonez-Moran, P., Garcia, J. M., Sanchez, A., Pereira, F., Larriba, M. J., et al. (2010). SPROUTY-2 and E-cadherin regulate reciprocally and dictate colon cancer cell tumourigenicity. Oncogene, 29(34), 4800–4813. doi:10.​1038/​onc.​2010.​225.PubMed
70.
go back to reference Schaaf, G., Hamdi, M., Zwijnenburg, D., Lakeman, A., Geerts, D., Versteeg, R., et al. (2010). Silencing of SPRY1 triggers complete regression of rhabdomyosarcoma tumors carrying a mutated RAS gene. Cancer Research, 70(2), 762–771. doi:10.1158/0008-5472.can-09-2532.PubMed Schaaf, G., Hamdi, M., Zwijnenburg, D., Lakeman, A., Geerts, D., Versteeg, R., et al. (2010). Silencing of SPRY1 triggers complete regression of rhabdomyosarcoma tumors carrying a mutated RAS gene. Cancer Research, 70(2), 762–771. doi:10.​1158/​0008-5472.​can-09-2532.PubMed
74.
go back to reference Marshall, C. J. (1995). Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell, 80(2), 179–185.PubMed Marshall, C. J. (1995). Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell, 80(2), 179–185.PubMed
75.
go back to reference Kim, H. J., & Bar-Sagi, D. (2004). Modulation of signalling by Sprouty: a developing story. Nature Reviews Molecular Cell Biology, 5(6), 441–450. doi:10.1038/nrm1400.PubMed Kim, H. J., & Bar-Sagi, D. (2004). Modulation of signalling by Sprouty: a developing story. Nature Reviews Molecular Cell Biology, 5(6), 441–450. doi:10.​1038/​nrm1400.PubMed
76.
go back to reference Sasaki, A., Taketomi, T., Kato, R., Saeki, K., Nonami, A., Sasaki, M., et al. (2003). Mammalian Sprouty4 suppresses Ras-independent ERK activation by binding to Raf1. Nature Cell Biology, 5(5), 427–432. doi:10.1038/ncb978.PubMed Sasaki, A., Taketomi, T., Kato, R., Saeki, K., Nonami, A., Sasaki, M., et al. (2003). Mammalian Sprouty4 suppresses Ras-independent ERK activation by binding to Raf1. Nature Cell Biology, 5(5), 427–432. doi:10.​1038/​ncb978.PubMed
77.
go back to reference Kao, S., Jaiswal, R. K., Kolch, W., & Landreth, G. E. (2001). Identification of the mechanisms regulating the differential activation of the mapk cascade by epidermal growth factor and nerve growth factor in PC12 cells. Journal of Biological Chemistry, 276(21), 18169–18177. doi:10.1074/jbc.M008870200.PubMed Kao, S., Jaiswal, R. K., Kolch, W., & Landreth, G. E. (2001). Identification of the mechanisms regulating the differential activation of the mapk cascade by epidermal growth factor and nerve growth factor in PC12 cells. Journal of Biological Chemistry, 276(21), 18169–18177. doi:10.​1074/​jbc.​M008870200.PubMed
78.
go back to reference Ozaki, K., Kadomoto, R., Asato, K., Tanimura, S., Itoh, N., & Kohno, M. (2001). ERK pathway positively regulates the expression of Sprouty genes. [Research Support, Non-U.S. Gov't]. Biochemical and Biophysical Research Communications, 285(5), 1084–1088. doi:10.1006/bbrc.2001.5295.PubMed Ozaki, K., Kadomoto, R., Asato, K., Tanimura, S., Itoh, N., & Kohno, M. (2001). ERK pathway positively regulates the expression of Sprouty genes. [Research Support, Non-U.S. Gov't]. Biochemical and Biophysical Research Communications, 285(5), 1084–1088. doi:10.​1006/​bbrc.​2001.​5295.PubMed
79.
go back to reference Kral, R. M., Mayer, C. E., Vanas, V., Gsur, A., & Sutterluty-Fall, H. (2013). In non-small cell lung cancer mitogenic signaling leaves Sprouty1 protein levels unaffected. Cell Biochemistry and Function. doi:10.1002/cbf.2976.PubMed Kral, R. M., Mayer, C. E., Vanas, V., Gsur, A., & Sutterluty-Fall, H. (2013). In non-small cell lung cancer mitogenic signaling leaves Sprouty1 protein levels unaffected. Cell Biochemistry and Function. doi:10.​1002/​cbf.​2976.PubMed
80.
go back to reference Hausott, B., Vallant, N., Auer, M., Yang, L., Dai, F., Brand-Saberi, B., et al. (2009). Sprouty2 down-regulation promotes axon growth by adult sensory neurons. Molecular and Cellular Neuroscience, 42(4), 328–340. doi:10.1016/j.mcn.2009.08.005.PubMed Hausott, B., Vallant, N., Auer, M., Yang, L., Dai, F., Brand-Saberi, B., et al. (2009). Sprouty2 down-regulation promotes axon growth by adult sensory neurons. Molecular and Cellular Neuroscience, 42(4), 328–340. doi:10.​1016/​j.​mcn.​2009.​08.​005.PubMed
82.
go back to reference Choi, H., Cho, S. Y., Schwartz, R. H., & Choi, K. (2006). Dual effects of Sprouty1 on TCR signaling depending on the differentiation state of the T cell. Journal of Immunology, 176(10), 6034–6045. Choi, H., Cho, S. Y., Schwartz, R. H., & Choi, K. (2006). Dual effects of Sprouty1 on TCR signaling depending on the differentiation state of the T cell. Journal of Immunology, 176(10), 6034–6045.
83.
go back to reference Jiang, Z., & Price, C. A. (2012). Differential actions of fibroblast growth factors on intracellular pathways and target gene expression in bovine ovarian granulosa cells. Reproduction, 144(5), 625–632. doi:10.1530/rep-12-0199.PubMed Jiang, Z., & Price, C. A. (2012). Differential actions of fibroblast growth factors on intracellular pathways and target gene expression in bovine ovarian granulosa cells. Reproduction, 144(5), 625–632. doi:10.​1530/​rep-12-0199.PubMed
84.
go back to reference Jiang, Z., Guerrero-Netro, H. M., Juengel, J. L., & Price, C. A. (2013). Divergence of intracellular signaling pathways and early response genes of two closely related fibroblast growth factors, FGF8 and FGF18, in bovine ovarian granulosa cells. Molecular and Cellular Endocrinology, 375(1–2), 97–105. doi:10.1016/j.mce.2013.05.017.PubMed Jiang, Z., Guerrero-Netro, H. M., Juengel, J. L., & Price, C. A. (2013). Divergence of intracellular signaling pathways and early response genes of two closely related fibroblast growth factors, FGF8 and FGF18, in bovine ovarian granulosa cells. Molecular and Cellular Endocrinology, 375(1–2), 97–105. doi:10.​1016/​j.​mce.​2013.​05.​017.PubMed
85.
go back to reference Ding, W., Bellusci, S., Shi, W., & Warburton, D. (2003). Functional analysis of the human Sprouty2 gene promoter. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Gene, 322, 175–185.PubMed Ding, W., Bellusci, S., Shi, W., & Warburton, D. (2003). Functional analysis of the human Sprouty2 gene promoter. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Gene, 322, 175–185.PubMed
86.
go back to reference Sabatel, C., Cornet, A. M., Tabruyn, S. P., Malvaux, L., Castermans, K., Martial, J. A., et al. (2010). Sprouty1, a new target of the angiostatic agent 16K prolactin, negatively regulates angiogenesis. Molecular Cancer, 9, 231. doi:10.1186/1476-4598-9-231.PubMedCentralPubMed Sabatel, C., Cornet, A. M., Tabruyn, S. P., Malvaux, L., Castermans, K., Martial, J. A., et al. (2010). Sprouty1, a new target of the angiostatic agent 16K prolactin, negatively regulates angiogenesis. Molecular Cancer, 9, 231. doi:10.​1186/​1476-4598-9-231.PubMedCentralPubMed
87.
go back to reference Hall, A. B., Jura, N., DaSilva, J., Jang, Y. J., Gong, D., & Bar-Sagi, D. (2003). hSpry2 is targeted to the ubiquitin-dependent proteasome pathway by c-Cbl. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Current Biology, 13(4), 308–314.PubMed Hall, A. B., Jura, N., DaSilva, J., Jang, Y. J., Gong, D., & Bar-Sagi, D. (2003). hSpry2 is targeted to the ubiquitin-dependent proteasome pathway by c-Cbl. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Current Biology, 13(4), 308–314.PubMed
88.
go back to reference Rubin, C., Litvak, V., Medvedovsky, H., Zwang, Y., Lev, S., & Yarden, Y. (2003). Sprouty fine-tunes EGF signaling through interlinked positive and negative feedback loops. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Current Biology, 13(4), 297–307.PubMed Rubin, C., Litvak, V., Medvedovsky, H., Zwang, Y., Lev, S., & Yarden, Y. (2003). Sprouty fine-tunes EGF signaling through interlinked positive and negative feedback loops. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Current Biology, 13(4), 297–307.PubMed
89.
go back to reference Mason, J. M., Morrison, D. J., Bassit, B., Dimri, M., Band, H., Licht, J. D., et al. (2004). Tyrosine phosphorylation of Sprouty proteins regulates their ability to inhibit growth factor signaling: a dual feedback loop. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Research Support, U.S. Gov't, P.H.S.]. Molecular Biology of the Cell, 15(5), 2176–2188. doi:10.1091/mbc.E03-07-0503.PubMedCentralPubMed Mason, J. M., Morrison, D. J., Bassit, B., Dimri, M., Band, H., Licht, J. D., et al. (2004). Tyrosine phosphorylation of Sprouty proteins regulates their ability to inhibit growth factor signaling: a dual feedback loop. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Research Support, U.S. Gov't, P.H.S.]. Molecular Biology of the Cell, 15(5), 2176–2188. doi:10.​1091/​mbc.​E03-07-0503.PubMedCentralPubMed
90.
go back to reference Mason, J. M., Morrison, D. J., Basson, M. A., & Licht, J. D. (2006). Sprouty proteins: multifaceted negative-feedback regulators of receptor tyrosine kinase signaling. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Review]. Trends in Cell Biology, 16(1), 45–54. doi:10.1016/j.tcb.2005.11.004.PubMed Mason, J. M., Morrison, D. J., Basson, M. A., & Licht, J. D. (2006). Sprouty proteins: multifaceted negative-feedback regulators of receptor tyrosine kinase signaling. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Review]. Trends in Cell Biology, 16(1), 45–54. doi:10.​1016/​j.​tcb.​2005.​11.​004.PubMed
91.
go back to reference Mayer, C. E., Haigl, B., Jantscher, F., Siegwart, G., Grusch, M., Berger, W., et al. (2010). Bimodal expression of Sprouty2 during the cell cycle is mediated by phase-specific Ras/MAPK and c-Cbl activities. Cellular and Molecular Life Sciences, 67(19), 3299–3311. doi:10.1007/s00018-010-0379-6.PubMed Mayer, C. E., Haigl, B., Jantscher, F., Siegwart, G., Grusch, M., Berger, W., et al. (2010). Bimodal expression of Sprouty2 during the cell cycle is mediated by phase-specific Ras/MAPK and c-Cbl activities. Cellular and Molecular Life Sciences, 67(19), 3299–3311. doi:10.​1007/​s00018-010-0379-6.PubMed
94.
go back to reference Nadeau, R. J., Toher, J. L., Yang, X., Kovalenko, D., & Friesel, R. (2007). Regulation of Sprouty2 stability by mammalian Seven-in-Absentia homolog 2. Journal of Cellular Biochemistry, 100(1), 151–160. doi:10.1002/jcb.21040.PubMed Nadeau, R. J., Toher, J. L., Yang, X., Kovalenko, D., & Friesel, R. (2007). Regulation of Sprouty2 stability by mammalian Seven-in-Absentia homolog 2. Journal of Cellular Biochemistry, 100(1), 151–160. doi:10.​1002/​jcb.​21040.PubMed
95.
go back to reference Qi, J., Nakayama, K., Gaitonde, S., Goydos, J. S., Krajewski, S., Eroshkin, A., et al. (2008). The ubiquitin ligase Siah2 regulates tumorigenesis and metastasis by HIF-dependent and -independent pathways. Proceedings of the National Academy of Sciences of the United States of America, 105(43), 16713–16718. doi:10.1073/pnas.0804063105.PubMedCentralPubMed Qi, J., Nakayama, K., Gaitonde, S., Goydos, J. S., Krajewski, S., Eroshkin, A., et al. (2008). The ubiquitin ligase Siah2 regulates tumorigenesis and metastasis by HIF-dependent and -independent pathways. Proceedings of the National Academy of Sciences of the United States of America, 105(43), 16713–16718. doi:10.​1073/​pnas.​0804063105.PubMedCentralPubMed
96.
go back to reference Haigl, B., Mayer, C. E., Siegwart, G., & Sutterluty, H. (2010). Sprouty4 levels are increased under hypoxic conditions by enhanced mRNA stability and transcription. Biological Chemistry, 391(7), 813–821. doi:10.1515/bc.2010.082.PubMed Haigl, B., Mayer, C. E., Siegwart, G., & Sutterluty, H. (2010). Sprouty4 levels are increased under hypoxic conditions by enhanced mRNA stability and transcription. Biological Chemistry, 391(7), 813–821. doi:10.​1515/​bc.​2010.​082.PubMed
97.
go back to reference Anderson, K., Nordquist, K. A., Gao, X., Hicks, K. C., Zhai, B., Gygi, S. P., et al. (2011). Regulation of cellular levels of Sprouty2 protein by prolyl hydroxylase domain and von Hippel-Lindau proteins. [Research Support, N.I.H., Extramural]. Journal of Biological Chemistry, 286(49), 42027–42036. doi:10.1074/jbc.M111.303222.PubMedCentralPubMed Anderson, K., Nordquist, K. A., Gao, X., Hicks, K. C., Zhai, B., Gygi, S. P., et al. (2011). Regulation of cellular levels of Sprouty2 protein by prolyl hydroxylase domain and von Hippel-Lindau proteins. [Research Support, N.I.H., Extramural]. Journal of Biological Chemistry, 286(49), 42027–42036. doi:10.​1074/​jbc.​M111.​303222.PubMedCentralPubMed
98.
go back to reference Lim, J., Wong, E. S., Ong, S. H., Yusoff, P., Low, B. C., & Guy, G. R. (2000). Sprouty proteins are targeted to membrane ruffles upon growth factor receptor tyrosine kinase activation. Identification of a novel translocation domain. Journal of Biological Chemistry, 275(42), 32837–32845. doi:10.1074/jbc.M002156200.PubMed Lim, J., Wong, E. S., Ong, S. H., Yusoff, P., Low, B. C., & Guy, G. R. (2000). Sprouty proteins are targeted to membrane ruffles upon growth factor receptor tyrosine kinase activation. Identification of a novel translocation domain. Journal of Biological Chemistry, 275(42), 32837–32845. doi:10.​1074/​jbc.​M002156200.PubMed
99.
go back to reference Hanafusa, H., Torii, S., Yasunaga, T., & Nishida, E. (2002). Sprouty1 and Sprouty2 provide a control mechanism for the Ras/MAPK signalling pathway. [Research Support, Non-U.S. Gov't]. Nature Cell Biology, 4(11), 850–858. doi:10.1038/ncb867.PubMed Hanafusa, H., Torii, S., Yasunaga, T., & Nishida, E. (2002). Sprouty1 and Sprouty2 provide a control mechanism for the Ras/MAPK signalling pathway. [Research Support, Non-U.S. Gov't]. Nature Cell Biology, 4(11), 850–858. doi:10.​1038/​ncb867.PubMed
100.
go back to reference Lim, J., Yusoff, P., Wong, E. S., Chandramouli, S., Lao, D. H., Fong, C. W., et al. (2002). The cysteine-rich sprouty translocation domain targets mitogen-activated protein kinase inhibitory proteins to phosphatidylinositol 4,5-bisphosphate in plasma membranes. Molecular and Cellular Biology, 22(22), 7953–7966.PubMedCentralPubMed Lim, J., Yusoff, P., Wong, E. S., Chandramouli, S., Lao, D. H., Fong, C. W., et al. (2002). The cysteine-rich sprouty translocation domain targets mitogen-activated protein kinase inhibitory proteins to phosphatidylinositol 4,5-bisphosphate in plasma membranes. Molecular and Cellular Biology, 22(22), 7953–7966.PubMedCentralPubMed
101.
go back to reference Cabrita, M. A., Jaggi, F., Widjaja, S. P., & Christofori, G. (2006). A functional interaction between sprouty proteins and caveolin-1. Journal of Biological Chemistry, 281(39), 29201–29212. doi:10.1074/jbc.M603921200.PubMed Cabrita, M. A., Jaggi, F., Widjaja, S. P., & Christofori, G. (2006). A functional interaction between sprouty proteins and caveolin-1. Journal of Biological Chemistry, 281(39), 29201–29212. doi:10.​1074/​jbc.​M603921200.PubMed
102.
go back to reference Hwangpo, T. A., Jordan, J. D., Premsrirut, P. K., Jayamaran, G., Licht, J. D., Iyengar, R., et al. (2012). G Protein-regulated inducer of neurite outgrowth (GRIN) modulates Sprouty protein repression of mitogen-activated protein kinase (MAPK) activation by growth factor stimulation. Journal of Biological Chemistry, 287(17), 13674–13685. doi:10.1074/jbc.M111.320705.PubMedCentralPubMed Hwangpo, T. A., Jordan, J. D., Premsrirut, P. K., Jayamaran, G., Licht, J. D., Iyengar, R., et al. (2012). G Protein-regulated inducer of neurite outgrowth (GRIN) modulates Sprouty protein repression of mitogen-activated protein kinase (MAPK) activation by growth factor stimulation. Journal of Biological Chemistry, 287(17), 13674–13685. doi:10.​1074/​jbc.​M111.​320705.PubMedCentralPubMed
103.
go back to reference Fong, C. W., Leong, H. F., Wong, E. S., Lim, J., Yusoff, P., & Guy, G. R. (2003). Tyrosine phosphorylation of Sprouty2 enhances its interaction with c-Cbl and is crucial for its function. [Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 278(35), 33456–33464. doi:10.1074/jbc.M301317200.PubMed Fong, C. W., Leong, H. F., Wong, E. S., Lim, J., Yusoff, P., & Guy, G. R. (2003). Tyrosine phosphorylation of Sprouty2 enhances its interaction with c-Cbl and is crucial for its function. [Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 278(35), 33456–33464. doi:10.​1074/​jbc.​M301317200.PubMed
104.
go back to reference Rubin, C., Zwang, Y., Vaisman, N., Ron, D., & Yarden, Y. (2005). Phosphorylation of carboxyl-terminal tyrosines modulates the specificity of Sprouty-2 inhibition of different signaling pathways. Journal of Biological Chemistry, 280(10), 9735–9744. doi:10.1074/jbc.M408308200.PubMed Rubin, C., Zwang, Y., Vaisman, N., Ron, D., & Yarden, Y. (2005). Phosphorylation of carboxyl-terminal tyrosines modulates the specificity of Sprouty-2 inhibition of different signaling pathways. Journal of Biological Chemistry, 280(10), 9735–9744. doi:10.​1074/​jbc.​M408308200.PubMed
105.
go back to reference Lao, D. H., Yusoff, P., Chandramouli, S., Philp, R. J., Fong, C. W., Jackson, R. A., et al. (2007). Direct binding of PP2A to Sprouty2 and phosphorylation changes are a prerequisite for ERK inhibition downstream of fibroblast growth factor receptor stimulation. Journal of Biological Chemistry, 282(12), 9117–9126. doi:10.1074/jbc.M607563200.PubMed Lao, D. H., Yusoff, P., Chandramouli, S., Philp, R. J., Fong, C. W., Jackson, R. A., et al. (2007). Direct binding of PP2A to Sprouty2 and phosphorylation changes are a prerequisite for ERK inhibition downstream of fibroblast growth factor receptor stimulation. Journal of Biological Chemistry, 282(12), 9117–9126. doi:10.​1074/​jbc.​M607563200.PubMed
106.
go back to reference Lao, D. H., Chandramouli, S., Yusoff, P., Fong, C. W., Saw, T. Y., Tai, L. P., et al. (2006). A Src homology 3-binding sequence on the C terminus of Sprouty2 is necessary for inhibition of the Ras/ERK pathway downstream of fibroblast growth factor receptor stimulation. Journal of Biological Chemistry, 281(40), 29993–30000. doi:10.1074/jbc.M604044200.PubMed Lao, D. H., Chandramouli, S., Yusoff, P., Fong, C. W., Saw, T. Y., Tai, L. P., et al. (2006). A Src homology 3-binding sequence on the C terminus of Sprouty2 is necessary for inhibition of the Ras/ERK pathway downstream of fibroblast growth factor receptor stimulation. Journal of Biological Chemistry, 281(40), 29993–30000. doi:10.​1074/​jbc.​M604044200.PubMed
107.
go back to reference Chandramouli, S., Yu, C. Y., Yusoff, P., Lao, D. H., Leong, H. F., Mizuno, K., et al. (2008). Tesk1 interacts with Spry2 to abrogate its inhibition of ERK phosphorylation downstream of receptor tyrosine kinase signaling. Journal of Biological Chemistry, 283(3), 1679–1691. doi:10.1074/jbc.M705457200.PubMed Chandramouli, S., Yu, C. Y., Yusoff, P., Lao, D. H., Leong, H. F., Mizuno, K., et al. (2008). Tesk1 interacts with Spry2 to abrogate its inhibition of ERK phosphorylation downstream of receptor tyrosine kinase signaling. Journal of Biological Chemistry, 283(3), 1679–1691. doi:10.​1074/​jbc.​M705457200.PubMed
108.
go back to reference Hanafusa, H., Torii, S., Yasunaga, T., Matsumoto, K., & Nishida, E. (2004). Shp2, an SH2-containing protein-tyrosine phosphatase, positively regulates receptor tyrosine kinase signaling by dephosphorylating and inactivating the inhibitor Sprouty. Journal of Biological Chemistry, 279(22), 22992–22995. doi:10.1074/jbc.M312498200.PubMed Hanafusa, H., Torii, S., Yasunaga, T., Matsumoto, K., & Nishida, E. (2004). Shp2, an SH2-containing protein-tyrosine phosphatase, positively regulates receptor tyrosine kinase signaling by dephosphorylating and inactivating the inhibitor Sprouty. Journal of Biological Chemistry, 279(22), 22992–22995. doi:10.​1074/​jbc.​M312498200.PubMed
109.
go back to reference Jarvis, L. A., Toering, S. J., Simon, M. A., Krasnow, M. A., & Smith-Bolton, R. K. (2006). Sprouty proteins are in vivo targets of Corkscrew/SHP-2 tyrosine phosphatases. Development, 133(6), 1133–1142. doi:10.1242/dev.02255.PubMed Jarvis, L. A., Toering, S. J., Simon, M. A., Krasnow, M. A., & Smith-Bolton, R. K. (2006). Sprouty proteins are in vivo targets of Corkscrew/SHP-2 tyrosine phosphatases. Development, 133(6), 1133–1142. doi:10.​1242/​dev.​02255.PubMed
110.
go back to reference Patel, R., Gao, M., Ahmad, I., Fleming, J., Singh, L. B., Rai, T. S., et al. (2013). Sprouty2, PTEN, and PP2A interact to regulate prostate cancer progression. Journal of Clinical Investigation, 123(3), 1157–1175. doi:10.1172/jci63672.PubMedCentralPubMed Patel, R., Gao, M., Ahmad, I., Fleming, J., Singh, L. B., Rai, T. S., et al. (2013). Sprouty2, PTEN, and PP2A interact to regulate prostate cancer progression. Journal of Clinical Investigation, 123(3), 1157–1175. doi:10.​1172/​jci63672.PubMedCentralPubMed
111.
go back to reference Haj, F. G., Verveer, P. J., Squire, A., Neel, B. G., & Bastiaens, P. I. (2002). Imaging sites of receptor dephosphorylation by PTP1B on the surface of the endoplasmic reticulum. Science, 295(5560), 1708–1711. doi:10.1126/science.1067566.PubMed Haj, F. G., Verveer, P. J., Squire, A., Neel, B. G., & Bastiaens, P. I. (2002). Imaging sites of receptor dephosphorylation by PTP1B on the surface of the endoplasmic reticulum. Science, 295(5560), 1708–1711. doi:10.​1126/​science.​1067566.PubMed
112.
go back to reference Egan, J. E., Hall, A. B., Yatsula, B. A., & Bar-Sagi, D. (2002). The bimodal regulation of epidermal growth factor signaling by human Sprouty proteins. Proceedings of the National Academy of Sciences of the United States of America, 99(9), 6041–6046. doi:10.1073/pnas.052090899.PubMedCentralPubMed Egan, J. E., Hall, A. B., Yatsula, B. A., & Bar-Sagi, D. (2002). The bimodal regulation of epidermal growth factor signaling by human Sprouty proteins. Proceedings of the National Academy of Sciences of the United States of America, 99(9), 6041–6046. doi:10.​1073/​pnas.​052090899.PubMedCentralPubMed
113.
go back to reference Wong, E. S., Lim, J., Low, B. C., Chen, Q., & Guy, G. R. (2001). Evidence for direct interaction between Sprouty and Cbl. Journal of Biological Chemistry, 276(8), 5866–5875. doi:10.1074/jbc.M006945200.PubMed Wong, E. S., Lim, J., Low, B. C., Chen, Q., & Guy, G. R. (2001). Evidence for direct interaction between Sprouty and Cbl. Journal of Biological Chemistry, 276(8), 5866–5875. doi:10.​1074/​jbc.​M006945200.PubMed
115.
go back to reference Aranda, S., Alvarez, M., Turro, S., Laguna, A., & de la Luna, S. (2008). Sprouty2-mediated inhibition of fibroblast growth factor signaling is modulated by the protein kinase DYRK1A. Molecular and Cellular Biology, 28(19), 5899–5911. doi:10.1128/MCB.00394-08.PubMedCentralPubMed Aranda, S., Alvarez, M., Turro, S., Laguna, A., & de la Luna, S. (2008). Sprouty2-mediated inhibition of fibroblast growth factor signaling is modulated by the protein kinase DYRK1A. Molecular and Cellular Biology, 28(19), 5899–5911. doi:10.​1128/​MCB.​00394-08.PubMedCentralPubMed
116.
go back to reference Reich, A., Sapir, A., & Shilo, B. (1999). Sprouty is a general inhibitor of receptor tyrosine kinase signaling. [Research Support, Non-U.S. Gov't]. Development, 126(18), 4139–4147.PubMed Reich, A., Sapir, A., & Shilo, B. (1999). Sprouty is a general inhibitor of receptor tyrosine kinase signaling. [Research Support, Non-U.S. Gov't]. Development, 126(18), 4139–4147.PubMed
117.
go back to reference Tsavachidou, D., Coleman, M. L., Athanasiadis, G., Li, S. X., Licht, J. D., Olson, M. F., et al. (2004). SPRY2 is an inhibitor of the Ras/extracellular signal-regulated kinase pathway in melanocytes and melanoma cells with wild-type BRAF but not with the V599E mutant. Cancer Research, 64(16), 5556–5559.PubMed Tsavachidou, D., Coleman, M. L., Athanasiadis, G., Li, S. X., Licht, J. D., Olson, M. F., et al. (2004). SPRY2 is an inhibitor of the Ras/extracellular signal-regulated kinase pathway in melanocytes and melanoma cells with wild-type BRAF but not with the V599E mutant. Cancer Research, 64(16), 5556–5559.PubMed
118.
go back to reference Yusoff, P., Lao, D. H., Ong, S. H., Wong, E. S., Lim, J., Lo, T. L., et al. (2002). Sprouty2 inhibits the Ras/MAP kinase pathway by inhibiting the activation of Raf. Journal of Biological Chemistry, 277(5), 3195–3201. doi:10.1074/jbc.M108368200.PubMed Yusoff, P., Lao, D. H., Ong, S. H., Wong, E. S., Lim, J., Lo, T. L., et al. (2002). Sprouty2 inhibits the Ras/MAP kinase pathway by inhibiting the activation of Raf. Journal of Biological Chemistry, 277(5), 3195–3201. doi:10.​1074/​jbc.​M108368200.PubMed
119.
go back to reference Ayada, T., Taniguchi, K., Okamoto, F., Kato, R., Komune, S., Takaesu, G., et al. (2009). Sprouty4 negatively regulates protein kinase C activation by inhibiting phosphatidylinositol 4,5-biphosphate hydrolysis. Oncogene, 28(8), 1076–1088. doi:10.1038/onc.2008.464.PubMed Ayada, T., Taniguchi, K., Okamoto, F., Kato, R., Komune, S., Takaesu, G., et al. (2009). Sprouty4 negatively regulates protein kinase C activation by inhibiting phosphatidylinositol 4,5-biphosphate hydrolysis. Oncogene, 28(8), 1076–1088. doi:10.​1038/​onc.​2008.​464.PubMed
120.
122.
go back to reference Haglund, K., Sigismund, S., Polo, S., Szymkiewicz, I., Di Fiore, P. P., & Dikic, I. (2003). Multiple monoubiquitination of RTKs is sufficient for their endocytosis and degradation. Nature Cell Biology, 5(5), 461–466. doi:10.1038/ncb983.PubMed Haglund, K., Sigismund, S., Polo, S., Szymkiewicz, I., Di Fiore, P. P., & Dikic, I. (2003). Multiple monoubiquitination of RTKs is sufficient for their endocytosis and degradation. Nature Cell Biology, 5(5), 461–466. doi:10.​1038/​ncb983.PubMed
123.
go back to reference Mosesson, Y., Shtiegman, K., Katz, M., Zwang, Y., Vereb, G., Szollosi, J., et al. (2003). Endocytosis of receptor tyrosine kinases is driven by monoubiquitylation, not polyubiquitylation. Journal of Biological Chemistry, 278(24), 21323–21326. doi:10.1074/jbc.C300096200.PubMed Mosesson, Y., Shtiegman, K., Katz, M., Zwang, Y., Vereb, G., Szollosi, J., et al. (2003). Endocytosis of receptor tyrosine kinases is driven by monoubiquitylation, not polyubiquitylation. Journal of Biological Chemistry, 278(24), 21323–21326. doi:10.​1074/​jbc.​C300096200.PubMed
124.
go back to reference Petrelli, A., Gilestro, G. F., Lanzardo, S., Comoglio, P. M., Migone, N., & Giordano, S. (2002). The endophilin-CIN85-Cbl complex mediates ligand-dependent downregulation of c-Met. Nature, 416(6877), 187–190. doi:10.1038/416187a.PubMed Petrelli, A., Gilestro, G. F., Lanzardo, S., Comoglio, P. M., Migone, N., & Giordano, S. (2002). The endophilin-CIN85-Cbl complex mediates ligand-dependent downregulation of c-Met. Nature, 416(6877), 187–190. doi:10.​1038/​416187a.PubMed
125.
go back to reference Soubeyran, P., Kowanetz, K., Szymkiewicz, I., Langdon, W. Y., & Dikic, I. (2002). Cbl-CIN85-endophilin complex mediates ligand-induced downregulation of EGF receptors. Nature, 416(6877), 183–187. doi:10.1038/416183a.PubMed Soubeyran, P., Kowanetz, K., Szymkiewicz, I., Langdon, W. Y., & Dikic, I. (2002). Cbl-CIN85-endophilin complex mediates ligand-induced downregulation of EGF receptors. Nature, 416(6877), 183–187. doi:10.​1038/​416183a.PubMed
126.
go back to reference Kowanetz, K., Szymkiewicz, I., Haglund, K., Kowanetz, M., Husnjak, K., Taylor, J. D., et al. (2003). Identification of a novel proline-arginine motif involved in CIN85-dependent clustering of Cbl and down-regulation of epidermal growth factor receptors. Journal of Biological Chemistry, 278(41), 39735–39746. doi:10.1074/jbc.M304541200.PubMed Kowanetz, K., Szymkiewicz, I., Haglund, K., Kowanetz, M., Husnjak, K., Taylor, J. D., et al. (2003). Identification of a novel proline-arginine motif involved in CIN85-dependent clustering of Cbl and down-regulation of epidermal growth factor receptors. Journal of Biological Chemistry, 278(41), 39735–39746. doi:10.​1074/​jbc.​M304541200.PubMed
127.
129.
go back to reference Ozaki, K., Miyazaki, S., Tanimura, S., & Kohno, M. (2005). Efficient suppression of FGF-2-induced ERK activation by the cooperative interaction among mammalian Sprouty isoforms. Journal of Cell Science, 118(Pt 24), 5861–5871. doi:10.1242/jcs.02711.PubMed Ozaki, K., Miyazaki, S., Tanimura, S., & Kohno, M. (2005). Efficient suppression of FGF-2-induced ERK activation by the cooperative interaction among mammalian Sprouty isoforms. Journal of Cell Science, 118(Pt 24), 5861–5871. doi:10.​1242/​jcs.​02711.PubMed
130.
go back to reference Frolov, A., Chahwan, S., Ochs, M., Arnoletti, J. P., Pan, Z. Z., Favorova, O., et al. (2003). Response markers and the molecular mechanisms of action of Gleevec in gastrointestinal stromal tumors. Molecular Cancer Therapeutics, 2(8), 699–709.PubMed Frolov, A., Chahwan, S., Ochs, M., Arnoletti, J. P., Pan, Z. Z., Favorova, O., et al. (2003). Response markers and the molecular mechanisms of action of Gleevec in gastrointestinal stromal tumors. Molecular Cancer Therapeutics, 2(8), 699–709.PubMed
131.
go back to reference Feng, Y. H., Tsao, C. J., Wu, C. L., Chang, J. G., Lu, P. J., Yeh, K. T., et al. (2010). Sprouty2 protein enhances the response to gefitinib through epidermal growth factor receptor in colon cancer cells. Cancer Science, 101(9), 2033–2038. doi:10.1111/j.1349-7006.2010.01637.x.PubMed Feng, Y. H., Tsao, C. J., Wu, C. L., Chang, J. G., Lu, P. J., Yeh, K. T., et al. (2010). Sprouty2 protein enhances the response to gefitinib through epidermal growth factor receptor in colon cancer cells. Cancer Science, 101(9), 2033–2038. doi:10.​1111/​j.​1349-7006.​2010.​01637.​x.PubMed
132.
133.
go back to reference Sirivatanauksorn, Y., Sirivatanauksorn, V., Srisawat, C., Khongmanee, A., & Tongkham, C. (2012). Differential expression of sprouty genes in hepatocellular carcinoma. Journal of Surgical Oncology, 105(3), 273–276. doi:10.1002/jso.22095.PubMed Sirivatanauksorn, Y., Sirivatanauksorn, V., Srisawat, C., Khongmanee, A., & Tongkham, C. (2012). Differential expression of sprouty genes in hepatocellular carcinoma. Journal of Surgical Oncology, 105(3), 273–276. doi:10.​1002/​jso.​22095.PubMed
134.
go back to reference Song, K., Gao, Q., Zhou, J., Qiu, S. J., Huang, X. W., Wang, X. Y., et al. (2012). Prognostic significance and clinical relevance of Sprouty 2 protein expression in human hepatocellular carcinoma. [Research Support, Non-U.S. Gov't]. Hepatobiliary & Pancreatic Diseases International, 11(2), 177–184. Song, K., Gao, Q., Zhou, J., Qiu, S. J., Huang, X. W., Wang, X. Y., et al. (2012). Prognostic significance and clinical relevance of Sprouty 2 protein expression in human hepatocellular carcinoma. [Research Support, Non-U.S. Gov't]. Hepatobiliary & Pancreatic Diseases International, 11(2), 177–184.
135.
go back to reference McKie, A. B., Douglas, D. A., Olijslagers, S., Graham, J., Omar, M. M., Heer, R., et al. (2005). Epigenetic inactivation of the human sprouty2 (hSPRY2) homologue in prostate cancer. Oncogene, 24(13), 2166–2174. doi:10.1038/sj.onc.1208371.PubMed McKie, A. B., Douglas, D. A., Olijslagers, S., Graham, J., Omar, M. M., Heer, R., et al. (2005). Epigenetic inactivation of the human sprouty2 (hSPRY2) homologue in prostate cancer. Oncogene, 24(13), 2166–2174. doi:10.​1038/​sj.​onc.​1208371.PubMed
136.
go back to reference Winn, R. A., Marek, L., Han, S. Y., Rodriguez, K., Rodriguez, N., Hammond, M., et al. (2005). Restoration of Wnt-7a expression reverses non-small cell lung cancer cellular transformation through frizzled-9-mediated growth inhibition and promotion of cell differentiation. [Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S. Research Support, U.S. Gov't, P.H.S.]. Journal of Biological Chemistry, 280(20), 19625–19634. doi:10.1074/jbc.M409392200.PubMed Winn, R. A., Marek, L., Han, S. Y., Rodriguez, K., Rodriguez, N., Hammond, M., et al. (2005). Restoration of Wnt-7a expression reverses non-small cell lung cancer cellular transformation through frizzled-9-mediated growth inhibition and promotion of cell differentiation. [Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S. Research Support, U.S. Gov't, P.H.S.]. Journal of Biological Chemistry, 280(20), 19625–19634. doi:10.​1074/​jbc.​M409392200.PubMed
137.
go back to reference Feng, Y. H., Wu, C. L., Tsao, C. J., Chang, J. G., Lu, P. J., Yeh, K. T., et al. (2011). Deregulated expression of sprouty2 and microRNA-21 in human colon cancer: Correlation with the clinical stage of the disease. Cancer Biology and Therapy, 11(1), 111–121.PubMed Feng, Y. H., Wu, C. L., Tsao, C. J., Chang, J. G., Lu, P. J., Yeh, K. T., et al. (2011). Deregulated expression of sprouty2 and microRNA-21 in human colon cancer: Correlation with the clinical stage of the disease. Cancer Biology and Therapy, 11(1), 111–121.PubMed
138.
go back to reference Dorman, K., Shen, Z., Yang, C., Ezzat, S., & Asa, S. L. (2012). CtBP1 interacts with Ikaros and modulates pituitary tumor cell survival and response to hypoxia. Molecular Endocrinology, 26(3), 447–457. doi:10.1210/me.2011-1095.PubMed Dorman, K., Shen, Z., Yang, C., Ezzat, S., & Asa, S. L. (2012). CtBP1 interacts with Ikaros and modulates pituitary tumor cell survival and response to hypoxia. Molecular Endocrinology, 26(3), 447–457. doi:10.​1210/​me.​2011-1095.PubMed
139.
140.
141.
go back to reference Lito, P., Mets, B. D., Kleff, S., O'Reilly, S., Maher, V. M., & McCormick, J. J. (2008). Evidence that sprouty 2 is necessary for sarcoma formation by H-Ras oncogene-transformed human fibroblasts. Journal of Biological Chemistry, 283(4), 2002–2009. doi:10.1074/jbc.M709046200.PubMed Lito, P., Mets, B. D., Kleff, S., O'Reilly, S., Maher, V. M., & McCormick, J. J. (2008). Evidence that sprouty 2 is necessary for sarcoma formation by H-Ras oncogene-transformed human fibroblasts. Journal of Biological Chemistry, 283(4), 2002–2009. doi:10.​1074/​jbc.​M709046200.PubMed
142.
go back to reference Kanetsky, P. A., Mitra, N., Vardhanabhuti, S., Li, M., Vaughn, D. J., Letrero, R., et al. (2009). Common variation in KITLG and at 5q31.3 predisposes to testicular germ cell cancer. Nature Genetics, 41(7), 811–815. doi:10.1038/ng.393.PubMedCentralPubMed Kanetsky, P. A., Mitra, N., Vardhanabhuti, S., Li, M., Vaughn, D. J., Letrero, R., et al. (2009). Common variation in KITLG and at 5q31.3 predisposes to testicular germ cell cancer. Nature Genetics, 41(7), 811–815. doi:10.​1038/​ng.​393.PubMedCentralPubMed
143.
go back to reference Kwabi-Addo, B., Wang, J., Erdem, H., Vaid, A., Castro, P., Ayala, G., et al. (2004). The expression of Sprouty1, an inhibitor of fibroblast growth factor signal transduction, is decreased in human prostate cancer. Cancer Research, 64(14), 4728–4735. doi:10.1158/0008-5472.CAN-03-3759.PubMed Kwabi-Addo, B., Wang, J., Erdem, H., Vaid, A., Castro, P., Ayala, G., et al. (2004). The expression of Sprouty1, an inhibitor of fibroblast growth factor signal transduction, is decreased in human prostate cancer. Cancer Research, 64(14), 4728–4735. doi:10.​1158/​0008-5472.​CAN-03-3759.PubMed
145.
go back to reference Mekkawy, A. H., De Bock, C. E., Lin, Z., Morris, D. L., Wang, Y., & Pourgholami, M. H. (2010). Novel protein interactors of urokinase-type plasminogen activator receptor. Biochemical and Biophysical Research Communications, 399(4), 738–743. doi:10.1016/j.bbrc.2010.08.010.PubMed Mekkawy, A. H., De Bock, C. E., Lin, Z., Morris, D. L., Wang, Y., & Pourgholami, M. H. (2010). Novel protein interactors of urokinase-type plasminogen activator receptor. Biochemical and Biophysical Research Communications, 399(4), 738–743. doi:10.​1016/​j.​bbrc.​2010.​08.​010.PubMed
146.
go back to reference Vanas, V., Muhlbacher, E., Kral, R., & Sutterluty-Fall, H. (2014). Sprouty4 interferes with cell proliferation and migration of breast cancer-derived cell lines. Tumour Biology. doi:10.1007/s13277-013-1587-0.PubMed Vanas, V., Muhlbacher, E., Kral, R., & Sutterluty-Fall, H. (2014). Sprouty4 interferes with cell proliferation and migration of breast cancer-derived cell lines. Tumour Biology. doi:10.​1007/​s13277-013-1587-0.PubMed
147.
go back to reference Kwabi-Addo, B., Ren, C., & Ittmann, M. (2009). DNA methylation and aberrant expression of Sprouty1 in human prostate cancer. [Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S.]. Epigenetics, 4(1), 54–61.PubMed Kwabi-Addo, B., Ren, C., & Ittmann, M. (2009). DNA methylation and aberrant expression of Sprouty1 in human prostate cancer. [Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S.]. Epigenetics, 4(1), 54–61.PubMed
149.
go back to reference Fritzsche, S., Kenzelmann, M., Hoffmann, M. J., Muller, M., Engers, R., Grone, H. J., et al. (2006). Concomitant down-regulation of SPRY1 and SPRY2 in prostate carcinoma. Endocrine-Related Cancer, 13(3), 839–849. doi:10.1677/erc.1.01190.PubMed Fritzsche, S., Kenzelmann, M., Hoffmann, M. J., Muller, M., Engers, R., Grone, H. J., et al. (2006). Concomitant down-regulation of SPRY1 and SPRY2 in prostate carcinoma. Endocrine-Related Cancer, 13(3), 839–849. doi:10.​1677/​erc.​1.​01190.PubMed
150.
151.
go back to reference Di Cristofano, A., Pesce, B., Cordon-Cardo, C., & Pandolfi, P. P. (1998). Pten is essential for embryonic development and tumour suppression. Nature Genetics, 19(4), 348–355. doi:10.1038/1235.PubMed Di Cristofano, A., Pesce, B., Cordon-Cardo, C., & Pandolfi, P. P. (1998). Pten is essential for embryonic development and tumour suppression. Nature Genetics, 19(4), 348–355. doi:10.​1038/​1235.PubMed
153.
go back to reference Harada, N., Miyoshi, H., Murai, N., Oshima, H., Tamai, Y., Oshima, M., et al. (2002). Lack of tumorigenesis in the mouse liver after adenovirus-mediated expression of a dominant stable mutant of beta-catenin. Cancer Research, 62(7), 1971–1977.PubMed Harada, N., Miyoshi, H., Murai, N., Oshima, H., Tamai, Y., Oshima, M., et al. (2002). Lack of tumorigenesis in the mouse liver after adenovirus-mediated expression of a dominant stable mutant of beta-catenin. Cancer Research, 62(7), 1971–1977.PubMed
154.
go back to reference Harada, N., Oshima, H., Katoh, M., Tamai, Y., Oshima, M., & Taketo, M. M. (2004). Hepatocarcinogenesis in mice with beta-catenin and Ha-ras gene mutations. Cancer Research, 64(1), 48–54.PubMed Harada, N., Oshima, H., Katoh, M., Tamai, Y., Oshima, M., & Taketo, M. M. (2004). Hepatocarcinogenesis in mice with beta-catenin and Ha-ras gene mutations. Cancer Research, 64(1), 48–54.PubMed
155.
go back to reference Lee, S. A., Ladu, S., Evert, M., Dombrowski, F., De Murtas, V., Chen, X., et al. (2010). Synergistic role of Sprouty2 inactivation and c-Met up-regulation in mouse and human hepatocarcinogenesis. Hepatology, 52(2), 506–517. doi:10.1002/hep.23681.PubMedCentralPubMed Lee, S. A., Ladu, S., Evert, M., Dombrowski, F., De Murtas, V., Chen, X., et al. (2010). Synergistic role of Sprouty2 inactivation and c-Met up-regulation in mouse and human hepatocarcinogenesis. Hepatology, 52(2), 506–517. doi:10.​1002/​hep.​23681.PubMedCentralPubMed
157.
go back to reference Bren-Mattison, Y., Van Putten, V., Chan, D., Winn, R., Geraci, M. W., & Nemenoff, R. A. (2005). Peroxisome proliferator-activated receptor-gamma (PPAR(gamma)) inhibits tumorigenesis by reversing the undifferentiated phenotype of metastatic non-small-cell lung cancer cells (NSCLC). Oncogene, 24(8), 1412–1422. doi:10.1038/sj.onc.1208333.PubMed Bren-Mattison, Y., Van Putten, V., Chan, D., Winn, R., Geraci, M. W., & Nemenoff, R. A. (2005). Peroxisome proliferator-activated receptor-gamma (PPAR(gamma)) inhibits tumorigenesis by reversing the undifferentiated phenotype of metastatic non-small-cell lung cancer cells (NSCLC). Oncogene, 24(8), 1412–1422. doi:10.​1038/​sj.​onc.​1208333.PubMed
158.
go back to reference Winn, R. A., Van Scoyk, M., Hammond, M., Rodriguez, K., Crossno, J. T., Jr., Heasley, L. E., et al. (2006). Antitumorigenic effect of Wnt 7a and Fzd 9 in non-small cell lung cancer cells is mediated through ERK-5-dependent activation of peroxisome proliferator-activated receptor gamma. Journal of Biological Chemistry, 281(37), 26943–26950. doi:10.1074/jbc.M604145200.PubMed Winn, R. A., Van Scoyk, M., Hammond, M., Rodriguez, K., Crossno, J. T., Jr., Heasley, L. E., et al. (2006). Antitumorigenic effect of Wnt 7a and Fzd 9 in non-small cell lung cancer cells is mediated through ERK-5-dependent activation of peroxisome proliferator-activated receptor gamma. Journal of Biological Chemistry, 281(37), 26943–26950. doi:10.​1074/​jbc.​M604145200.PubMed
159.
go back to reference Rhodes, D. R., Yu, J., Shanker, K., Deshpande, N., Varambally, R., Ghosh, D., et al. (2004). ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia, 6(1), 1–6.PubMedCentralPubMed Rhodes, D. R., Yu, J., Shanker, K., Deshpande, N., Varambally, R., Ghosh, D., et al. (2004). ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia, 6(1), 1–6.PubMedCentralPubMed
160.
go back to reference Watanabe, T., Kobunai, T., Yamamoto, Y., Matsuda, K., Ishihara, S., Nozawa, K., et al. (2011). Differential gene expression signatures between colorectal cancers with and without KRAS mutations: crosstalk between the KRAS pathway and other signalling pathways. European Journal of Cancer, 47(13), 1946–1954. doi:10.1016/j.ejca.2011.03.029.PubMed Watanabe, T., Kobunai, T., Yamamoto, Y., Matsuda, K., Ishihara, S., Nozawa, K., et al. (2011). Differential gene expression signatures between colorectal cancers with and without KRAS mutations: crosstalk between the KRAS pathway and other signalling pathways. European Journal of Cancer, 47(13), 1946–1954. doi:10.​1016/​j.​ejca.​2011.​03.​029.PubMed
162.
go back to reference Thum, T., Gross, C., Fiedler, J., Fischer, T., Kissler, S., Bussen, M., et al. (2008). MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature, 456(7224), 980–984. doi:10.1038/nature07511.PubMed Thum, T., Gross, C., Fiedler, J., Fischer, T., Kissler, S., Bussen, M., et al. (2008). MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature, 456(7224), 980–984. doi:10.​1038/​nature07511.PubMed
163.
go back to reference Huang, Z. P., Chen, J. F., Regan, J. N., Maguire, C. T., Tang, R. H., Dong, X. R., et al. (2010). Loss of microRNAs in neural crest leads to cardiovascular syndromes resembling human congenital heart defects. Arteriosclerosis, Thrombosis, and Vascular Biology, 30(12), 2575–2586. doi:10.1161/atvbaha.110.213306.PubMedCentralPubMed Huang, Z. P., Chen, J. F., Regan, J. N., Maguire, C. T., Tang, R. H., Dong, X. R., et al. (2010). Loss of microRNAs in neural crest leads to cardiovascular syndromes resembling human congenital heart defects. Arteriosclerosis, Thrombosis, and Vascular Biology, 30(12), 2575–2586. doi:10.​1161/​atvbaha.​110.​213306.PubMedCentralPubMed
164.
go back to reference Bloethner, S., Chen, B., Hemminki, K., Muller-Berghaus, J., Ugurel, S., Schadendorf, D., et al. (2005). Effect of common B-RAF and N-RAS mutations on global gene expression in melanoma cell lines. Carcinogenesis, 26(7), 1224–1232. doi:10.1093/carcin/bgi066.PubMed Bloethner, S., Chen, B., Hemminki, K., Muller-Berghaus, J., Ugurel, S., Schadendorf, D., et al. (2005). Effect of common B-RAF and N-RAS mutations on global gene expression in melanoma cell lines. Carcinogenesis, 26(7), 1224–1232. doi:10.​1093/​carcin/​bgi066.PubMed
165.
go back to reference Quigley, D. A., To, M. D., Kim, I. J., Lin, K. K., Albertson, D. G., Sjolund, J., et al. (2011). Network analysis of skin tumor progression identifies a rewired genetic architecture affecting inflammation and tumor susceptibility. Genome Biology, 12(1), R5. doi:10.1186/gb-2011-12-1-r5.PubMedCentralPubMed Quigley, D. A., To, M. D., Kim, I. J., Lin, K. K., Albertson, D. G., Sjolund, J., et al. (2011). Network analysis of skin tumor progression identifies a rewired genetic architecture affecting inflammation and tumor susceptibility. Genome Biology, 12(1), R5. doi:10.​1186/​gb-2011-12-1-r5.PubMedCentralPubMed
166.
go back to reference Mathieu, V., Pirker, C., Schmidt, W. M., Spiegl-Kreinecker, S., Lotsch, D., Heffeter, P., et al. (2012). Aggressiveness of human melanoma xenograft models is promoted by aneuploidy-driven gene expression deregulation. Oncotarget, 3(4), 399–413.PubMedCentralPubMed Mathieu, V., Pirker, C., Schmidt, W. M., Spiegl-Kreinecker, S., Lotsch, D., Heffeter, P., et al. (2012). Aggressiveness of human melanoma xenograft models is promoted by aneuploidy-driven gene expression deregulation. Oncotarget, 3(4), 399–413.PubMedCentralPubMed
167.
go back to reference Baird, K., Davis, S., Antonescu, C. R., Harper, U. L., Walker, R. L., Chen, Y., et al. (2005). Gene expression profiling of human sarcomas: Insights into sarcoma biology. Cancer Research, 65(20), 9226–9235. doi:10.1158/0008-5472.can-05-1699.PubMed Baird, K., Davis, S., Antonescu, C. R., Harper, U. L., Walker, R. L., Chen, Y., et al. (2005). Gene expression profiling of human sarcomas: Insights into sarcoma biology. Cancer Research, 65(20), 9226–9235. doi:10.​1158/​0008-5472.​can-05-1699.PubMed
168.
go back to reference Nielsen, T. O., West, R. B., Linn, S. C., Alter, O., Knowling, M. A., O'Connell, J. X., et al. (2002). Molecular characterisation of soft tissue tumours: a gene expression study. Lancet, 359(9314), 1301–1307. doi:10.1016/s0140-6736(02)08270-3.PubMed Nielsen, T. O., West, R. B., Linn, S. C., Alter, O., Knowling, M. A., O'Connell, J. X., et al. (2002). Molecular characterisation of soft tissue tumours: a gene expression study. Lancet, 359(9314), 1301–1307. doi:10.​1016/​s0140-6736(02)08270-3.PubMed
169.
go back to reference Rathmanner, N., Haigl, B., Vanas, V., Doriguzzi, A., Gsur, A., & Sutterluty-Fall, H. (2013). Sprouty2 but not Sprouty4 is a potent inhibitor of cell proliferation and migration of osteosarcoma cells. FEBS Letters, 587(16), 2597–2605. doi:10.1016/j.febslet.2013.06.040.PubMed Rathmanner, N., Haigl, B., Vanas, V., Doriguzzi, A., Gsur, A., & Sutterluty-Fall, H. (2013). Sprouty2 but not Sprouty4 is a potent inhibitor of cell proliferation and migration of osteosarcoma cells. FEBS Letters, 587(16), 2597–2605. doi:10.​1016/​j.​febslet.​2013.​06.​040.PubMed
170.
go back to reference Holtkamp, N., Mautner, V. F., Friedrich, R. E., Harder, A., Hartmann, C., Theallier-Janko, A., et al. (2004). Differentially expressed genes in neurofibromatosis 1-associated neurofibromas and malignant peripheral nerve sheath tumors. Acta Neuropathologica, 107(2), 159–168. doi:10.1007/s00401-003-0797-8.PubMed Holtkamp, N., Mautner, V. F., Friedrich, R. E., Harder, A., Hartmann, C., Theallier-Janko, A., et al. (2004). Differentially expressed genes in neurofibromatosis 1-associated neurofibromas and malignant peripheral nerve sheath tumors. Acta Neuropathologica, 107(2), 159–168. doi:10.​1007/​s00401-003-0797-8.PubMed
171.
172.
go back to reference Sanchez, A., Setien, F., Martinez, N., Oliva, J. L., Herranz, M., Fraga, M. F., et al. (2008). Epigenetic inactivation of the ERK inhibitor Spry2 in B-cell diffuse lymphomas. Oncogene, 27(36), 4969–4972. doi:10.1038/onc.2008.129.PubMed Sanchez, A., Setien, F., Martinez, N., Oliva, J. L., Herranz, M., Fraga, M. F., et al. (2008). Epigenetic inactivation of the ERK inhibitor Spry2 in B-cell diffuse lymphomas. Oncogene, 27(36), 4969–4972. doi:10.​1038/​onc.​2008.​129.PubMed
173.
go back to reference Macia, A., Vaquero, M., Gou-Fabregas, M., Castelblanco, E., Valdivielso, J. M., Anerillas, C., et al. (2014). Sprouty1 induces a senescence-associated secretory phenotype by regulating NFkappaB activity: implications for tumorigenesis. Cell Death and Differentiation, 21(2), 333–343. doi:10.1038/cdd.2013.161.PubMed Macia, A., Vaquero, M., Gou-Fabregas, M., Castelblanco, E., Valdivielso, J. M., Anerillas, C., et al. (2014). Sprouty1 induces a senescence-associated secretory phenotype by regulating NFkappaB activity: implications for tumorigenesis. Cell Death and Differentiation, 21(2), 333–343. doi:10.​1038/​cdd.​2013.​161.PubMed
174.
go back to reference Polytarchou, C., Iliopoulos, D., Hatziapostolou, M., Kottakis, F., Maroulakou, I., Struhl, K., et al. (2011). Akt2 regulates all Akt isoforms and promotes resistance to hypoxia through induction of miR-21 upon oxygen deprivation. Cancer Research, 71(13), 4720–4731. doi:10.1158/0008-5472.can-11-0365.PubMedCentralPubMed Polytarchou, C., Iliopoulos, D., Hatziapostolou, M., Kottakis, F., Maroulakou, I., Struhl, K., et al. (2011). Akt2 regulates all Akt isoforms and promotes resistance to hypoxia through induction of miR-21 upon oxygen deprivation. Cancer Research, 71(13), 4720–4731. doi:10.​1158/​0008-5472.​can-11-0365.PubMedCentralPubMed
175.
go back to reference Moghaddam, S. M., Amini, A., Wei, A. Q., Pourgholami, M. H., & Morris, D. L. (2012). Initial report on differential expression of sprouty proteins 1 and 2 in human epithelial ovarian cancer cell lines. Journal of Oncology, 2012, 373826. doi:10.1155/2012/373826.PubMedCentralPubMed Moghaddam, S. M., Amini, A., Wei, A. Q., Pourgholami, M. H., & Morris, D. L. (2012). Initial report on differential expression of sprouty proteins 1 and 2 in human epithelial ovarian cancer cell lines. Journal of Oncology, 2012, 373826. doi:10.​1155/​2012/​373826.PubMedCentralPubMed
176.
go back to reference Takahashi, M., Rhodes, D. R., Furge, K. A., Kanayama, H., Kagawa, S., Haab, B. B., et al. (2001). Gene expression profiling of clear cell renal cell carcinoma: gene identification and prognostic classification. [Comparative Study Research Support, Non-U.S. Gov't Validation Studies]. Proceedings of the National Academy of Sciences of the United States of America, 98(17), 9754–9759. doi:10.1073/pnas.171209998.PubMedCentralPubMed Takahashi, M., Rhodes, D. R., Furge, K. A., Kanayama, H., Kagawa, S., Haab, B. B., et al. (2001). Gene expression profiling of clear cell renal cell carcinoma: gene identification and prognostic classification. [Comparative Study Research Support, Non-U.S. Gov't Validation Studies]. Proceedings of the National Academy of Sciences of the United States of America, 98(17), 9754–9759. doi:10.​1073/​pnas.​171209998.PubMedCentralPubMed
Metadata
Title
The developing story of Sprouty and cancer
Authors
Samar Masoumi-Moghaddam
Afshin Amini
David Lawson Morris
Publication date
01-09-2014
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 2-3/2014
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-014-9497-1

Other articles of this Issue 2-3/2014

Cancer and Metastasis Reviews 2-3/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine