Skip to main content
Top
Published in: Cancer and Metastasis Reviews 2-3/2014

01-09-2014

Androgen receptor signaling in prostate cancer

Authors: Zoran Culig, Frédéric R. Santer

Published in: Cancer and Metastasis Reviews | Issue 2-3/2014

Login to get access

Abstract

The androgen receptor (AR), ligand-induced transcription factor, is expressed in primary prostate cancer and in metastases. AR regulates multiple cellular events, proliferation, apoptosis, migration, invasion, and differentiation. Its expression in prostate cancer cells is regulated by steroid and peptide hormones. AR downregulation by various compounds which are contained in fruits and vegetables is considered a chemopreventive strategy for prostate cancer. There is a bidirectional interaction between the AR and micro-RNA (miRNA) in prostate cancer; androgens may upregulate or downregulate the selected miRNA, whereas the AR itself is a target of miRNA. AR mutations have been discovered in prostate cancer, and their incidence may increase with tumor progression. AR mutations and increased expression of selected coactivators contribute to the acquisition of agonistic properties of anti-androgens. Expression of some of the coactivators is enhanced during androgen ablation. AR activity is regulated by peptides such as cytokines or growth factors which reduce the concentration of androgen required for maximal stimulation of the receptor. In prostate cancer, variant ARs which exhibit constitutive activity were detected. Novel therapies which interfere with intracrine synthesis of androgens or inhibit nuclear translocation of the AR have been introduced in the clinic.
Literature
1.
go back to reference van der Kwast, T. H., Schalken, J., Ruizeveld de Winter, J. A., van Vroonhoven, C. C., Mulder, E., Boersma, W., et al. (1991). Androgen receptors in endocrine-therapy-resistant human prostate cancer. International Journal of Cancer, 48, 189–193. van der Kwast, T. H., Schalken, J., Ruizeveld de Winter, J. A., van Vroonhoven, C. C., Mulder, E., Boersma, W., et al. (1991). Androgen receptors in endocrine-therapy-resistant human prostate cancer. International Journal of Cancer, 48, 189–193.
2.
go back to reference Hobisch, A., Culig, Z., Radmayr, C., Bartsch, G., Klocker, H., & Hittmair, A. (1995). Distant metastases from prostatic carcinoma express androgen receptor protein. Cancer Research, 55, 3068–3072.PubMed Hobisch, A., Culig, Z., Radmayr, C., Bartsch, G., Klocker, H., & Hittmair, A. (1995). Distant metastases from prostatic carcinoma express androgen receptor protein. Cancer Research, 55, 3068–3072.PubMed
3.
go back to reference Lu, S., Tsai, S. Y., & Tsai, M. J. (1997). Regulation of androgen-dependent prostatic cancer cell growth: androgen regulation of CDK2, CDK4, and CKI p16 genes. Cancer Research, 57, 4511–4516.PubMed Lu, S., Tsai, S. Y., & Tsai, M. J. (1997). Regulation of androgen-dependent prostatic cancer cell growth: androgen regulation of CDK2, CDK4, and CKI p16 genes. Cancer Research, 57, 4511–4516.PubMed
4.
go back to reference Attardi, B. J., Burgenson, J., Hild, S. A., & Reel, J. R. (2004). Steroid hormonal regulation of growth, prostate specific antigen secretion, and transcription mediated by the mutated androgen receptor in CWR22Rv1 human prostate carcinoma cells. Molecular and Cellular Endocrinology, 222, 121–132.PubMed Attardi, B. J., Burgenson, J., Hild, S. A., & Reel, J. R. (2004). Steroid hormonal regulation of growth, prostate specific antigen secretion, and transcription mediated by the mutated androgen receptor in CWR22Rv1 human prostate carcinoma cells. Molecular and Cellular Endocrinology, 222, 121–132.PubMed
5.
go back to reference Zhao, X. Y., Boyle, B., Krishnan, A. V., Navone, N. M., Peehl, D. M., & Feldman, D. (1999). Two mutations identified in the androgen receptor of the new human prostate cancer cell line MDA PCa 2a. The Journal of Urology, 162, 2192–2199.PubMed Zhao, X. Y., Boyle, B., Krishnan, A. V., Navone, N. M., Peehl, D. M., & Feldman, D. (1999). Two mutations identified in the androgen receptor of the new human prostate cancer cell line MDA PCa 2a. The Journal of Urology, 162, 2192–2199.PubMed
6.
go back to reference Denmeade, S. R., Sokoll, L. J., Dalrymple, S., Rosen, D. M., Gady, A. M., Bruzek, D., et al. (2003). Dissociation between androgen responsiveness for malignant growth vs. expression of prostate specific differentiation markers PSA, hK2, and PSMA in human prostate cancer models. The Prostate, 54, 249–257.PubMed Denmeade, S. R., Sokoll, L. J., Dalrymple, S., Rosen, D. M., Gady, A. M., Bruzek, D., et al. (2003). Dissociation between androgen responsiveness for malignant growth vs. expression of prostate specific differentiation markers PSA, hK2, and PSMA in human prostate cancer models. The Prostate, 54, 249–257.PubMed
7.
go back to reference Heisler, L. E., Evangelou, A., Lew, A. M., Trachtenberg, J., Elsholtz, H. P., & Brown, T. J. (1997). Androgen-dependent cell cycle arrest and apoptotic death in PC-3 prostatic cell cultures expressing a full-length human androgen receptor. Molecular and Cellular Endocrinology, 126, 59–73.PubMed Heisler, L. E., Evangelou, A., Lew, A. M., Trachtenberg, J., Elsholtz, H. P., & Brown, T. J. (1997). Androgen-dependent cell cycle arrest and apoptotic death in PC-3 prostatic cell cultures expressing a full-length human androgen receptor. Molecular and Cellular Endocrinology, 126, 59–73.PubMed
8.
go back to reference Hsieh, T. C., & Wu, J. M. (1999). Differential effects on growth, cell cycle arrest, and induction of apoptosis by resveratrol in human prostate cancer cell lines. Experimental Cell Research, 249, 109–115.PubMed Hsieh, T. C., & Wu, J. M. (1999). Differential effects on growth, cell cycle arrest, and induction of apoptosis by resveratrol in human prostate cancer cell lines. Experimental Cell Research, 249, 109–115.PubMed
9.
go back to reference Kyprianou, N., & Isaacs, J. T. (1989). Expression of transforming growth factor-beta in the rat ventral prostate during castration-induced programmed cell death. Molecular Endocrinology, 3, 1515–1522.PubMed Kyprianou, N., & Isaacs, J. T. (1989). Expression of transforming growth factor-beta in the rat ventral prostate during castration-induced programmed cell death. Molecular Endocrinology, 3, 1515–1522.PubMed
10.
go back to reference Brodin, G., ten Dijke, P., Funa, K., Heldin, C. H., & Landström, M. (1999). Increased smad expression and activation are associated with apoptosis in normal and malignant prostate after castration. Cancer Research, 59, 2731–2738.PubMed Brodin, G., ten Dijke, P., Funa, K., Heldin, C. H., & Landström, M. (1999). Increased smad expression and activation are associated with apoptosis in normal and malignant prostate after castration. Cancer Research, 59, 2731–2738.PubMed
11.
go back to reference Hayes, S. A., Zarnegar, M., Sharma, M., Yang, F., Peehl, D. M., ten Dijke, P., et al. (2001). SMAD3 represses androgen receptor-mediated transcription. Cancer Research, 61, 2112–2118.PubMed Hayes, S. A., Zarnegar, M., Sharma, M., Yang, F., Peehl, D. M., ten Dijke, P., et al. (2001). SMAD3 represses androgen receptor-mediated transcription. Cancer Research, 61, 2112–2118.PubMed
12.
go back to reference Kyprianou, N., & Isaacs, J. T. (1988). Identification of a cellular receptor for transforming growth factor-beta in rat ventral prostate and its negative regulation by androgens. Endocrinology, 123, 2124–2131.PubMed Kyprianou, N., & Isaacs, J. T. (1988). Identification of a cellular receptor for transforming growth factor-beta in rat ventral prostate and its negative regulation by androgens. Endocrinology, 123, 2124–2131.PubMed
13.
go back to reference Eder, I. E., Culig, Z., Ramoner, R., Thurnher, M., Putz, T., Nessler-Menardi, C., et al. (2000). Inhibition of LncaP prostate cancer cells by means of androgen receptor antisense oligonucleotides. Cancer Gene Therapy, 7, 997–1007.PubMed Eder, I. E., Culig, Z., Ramoner, R., Thurnher, M., Putz, T., Nessler-Menardi, C., et al. (2000). Inhibition of LncaP prostate cancer cells by means of androgen receptor antisense oligonucleotides. Cancer Gene Therapy, 7, 997–1007.PubMed
14.
go back to reference Wang, L. G., Ossowski, L., & Ferrari, A. C. (2001). Overexpressed androgen receptor linked to p21WAF1 silencing may be responsible for androgen independence and resistance to apoptosis of a prostate cancer cell line. Cancer Research, 61, 7544–7551.PubMed Wang, L. G., Ossowski, L., & Ferrari, A. C. (2001). Overexpressed androgen receptor linked to p21WAF1 silencing may be responsible for androgen independence and resistance to apoptosis of a prostate cancer cell line. Cancer Research, 61, 7544–7551.PubMed
15.
go back to reference Lin, Y., Lu, Z., Kokontis, J., & Xiang, J. (2013). Androgen receptor primes prostate cancer cells to apoptosis through down-regulation of basal p21 expression. Biochemical and Biophysical Research Communications, 430, 289–293.PubMed Lin, Y., Lu, Z., Kokontis, J., & Xiang, J. (2013). Androgen receptor primes prostate cancer cells to apoptosis through down-regulation of basal p21 expression. Biochemical and Biophysical Research Communications, 430, 289–293.PubMed
16.
go back to reference Rokhlin, O. W., Glover, R. B., Guseva, N. V., Taghiyev, A. F., Kohlgraf, K. G., & Cohen, M. B. (2006). Mechanisms of cell death induced by histone deacetylase inhibitors in androgen receptor-positive prostate cancer cells. Molecular Cancer Research: MCR, 4, 113–123.PubMed Rokhlin, O. W., Glover, R. B., Guseva, N. V., Taghiyev, A. F., Kohlgraf, K. G., & Cohen, M. B. (2006). Mechanisms of cell death induced by histone deacetylase inhibitors in androgen receptor-positive prostate cancer cells. Molecular Cancer Research: MCR, 4, 113–123.PubMed
17.
go back to reference Zoubeidi, A., Zardan, A., Beraldi, E., Fazli, L., Sowery, R., Rennie, P., et al. (2007). Cooperative interactions between androgen receptor (AR) and heat-shock protein 27 facilitate AR transcriptional activity. Cancer Research, 67, 10455–10465.PubMed Zoubeidi, A., Zardan, A., Beraldi, E., Fazli, L., Sowery, R., Rennie, P., et al. (2007). Cooperative interactions between androgen receptor (AR) and heat-shock protein 27 facilitate AR transcriptional activity. Cancer Research, 67, 10455–10465.PubMed
18.
go back to reference Cornforth, A. N., Davis, J. S., Khanifar, E., Nastiuk, K. L., & Krolewski, J. J. (2008). FOXO3a mediates the androgen-dependent regulation of FLIP and contributes to TRAIL-induced apoptosis of LNCaP cells. Oncogene, 27, 4422–4433.PubMed Cornforth, A. N., Davis, J. S., Khanifar, E., Nastiuk, K. L., & Krolewski, J. J. (2008). FOXO3a mediates the androgen-dependent regulation of FLIP and contributes to TRAIL-induced apoptosis of LNCaP cells. Oncogene, 27, 4422–4433.PubMed
19.
go back to reference Lin, H.-K., Hu, Y.-C., Yang, L., Altuwaijri, S., Chen, Y.-T., Kang, H.-Y., et al. (2003). Suppression versus induction of androgen receptor functions by the phosphatidylinositol 3-kinase/Akt pathway in prostate cancer LNCaP cells with different passage numbers. The Journal of Biological Chemistry, 278, 50902–50907.PubMed Lin, H.-K., Hu, Y.-C., Yang, L., Altuwaijri, S., Chen, Y.-T., Kang, H.-Y., et al. (2003). Suppression versus induction of androgen receptor functions by the phosphatidylinositol 3-kinase/Akt pathway in prostate cancer LNCaP cells with different passage numbers. The Journal of Biological Chemistry, 278, 50902–50907.PubMed
20.
go back to reference Wang, Y., Mikhailova, M., Bose, S., Pan, C.-X., deVere White, R. W., & Ghosh, P. M. (2008). Regulation of androgen receptor transcriptional activity by rapamycin in prostate cancer cell proliferation and survival. Oncogene, 27, 7106–7117.PubMedCentralPubMed Wang, Y., Mikhailova, M., Bose, S., Pan, C.-X., deVere White, R. W., & Ghosh, P. M. (2008). Regulation of androgen receptor transcriptional activity by rapamycin in prostate cancer cell proliferation and survival. Oncogene, 27, 7106–7117.PubMedCentralPubMed
21.
go back to reference Ha, S., Ruoff, R., Kahoud, N., Franke, T. F., & Logan, S. K. (2011). Androgen receptor levels are upregulated by Akt in prostate cancer. Endocrine-Related Cancer, 18, 245–255.PubMedCentralPubMed Ha, S., Ruoff, R., Kahoud, N., Franke, T. F., & Logan, S. K. (2011). Androgen receptor levels are upregulated by Akt in prostate cancer. Endocrine-Related Cancer, 18, 245–255.PubMedCentralPubMed
22.
go back to reference Liao, X., Thrasher, J. B., Pelling, J., Holzbeierlein, J., Sang, Q.-X. A., & Li, B. (2003). Androgen stimulates matrix metalloproteinase-2 expression in human prostate cancer. Endocrinology, 144, 1656–1663.PubMed Liao, X., Thrasher, J. B., Pelling, J., Holzbeierlein, J., Sang, Q.-X. A., & Li, B. (2003). Androgen stimulates matrix metalloproteinase-2 expression in human prostate cancer. Endocrinology, 144, 1656–1663.PubMed
23.
go back to reference Chuan, Y.-C., Pang, S.-T., Cedazo-Minguez, A., Norstedt, G., Pousette, A., & Flores-Morales, A. (2006). Androgen induction of prostate cancer cell invasion is mediated by ezrin. The Journal of Biological Chemistry, 281, 29938–29948.PubMed Chuan, Y.-C., Pang, S.-T., Cedazo-Minguez, A., Norstedt, G., Pousette, A., & Flores-Morales, A. (2006). Androgen induction of prostate cancer cell invasion is mediated by ezrin. The Journal of Biological Chemistry, 281, 29938–29948.PubMed
24.
go back to reference Hara, T., Miyazaki, H., Lee, A., Tran, C. P., & Reiter, R. E. (2008). Androgen receptor and invasion in prostate cancer. Cancer Research, 68, 1128–1135.PubMed Hara, T., Miyazaki, H., Lee, A., Tran, C. P., & Reiter, R. E. (2008). Androgen receptor and invasion in prostate cancer. Cancer Research, 68, 1128–1135.PubMed
25.
go back to reference Gohji, K., Fujimoto, N., Hara, I., Fujii, A., Gotoh, A., Okada, H., et al. (1998). Serum matrix metalloproteinase-2 and its density in men with prostate cancer as a new predictor of disease extension. International Journal of Cancer, 79, 96–101. Gohji, K., Fujimoto, N., Hara, I., Fujii, A., Gotoh, A., Okada, H., et al. (1998). Serum matrix metalloproteinase-2 and its density in men with prostate cancer as a new predictor of disease extension. International Journal of Cancer, 79, 96–101.
26.
go back to reference Castoria, G., D’Amato, L., Ciociola, A., Giovannelli, P., Giraldi, T., Sepe, L., et al. (2011). Androgen-induced cell migration: role of androgen receptor/filamin A association. PloS One, 6, e17218.PubMedCentralPubMed Castoria, G., D’Amato, L., Ciociola, A., Giovannelli, P., Giraldi, T., Sepe, L., et al. (2011). Androgen-induced cell migration: role of androgen receptor/filamin A association. PloS One, 6, e17218.PubMedCentralPubMed
27.
go back to reference Gerhardt, J., Montani, M., Wild, P., Beer, M., Huber, F., Hermanns, T., et al. (2012). FOXA1 promotes tumor progression in prostate cancer and represents a novel hallmark of castration-resistant prostate cancer. The American Journal of Pathology, 180, 848–861.PubMed Gerhardt, J., Montani, M., Wild, P., Beer, M., Huber, F., Hermanns, T., et al. (2012). FOXA1 promotes tumor progression in prostate cancer and represents a novel hallmark of castration-resistant prostate cancer. The American Journal of Pathology, 180, 848–861.PubMed
28.
go back to reference Bonaccorsi, L., Carloni, V., Muratori, M., Salvadori, A., Giannini, A., Carini, M., et al. (2000). Androgen receptor expression in prostate carcinoma cells suppresses alpha6beta4 integrin-mediated invasive phenotype. Endocrinology, 141, 3172–3182.PubMed Bonaccorsi, L., Carloni, V., Muratori, M., Salvadori, A., Giannini, A., Carini, M., et al. (2000). Androgen receptor expression in prostate carcinoma cells suppresses alpha6beta4 integrin-mediated invasive phenotype. Endocrinology, 141, 3172–3182.PubMed
29.
go back to reference Zhu, M.-L., Horbinski, C. M., Garzotto, M., Qian, D. Z., Beer, T. M., & Kyprianou, N. (2010). Tubulin-targeting chemotherapy impairs androgen receptor activity in prostate cancer. Cancer Research, 70, 7992–8002.PubMedCentralPubMed Zhu, M.-L., Horbinski, C. M., Garzotto, M., Qian, D. Z., Beer, T. M., & Kyprianou, N. (2010). Tubulin-targeting chemotherapy impairs androgen receptor activity in prostate cancer. Cancer Research, 70, 7992–8002.PubMedCentralPubMed
30.
go back to reference Sun, Y., Wang, B.-E., Leong, K. G., Yue, P., Li, L., Jhunjhunwala, S., et al. (2012). Androgen deprivation causes epithelial-mesenchymal transition in the prostate: implications for androgen-deprivation therapy. Cancer Research, 72, 527–536.PubMed Sun, Y., Wang, B.-E., Leong, K. G., Yue, P., Li, L., Jhunjhunwala, S., et al. (2012). Androgen deprivation causes epithelial-mesenchymal transition in the prostate: implications for androgen-deprivation therapy. Cancer Research, 72, 527–536.PubMed
31.
go back to reference Krongrad, A., Wilson, C. M., Wilson, J. D., Allman, D. R., & McPhaul, M. J. (1991). Androgen increases androgen receptor protein while decreasing receptor mRNA in LNCaP cells. Molecular and Cellular Endocrinology, 76, 79–88.PubMed Krongrad, A., Wilson, C. M., Wilson, J. D., Allman, D. R., & McPhaul, M. J. (1991). Androgen increases androgen receptor protein while decreasing receptor mRNA in LNCaP cells. Molecular and Cellular Endocrinology, 76, 79–88.PubMed
32.
go back to reference Kokontis, J., Takakura, K., Hay, N., & Liao, S. (1994). Increased androgen receptor activity and altered c-myc expression in prostate cancer cells after long-term androgen deprivation. Cancer Research, 54, 1566–1573.PubMed Kokontis, J., Takakura, K., Hay, N., & Liao, S. (1994). Increased androgen receptor activity and altered c-myc expression in prostate cancer cells after long-term androgen deprivation. Cancer Research, 54, 1566–1573.PubMed
33.
go back to reference Culig, Z., Hoffmann, J., Erdel, M., Eder, I. E., Hobisch, A., Hittmair, A., et al. (1999). Switch from antagonist to agonist of the androgen receptor bicalutamide is associated with prostate tumour progression in a new model system. British Journal of Cancer, 81, 242–251.PubMedCentralPubMed Culig, Z., Hoffmann, J., Erdel, M., Eder, I. E., Hobisch, A., Hittmair, A., et al. (1999). Switch from antagonist to agonist of the androgen receptor bicalutamide is associated with prostate tumour progression in a new model system. British Journal of Cancer, 81, 242–251.PubMedCentralPubMed
34.
go back to reference Zegarra-Moro, O. L., Schmidt, L. J., Huang, H., & Tindall, D. J. (2002). Disruption of androgen receptor function inhibits proliferation of androgen-refractory prostate cancer cells. Cancer Research, 62, 1008–1013.PubMed Zegarra-Moro, O. L., Schmidt, L. J., Huang, H., & Tindall, D. J. (2002). Disruption of androgen receptor function inhibits proliferation of androgen-refractory prostate cancer cells. Cancer Research, 62, 1008–1013.PubMed
35.
go back to reference Visakorpi, T., Hyytinen, E., Koivisto, P., Tanner, M., Keinänen, R., Palmberg, C., et al. (1995). In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nature Genetics, 9, 401–406.PubMed Visakorpi, T., Hyytinen, E., Koivisto, P., Tanner, M., Keinänen, R., Palmberg, C., et al. (1995). In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nature Genetics, 9, 401–406.PubMed
36.
go back to reference Mitchell, S. H., Zhu, W., & Young, C. Y. (1999). Resveratrol inhibits the expression and function of the androgen receptor in LNCaP prostate cancer cells. Cancer Research, 59, 5892–5895.PubMed Mitchell, S. H., Zhu, W., & Young, C. Y. (1999). Resveratrol inhibits the expression and function of the androgen receptor in LNCaP prostate cancer cells. Cancer Research, 59, 5892–5895.PubMed
37.
go back to reference Zhu, W., Zhang, J. S., & Young, C. Y. (2001). Silymarin inhibits function of the androgen receptor by reducing nuclear localization of the receptor in the human prostate cancer cell line LNCaP. Carcinogenesis, 22, 1399–1403.PubMed Zhu, W., Zhang, J. S., & Young, C. Y. (2001). Silymarin inhibits function of the androgen receptor by reducing nuclear localization of the receptor in the human prostate cancer cell line LNCaP. Carcinogenesis, 22, 1399–1403.PubMed
38.
go back to reference Neuwirt, H., Arias, M. C., Puhr, M., Hobisch, A., & Culig, Z. (2008). Oligomeric proanthocyanidin complexes (OPC) exert anti-proliferative and pro-apoptotic effects on prostate cancer cells. The Prostate, 68, 1647–1654.PubMed Neuwirt, H., Arias, M. C., Puhr, M., Hobisch, A., & Culig, Z. (2008). Oligomeric proanthocyanidin complexes (OPC) exert anti-proliferative and pro-apoptotic effects on prostate cancer cells. The Prostate, 68, 1647–1654.PubMed
39.
go back to reference Zhao, X. Y., Ly, L. H., Peehl, D. M., & Feldman, D. (1997). 1alpha,25-dihydroxyvitamin D3 actions in LNCaP human prostate cancer cells are androgen-dependent. Endocrinology, 138, 3290–3298.PubMed Zhao, X. Y., Ly, L. H., Peehl, D. M., & Feldman, D. (1997). 1alpha,25-dihydroxyvitamin D3 actions in LNCaP human prostate cancer cells are androgen-dependent. Endocrinology, 138, 3290–3298.PubMed
40.
go back to reference Sadar, M. D., & Gleave, M. E. (2000). Ligand-independent activation of the androgen receptor by the differentiation agent butyrate in human prostate cancer cells. Cancer Research, 60, 5825–5831.PubMed Sadar, M. D., & Gleave, M. E. (2000). Ligand-independent activation of the androgen receptor by the differentiation agent butyrate in human prostate cancer cells. Cancer Research, 60, 5825–5831.PubMed
42.
go back to reference Waltering, K. K., Porkka, K. P., Jalava, S. E., Urbanucci, A., Kohonen, P. J., Latonen, L. M., et al. (2011). Androgen regulation of micro-RNAs in prostate cancer. The Prostate, 71, 604–614.PubMed Waltering, K. K., Porkka, K. P., Jalava, S. E., Urbanucci, A., Kohonen, P. J., Latonen, L. M., et al. (2011). Androgen regulation of micro-RNAs in prostate cancer. The Prostate, 71, 604–614.PubMed
43.
go back to reference Boll, K., Reiche, K., Kasack, K., Mörbt, N., Kretzschmar, A. K., Tomm, J. M., et al. (2013). miR-130a, miR-203 and miR-205 jointly repress key oncogenic pathways and are downregulated in prostate carcinoma. Oncogene, 32, 277–285.PubMed Boll, K., Reiche, K., Kasack, K., Mörbt, N., Kretzschmar, A. K., Tomm, J. M., et al. (2013). miR-130a, miR-203 and miR-205 jointly repress key oncogenic pathways and are downregulated in prostate carcinoma. Oncogene, 32, 277–285.PubMed
44.
go back to reference Sun, T., Wang, Q., Balk, S., Brown, M., Lee, G.-S. M., & Kantoff, P. (2009). The role of microRNA-221 and microRNA-222 in androgen-independent prostate cancer cell lines. Cancer Research, 69, 3356–3363.PubMedCentralPubMed Sun, T., Wang, Q., Balk, S., Brown, M., Lee, G.-S. M., & Kantoff, P. (2009). The role of microRNA-221 and microRNA-222 in androgen-independent prostate cancer cell lines. Cancer Research, 69, 3356–3363.PubMedCentralPubMed
45.
go back to reference Spahn, M., Kneitz, S., Scholz, C.-J., Stenger, N., Rüdiger, T., Ströbel, P., et al. (2010). Expression of microRNA-221 is progressively reduced in aggressive prostate cancer and metastasis and predicts clinical recurrence. International Journal of Cancer, 127, 394–403. Spahn, M., Kneitz, S., Scholz, C.-J., Stenger, N., Rüdiger, T., Ströbel, P., et al. (2010). Expression of microRNA-221 is progressively reduced in aggressive prostate cancer and metastasis and predicts clinical recurrence. International Journal of Cancer, 127, 394–403.
46.
go back to reference Ribas, J., Ni, X., Haffner, M., Wentzel, E. A., Salmasi, A. H., Chowdhury, W. H., et al. (2009). miR-21: an androgen receptor-regulated microRNA that promotes hormone-dependent and hormone-independent prostate cancer growth. Cancer Research, 69, 7165–7169.PubMedCentralPubMed Ribas, J., Ni, X., Haffner, M., Wentzel, E. A., Salmasi, A. H., Chowdhury, W. H., et al. (2009). miR-21: an androgen receptor-regulated microRNA that promotes hormone-dependent and hormone-independent prostate cancer growth. Cancer Research, 69, 7165–7169.PubMedCentralPubMed
47.
go back to reference Cao, P., Deng, Z., Wan, M., Huang, W., Cramer, S. D., Xu, J., et al. (2010). MicroRNA-101 negatively regulates Ezh2 and its expression is modulated by androgen receptor and HIF-1alpha/HIF-1beta. Molecular Cancer, 9, 108.PubMedCentralPubMed Cao, P., Deng, Z., Wan, M., Huang, W., Cramer, S. D., Xu, J., et al. (2010). MicroRNA-101 negatively regulates Ezh2 and its expression is modulated by androgen receptor and HIF-1alpha/HIF-1beta. Molecular Cancer, 9, 108.PubMedCentralPubMed
48.
go back to reference Östling, P., Leivonen, S.-K., Aakula, A., Kohonen, P., Mäkelä, R., Hagman, Z., et al. (2011). Systematic analysis of microRNAs targeting the androgen receptor in prostate cancer cells. Cancer Research, 71, 1956–1967.PubMed Östling, P., Leivonen, S.-K., Aakula, A., Kohonen, P., Mäkelä, R., Hagman, Z., et al. (2011). Systematic analysis of microRNAs targeting the androgen receptor in prostate cancer cells. Cancer Research, 71, 1956–1967.PubMed
49.
go back to reference Rokhlin, O. W., Scheinker, V. S., Taghiyev, A. F., Bumcrot, D., Glover, R. A., & Cohen, M. B. (2008). MicroRNA-34 mediates AR-dependent p53-induced apoptosis in prostate cancer. Cancer Biology & Therapy, 7, 1288–1296. Rokhlin, O. W., Scheinker, V. S., Taghiyev, A. F., Bumcrot, D., Glover, R. A., & Cohen, M. B. (2008). MicroRNA-34 mediates AR-dependent p53-induced apoptosis in prostate cancer. Cancer Biology & Therapy, 7, 1288–1296.
50.
go back to reference Kashat, M., Azzouz, L., Sarkar, S. H., Kong, D., Li, Y., & Sarkar, F. H. (2012). Inactivation of AR and Notch-1 signaling by miR-34a attenuates prostate cancer aggressiveness. American Journal of Translational Research, 4, 432–442.PubMedCentralPubMed Kashat, M., Azzouz, L., Sarkar, S. H., Kong, D., Li, Y., & Sarkar, F. H. (2012). Inactivation of AR and Notch-1 signaling by miR-34a attenuates prostate cancer aggressiveness. American Journal of Translational Research, 4, 432–442.PubMedCentralPubMed
51.
go back to reference Sikand, K., Slaibi, J. E., Singh, R., Slane, S. D., & Shukla, G. C. (2011). miR 488* inhibits androgen receptor expression in prostate carcinoma cells. International Journal of Cancer, 129, 810–819. Sikand, K., Slaibi, J. E., Singh, R., Slane, S. D., & Shukla, G. C. (2011). miR 488* inhibits androgen receptor expression in prostate carcinoma cells. International Journal of Cancer, 129, 810–819.
52.
go back to reference Lin, P.-C., Chiu, Y.-L., Banerjee, S., Park, K., Mosquera, J. M., Giannopoulou, E., et al. (2013). Epigenetic repression of miR-31 disrupts androgen receptor homeostasis and contributes to prostate cancer progression. Cancer Research, 73, 1232–1244.PubMedCentralPubMed Lin, P.-C., Chiu, Y.-L., Banerjee, S., Park, K., Mosquera, J. M., Giannopoulou, E., et al. (2013). Epigenetic repression of miR-31 disrupts androgen receptor homeostasis and contributes to prostate cancer progression. Cancer Research, 73, 1232–1244.PubMedCentralPubMed
53.
go back to reference Nadiminty, N., Tummala, R., Lou, W., Zhu, Y., Zhang, J., Chen, X., et al. (2012). MicroRNA let-7c suppresses androgen receptor expression and activity via regulation of Myc expression in prostate cancer cells. The Journal of Biological Chemistry, 287, 1527–1537.PubMedCentralPubMed Nadiminty, N., Tummala, R., Lou, W., Zhu, Y., Zhang, J., Chen, X., et al. (2012). MicroRNA let-7c suppresses androgen receptor expression and activity via regulation of Myc expression in prostate cancer cells. The Journal of Biological Chemistry, 287, 1527–1537.PubMedCentralPubMed
54.
go back to reference Massard, C., & Fizazi, K. (2011). Targeting continued androgen receptor signaling in prostate cancer. Clinical Cancer Research, 17, 3876–3883.PubMed Massard, C., & Fizazi, K. (2011). Targeting continued androgen receptor signaling in prostate cancer. Clinical Cancer Research, 17, 3876–3883.PubMed
55.
go back to reference Veldscholte, J., Berrevoets, C. A., Brinkmann, A. O., Grootegoed, J. A., & Mulder, E. (1992). Anti-androgens and the mutated androgen receptor of LNCaP cells: differential effects on binding affinity, heat-shock protein interaction, and transcription activation. Biochemistry, 31, 2393–2399.PubMed Veldscholte, J., Berrevoets, C. A., Brinkmann, A. O., Grootegoed, J. A., & Mulder, E. (1992). Anti-androgens and the mutated androgen receptor of LNCaP cells: differential effects on binding affinity, heat-shock protein interaction, and transcription activation. Biochemistry, 31, 2393–2399.PubMed
56.
go back to reference Sun, C., Shi, Y., Xu, L. L., Nageswararao, C., Davis, L. D., Segawa, T., et al. (2006). Androgen receptor mutation (T877A) promotes prostate cancer cell growth and cell survival. Oncogene, 25, 3905–3913.PubMed Sun, C., Shi, Y., Xu, L. L., Nageswararao, C., Davis, L. D., Segawa, T., et al. (2006). Androgen receptor mutation (T877A) promotes prostate cancer cell growth and cell survival. Oncogene, 25, 3905–3913.PubMed
57.
go back to reference Tepper, C. G., Boucher, D. L., Ryan, P. E., Ma, A.-H., Xia, L., Lee, L.-F., et al. (2002). Characterization of a novel androgen receptor mutation in a relapsed CWR22 prostate cancer xenograft and cell line. Cancer Research, 62, 6606–6614.PubMed Tepper, C. G., Boucher, D. L., Ryan, P. E., Ma, A.-H., Xia, L., Lee, L.-F., et al. (2002). Characterization of a novel androgen receptor mutation in a relapsed CWR22 prostate cancer xenograft and cell line. Cancer Research, 62, 6606–6614.PubMed
58.
go back to reference Culig, Z., Hobisch, A., Cronauer, M. V., Cato, A. C., Hittmair, A., Radmayr, C., et al. (1993). Mutant androgen receptor detected in an advanced-stage prostatic carcinoma is activated by adrenal androgens and progesterone. Molecular Endocrinology, 7, 1541–1550.PubMed Culig, Z., Hobisch, A., Cronauer, M. V., Cato, A. C., Hittmair, A., Radmayr, C., et al. (1993). Mutant androgen receptor detected in an advanced-stage prostatic carcinoma is activated by adrenal androgens and progesterone. Molecular Endocrinology, 7, 1541–1550.PubMed
59.
go back to reference Tilley, W. D., Buchanan, G., Hickey, T. E., & Bentel, J. M. (1996). Mutations in the androgen receptor gene are associated with progression of human prostate cancer to androgen independence. Clinical Cancer Research, 2, 277–285.PubMed Tilley, W. D., Buchanan, G., Hickey, T. E., & Bentel, J. M. (1996). Mutations in the androgen receptor gene are associated with progression of human prostate cancer to androgen independence. Clinical Cancer Research, 2, 277–285.PubMed
60.
go back to reference Marcelli, M., Ittmann, M., Mariani, S., Sutherland, R., Nigam, R., Murthy, L., et al. (2000). Androgen receptor mutations in prostate cancer. Cancer Research, 60, 944–949.PubMed Marcelli, M., Ittmann, M., Mariani, S., Sutherland, R., Nigam, R., Murthy, L., et al. (2000). Androgen receptor mutations in prostate cancer. Cancer Research, 60, 944–949.PubMed
61.
go back to reference Taplin, M. E., Bubley, G. J., Shuster, T. D., Frantz, M. E., Spooner, A. E., Ogata, G. K., et al. (1995). Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. The New England Journal of Medicine, 332, 1393–1398.PubMed Taplin, M. E., Bubley, G. J., Shuster, T. D., Frantz, M. E., Spooner, A. E., Ogata, G. K., et al. (1995). Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. The New England Journal of Medicine, 332, 1393–1398.PubMed
62.
go back to reference Taplin, M. E., Bubley, G. J., Ko, Y. J., Small, E. J., Upton, M., Rajeshkumar, B., et al. (1999). Selection for androgen receptor mutations in prostate cancers treated with androgen antagonist. Cancer Research, 59, 2511–2515.PubMed Taplin, M. E., Bubley, G. J., Ko, Y. J., Small, E. J., Upton, M., Rajeshkumar, B., et al. (1999). Selection for androgen receptor mutations in prostate cancers treated with androgen antagonist. Cancer Research, 59, 2511–2515.PubMed
63.
go back to reference Haapala, K., Hyytinen, E. R., Roiha, M., Laurila, M., Rantala, I., Helin, H. J., et al. (2001). Androgen receptor alterations in prostate cancer relapsed during a combined androgen blockade by orchiectomy and bicalutamide. Laboratory Investigation, 81, 1647–1651.PubMed Haapala, K., Hyytinen, E. R., Roiha, M., Laurila, M., Rantala, I., Helin, H. J., et al. (2001). Androgen receptor alterations in prostate cancer relapsed during a combined androgen blockade by orchiectomy and bicalutamide. Laboratory Investigation, 81, 1647–1651.PubMed
64.
go back to reference Hara, T., Miyazaki, J., Araki, H., Yamaoka, M., Kanzaki, N., Kusaka, M., et al. (2003). Novel mutations of androgen receptor: a possible mechanism of bicalutamide withdrawal syndrome. Cancer Research, 63, 149–153.PubMed Hara, T., Miyazaki, J., Araki, H., Yamaoka, M., Kanzaki, N., Kusaka, M., et al. (2003). Novel mutations of androgen receptor: a possible mechanism of bicalutamide withdrawal syndrome. Cancer Research, 63, 149–153.PubMed
65.
go back to reference Yoshida, T., Kinoshita, H., Segawa, T., Nakamura, E., Inoue, T., Shimizu, Y., et al. (2005). Antiandrogen bicalutamide promotes tumor growth in a novel androgen-dependent prostate cancer xenograft model derived from a bicalutamide-treated patient. Cancer Research, 65, 9611–9616.PubMed Yoshida, T., Kinoshita, H., Segawa, T., Nakamura, E., Inoue, T., Shimizu, Y., et al. (2005). Antiandrogen bicalutamide promotes tumor growth in a novel androgen-dependent prostate cancer xenograft model derived from a bicalutamide-treated patient. Cancer Research, 65, 9611–9616.PubMed
66.
go back to reference Hyytinen, E.-R., Haapala, K., Thompson, J., Lappalainen, I., Roiha, M., Rantala, I., et al. (2002). Pattern of somatic androgen receptor gene mutations in patients with hormone-refractory prostate cancer. Laboratory Investigation, 82, 1591–1598.PubMed Hyytinen, E.-R., Haapala, K., Thompson, J., Lappalainen, I., Roiha, M., Rantala, I., et al. (2002). Pattern of somatic androgen receptor gene mutations in patients with hormone-refractory prostate cancer. Laboratory Investigation, 82, 1591–1598.PubMed
67.
go back to reference Peng, Y., Li, C. X., Chen, F., Wang, Z., Ligr, M., Melamed, J., et al. (2008). Stimulation of prostate cancer cellular proliferation and invasion by the androgen receptor co-activator ARA70. The American Journal of Pathology, 172, 225–235.PubMedCentralPubMed Peng, Y., Li, C. X., Chen, F., Wang, Z., Ligr, M., Melamed, J., et al. (2008). Stimulation of prostate cancer cellular proliferation and invasion by the androgen receptor co-activator ARA70. The American Journal of Pathology, 172, 225–235.PubMedCentralPubMed
68.
go back to reference Miyamoto, H., Yeh, S., Wilding, G., & Chang, C. (1998). Promotion of agonist activity of antiandrogens by the androgen receptor coactivator, ARA70, in human prostate cancer DU145 cells. Proceedings of the National Academy of Sciences of the United States of America, 95, 7379–7384.PubMedCentralPubMed Miyamoto, H., Yeh, S., Wilding, G., & Chang, C. (1998). Promotion of agonist activity of antiandrogens by the androgen receptor coactivator, ARA70, in human prostate cancer DU145 cells. Proceedings of the National Academy of Sciences of the United States of America, 95, 7379–7384.PubMedCentralPubMed
69.
go back to reference Miyamoto, H., Yeh, S., Lardy, H., Messing, E., & Chang, C. (1998). Delta5-androstenediol is a natural hormone with androgenic activity in human prostate cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 95, 11083–11088.PubMedCentralPubMed Miyamoto, H., Yeh, S., Lardy, H., Messing, E., & Chang, C. (1998). Delta5-androstenediol is a natural hormone with androgenic activity in human prostate cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 95, 11083–11088.PubMedCentralPubMed
70.
go back to reference Heemers, H. V., Sebo, T. J., Debes, J. D., Regan, K. M., Raclaw, K. A., Murphy, L. M., et al. (2007). Androgen deprivation increases p300 expression in prostate cancer cells. Cancer Research, 67, 3422–3430.PubMed Heemers, H. V., Sebo, T. J., Debes, J. D., Regan, K. M., Raclaw, K. A., Murphy, L. M., et al. (2007). Androgen deprivation increases p300 expression in prostate cancer cells. Cancer Research, 67, 3422–3430.PubMed
71.
go back to reference Comuzzi, B., Nemes, C., Schmidt, S., Jasarevic, Z., Lodde, M., Pycha, A., et al. (2004). The androgen receptor co-activator CBP is up-regulated following androgen withdrawal and is highly expressed in advanced prostate cancer. The Journal of Pathology, 204, 159–166.PubMed Comuzzi, B., Nemes, C., Schmidt, S., Jasarevic, Z., Lodde, M., Pycha, A., et al. (2004). The androgen receptor co-activator CBP is up-regulated following androgen withdrawal and is highly expressed in advanced prostate cancer. The Journal of Pathology, 204, 159–166.PubMed
72.
go back to reference Debes, J. D., Comuzzi, B., Schmidt, L. J., Dehm, S. M., Culig, Z., & Tindall, D. J. (2005). p300 regulates androgen receptor-independent expression of prostate-specific antigen in prostate cancer cells treated chronically with interleukin-6. Cancer Research, 65, 5965–5973.PubMed Debes, J. D., Comuzzi, B., Schmidt, L. J., Dehm, S. M., Culig, Z., & Tindall, D. J. (2005). p300 regulates androgen receptor-independent expression of prostate-specific antigen in prostate cancer cells treated chronically with interleukin-6. Cancer Research, 65, 5965–5973.PubMed
73.
go back to reference Comuzzi, B., Lambrinidis, L., Rogatsch, H., Godoy-Tundidor, S., Knezevic, N., Krhen, I., et al. (2003). The transcriptional co-activator cAMP response element-binding protein-binding protein is expressed in prostate cancer and enhances androgen- and anti-androgen-induced androgen receptor function. The American Journal of Pathology, 162, 233–241.PubMedCentralPubMed Comuzzi, B., Lambrinidis, L., Rogatsch, H., Godoy-Tundidor, S., Knezevic, N., Krhen, I., et al. (2003). The transcriptional co-activator cAMP response element-binding protein-binding protein is expressed in prostate cancer and enhances androgen- and anti-androgen-induced androgen receptor function. The American Journal of Pathology, 162, 233–241.PubMedCentralPubMed
74.
go back to reference Nishimura, K., Ting, H.-J., Harada, Y., Tokizane, T., Nonomura, N., Kang, H.-Y., et al. (2003). Modulation of androgen receptor transactivation by gelsolin: a newly identified androgen receptor coregulator. Cancer Research, 63, 4888–4894.PubMed Nishimura, K., Ting, H.-J., Harada, Y., Tokizane, T., Nonomura, N., Kang, H.-Y., et al. (2003). Modulation of androgen receptor transactivation by gelsolin: a newly identified androgen receptor coregulator. Cancer Research, 63, 4888–4894.PubMed
75.
go back to reference Wang, Y., Kreisberg, J. I., Bedolla, R. G., Mikhailova, M., deVere White, R. W., & Ghosh, P. M. (2007). A 90 kDa fragment of filamin A promotes Casodex-induced growth inhibition in Casodex-resistant androgen receptor positive C4-2 prostate cancer cells. Oncogene, 26, 6061–6070.PubMed Wang, Y., Kreisberg, J. I., Bedolla, R. G., Mikhailova, M., deVere White, R. W., & Ghosh, P. M. (2007). A 90 kDa fragment of filamin A promotes Casodex-induced growth inhibition in Casodex-resistant androgen receptor positive C4-2 prostate cancer cells. Oncogene, 26, 6061–6070.PubMed
76.
go back to reference Santer, F. R., Höschele, P. P. S., Oh, S. J., Erb, H. H. H., Bouchal, J., Cavarretta, I. T., et al. (2011). Inhibition of the acetyltransferases p300 and CBP reveals a targetable function for p300 in the survival and invasion pathways of prostate cancer cell lines. Molecular Cancer Therapeutics, 10, 1644–1655.PubMed Santer, F. R., Höschele, P. P. S., Oh, S. J., Erb, H. H. H., Bouchal, J., Cavarretta, I. T., et al. (2011). Inhibition of the acetyltransferases p300 and CBP reveals a targetable function for p300 in the survival and invasion pathways of prostate cancer cell lines. Molecular Cancer Therapeutics, 10, 1644–1655.PubMed
77.
go back to reference Halkidou, K., Gnanapragasam, V. J., Mehta, P. B., Logan, I. R., Brady, M. E., Cook, S., et al. (2003). Expression of Tip60, an androgen receptor coactivator, and its role in prostate cancer development. Oncogene, 22, 2466–2477.PubMed Halkidou, K., Gnanapragasam, V. J., Mehta, P. B., Logan, I. R., Brady, M. E., Cook, S., et al. (2003). Expression of Tip60, an androgen receptor coactivator, and its role in prostate cancer development. Oncogene, 22, 2466–2477.PubMed
78.
go back to reference Shiota, M., Yokomizo, A., Masubuchi, D., Tada, Y., Inokuchi, J., Eto, M., et al. (2010). Tip60 promotes prostate cancer cell proliferation by translocation of androgen receptor into the nucleus. The Prostate, 70, 540–554.PubMed Shiota, M., Yokomizo, A., Masubuchi, D., Tada, Y., Inokuchi, J., Eto, M., et al. (2010). Tip60 promotes prostate cancer cell proliferation by translocation of androgen receptor into the nucleus. The Prostate, 70, 540–554.PubMed
79.
go back to reference Coffey, K., Blackburn, T. J., Cook, S., Golding, B. T., Griffin, R. J., Hardcastle, I. R., et al. (2012). Characterisation of a Tip60 specific inhibitor, NU9056, in prostate cancer. PloS One, 7, e45539.PubMedCentralPubMed Coffey, K., Blackburn, T. J., Cook, S., Golding, B. T., Griffin, R. J., Hardcastle, I. R., et al. (2012). Characterisation of a Tip60 specific inhibitor, NU9056, in prostate cancer. PloS One, 7, e45539.PubMedCentralPubMed
80.
go back to reference Agoulnik, I. U., Vaid, A., Nakka, M., Alvarado, M., Bingman, W. E., 3rd, Erdem, H., et al. (2006). Androgens modulate expression of transcription intermediary factor 2, an androgen receptor coactivator whose expression level correlates with early biochemical recurrence in prostate cancer. Cancer Research, 66, 10594–10602.PubMed Agoulnik, I. U., Vaid, A., Nakka, M., Alvarado, M., Bingman, W. E., 3rd, Erdem, H., et al. (2006). Androgens modulate expression of transcription intermediary factor 2, an androgen receptor coactivator whose expression level correlates with early biochemical recurrence in prostate cancer. Cancer Research, 66, 10594–10602.PubMed
81.
go back to reference Gregory, C. W., Fei, X., Ponguta, L. A., He, B., Bill, H. M., French, F. S., et al. (2004). Epidermal growth factor increases coactivation of the androgen receptor in recurrent prostate cancer. The Journal of Biological Chemistry, 279, 7119–7130.PubMed Gregory, C. W., Fei, X., Ponguta, L. A., He, B., Bill, H. M., French, F. S., et al. (2004). Epidermal growth factor increases coactivation of the androgen receptor in recurrent prostate cancer. The Journal of Biological Chemistry, 279, 7119–7130.PubMed
82.
go back to reference Feng, S., Tang, Q., Sun, M., Chun, J. Y., Evans, C. P., & Gao, A. C. (2009). Interleukin-6 increases prostate cancer cells resistance to bicalutamide via TIF2. Molecular Cancer Therapeutics, 8, 665–671.PubMedCentralPubMed Feng, S., Tang, Q., Sun, M., Chun, J. Y., Evans, C. P., & Gao, A. C. (2009). Interleukin-6 increases prostate cancer cells resistance to bicalutamide via TIF2. Molecular Cancer Therapeutics, 8, 665–671.PubMedCentralPubMed
83.
go back to reference Froesch, B. A., Takayama, S., & Reed, J. C. (1998). BAG-1 L protein enhances androgen receptor function. The Journal of Biological Chemistry, 273, 11660–11666.PubMed Froesch, B. A., Takayama, S., & Reed, J. C. (1998). BAG-1 L protein enhances androgen receptor function. The Journal of Biological Chemistry, 273, 11660–11666.PubMed
84.
go back to reference Agoulnik, I. U., Vaid, A., Bingman, W. E., 3rd, Erdeme, H., Frolov, A., Smith, C. L., et al. (2005). Role of SRC-1 in the promotion of prostate cancer cell growth and tumor progression. Cancer Research, 65, 7959–7967.PubMed Agoulnik, I. U., Vaid, A., Bingman, W. E., 3rd, Erdeme, H., Frolov, A., Smith, C. L., et al. (2005). Role of SRC-1 in the promotion of prostate cancer cell growth and tumor progression. Cancer Research, 65, 7959–7967.PubMed
85.
go back to reference Ueda, T., Mawji, N. R., Bruchovsky, N., & Sadar, M. D. (2002). Ligand-independent activation of the androgen receptor by interleukin-6 and the role of steroid receptor coactivator-1 in prostate cancer cells. The Journal of Biological Chemistry, 277, 38087–38094.PubMed Ueda, T., Mawji, N. R., Bruchovsky, N., & Sadar, M. D. (2002). Ligand-independent activation of the androgen receptor by interleukin-6 and the role of steroid receptor coactivator-1 in prostate cancer cells. The Journal of Biological Chemistry, 277, 38087–38094.PubMed
86.
go back to reference Gnanapragasam, V. J., Leung, H. Y., Pulimood, A. S., Neal, D. E., & Robson, C. N. (2001). Expression of RAC 3, a steroid hormone receptor co-activator in prostate cancer. British Journal of Cancer, 85, 1928–1936.PubMedCentralPubMed Gnanapragasam, V. J., Leung, H. Y., Pulimood, A. S., Neal, D. E., & Robson, C. N. (2001). Expression of RAC 3, a steroid hormone receptor co-activator in prostate cancer. British Journal of Cancer, 85, 1928–1936.PubMedCentralPubMed
87.
go back to reference Yan, J., Yu, C.-T., Ozen, M., Ittmann, M., Tsai, S. Y., & Tsai, M.-J. (2006). Steroid receptor coactivator-3 and activator protein-1 coordinately regulate the transcription of components of the insulin-like growth factor/AKT signaling pathway. Cancer Research, 66, 11039–11046.PubMed Yan, J., Yu, C.-T., Ozen, M., Ittmann, M., Tsai, S. Y., & Tsai, M.-J. (2006). Steroid receptor coactivator-3 and activator protein-1 coordinately regulate the transcription of components of the insulin-like growth factor/AKT signaling pathway. Cancer Research, 66, 11039–11046.PubMed
88.
go back to reference Tien, J. C.-Y., Liu, Z., Liao, L., Wang, F., Xu, Y., Wu, Y.-L., et al. (2013). The Steroid Receptor Coactivator-3 Is Required for the Development of Castration-resistant Prostate Cancer. Cancer Research. Tien, J. C.-Y., Liu, Z., Liao, L., Wang, F., Xu, Y., Wu, Y.-L., et al. (2013). The Steroid Receptor Coactivator-3 Is Required for the Development of Castration-resistant Prostate Cancer. Cancer Research.
89.
go back to reference Kaulfuss, S., Grzmil, M., Hemmerlein, B., Thelen, P., Schweyer, S., Neesen, J., et al. (2008). Leupaxin, a novel coactivator of the androgen receptor, is expressed in prostate cancer and plays a role in adhesion and invasion of prostate carcinoma cells. Molecular Endocrinology, 22, 1606–1621.PubMed Kaulfuss, S., Grzmil, M., Hemmerlein, B., Thelen, P., Schweyer, S., Neesen, J., et al. (2008). Leupaxin, a novel coactivator of the androgen receptor, is expressed in prostate cancer and plays a role in adhesion and invasion of prostate carcinoma cells. Molecular Endocrinology, 22, 1606–1621.PubMed
90.
go back to reference Dong, Z., Liu, Y., Lu, S., Wang, A., Lee, K., Wang, L.-H., et al. (2006). Vav3 oncogene is overexpressed and regulates cell growth and androgen receptor activity in human prostate cancer. Molecular Endocrinology, 20, 2315–2325.PubMed Dong, Z., Liu, Y., Lu, S., Wang, A., Lee, K., Wang, L.-H., et al. (2006). Vav3 oncogene is overexpressed and regulates cell growth and androgen receptor activity in human prostate cancer. Molecular Endocrinology, 20, 2315–2325.PubMed
91.
go back to reference Liu, Y., Mo, J. Q., Hu, Q., Boivin, G., Levin, L., Lu, S., et al. (2008). Targeted overexpression of vav3 oncogene in prostatic epithelium induces nonbacterial prostatitis and prostate cancer. Cancer Research, 68, 6396–6406.PubMedCentralPubMed Liu, Y., Mo, J. Q., Hu, Q., Boivin, G., Levin, L., Lu, S., et al. (2008). Targeted overexpression of vav3 oncogene in prostatic epithelium induces nonbacterial prostatitis and prostate cancer. Cancer Research, 68, 6396–6406.PubMedCentralPubMed
92.
go back to reference Clark, E. L., Coulson, A., Dalgliesh, C., Rajan, P., Nicol, S. M., Fleming, S., et al. (2008). The RNA helicase p68 is a novel androgen receptor coactivator involved in splicing and is overexpressed in prostate cancer. Cancer Research, 68, 7938–7946.PubMedCentralPubMed Clark, E. L., Coulson, A., Dalgliesh, C., Rajan, P., Nicol, S. M., Fleming, S., et al. (2008). The RNA helicase p68 is a novel androgen receptor coactivator involved in splicing and is overexpressed in prostate cancer. Cancer Research, 68, 7938–7946.PubMedCentralPubMed
93.
go back to reference Shiota, M., Bishop, J. L., Nip, K. M., Zardan, A., Takeuchi, A., Cordonnier, T., et al. (2013). Hsp27 regulates epithelial mesenchymal transition, metastasis, and circulating tumor cells in prostate cancer. Cancer Research, 73, 3109–3119.PubMed Shiota, M., Bishop, J. L., Nip, K. M., Zardan, A., Takeuchi, A., Cordonnier, T., et al. (2013). Hsp27 regulates epithelial mesenchymal transition, metastasis, and circulating tumor cells in prostate cancer. Cancer Research, 73, 3109–3119.PubMed
94.
go back to reference Ni, L., Yang, C.-S., Gioeli, D., Frierson, H., Toft, D. O., & Paschal, B. M. (2010). FKBP51 promotes assembly of the Hsp90 chaperone complex and regulates androgen receptor signaling in prostate cancer cells. Molecular and Cellular Biology, 30, 1243–1253.PubMedCentralPubMed Ni, L., Yang, C.-S., Gioeli, D., Frierson, H., Toft, D. O., & Paschal, B. M. (2010). FKBP51 promotes assembly of the Hsp90 chaperone complex and regulates androgen receptor signaling in prostate cancer cells. Molecular and Cellular Biology, 30, 1243–1253.PubMedCentralPubMed
95.
go back to reference Taneja, S. S., Ha, S., Swenson, N. K., Torra, I. P., Rome, S., Walden, P. D., et al. (2004). ART-27, an androgen receptor coactivator regulated in prostate development and cancer. The Journal of Biological Chemistry, 279, 13944–13952.PubMed Taneja, S. S., Ha, S., Swenson, N. K., Torra, I. P., Rome, S., Walden, P. D., et al. (2004). ART-27, an androgen receptor coactivator regulated in prostate development and cancer. The Journal of Biological Chemistry, 279, 13944–13952.PubMed
96.
go back to reference Lapouge, G., Erdmann, E., Marcias, G., Jagla, M., Monge, A., Kessler, P., et al. (2007). Unexpected paracrine action of prostate cancer cells harboring a new class of androgen receptor mutation–a new paradigm for cooperation among prostate tumor cells. International Journal of Cancer, 121, 1238–1244. Lapouge, G., Erdmann, E., Marcias, G., Jagla, M., Monge, A., Kessler, P., et al. (2007). Unexpected paracrine action of prostate cancer cells harboring a new class of androgen receptor mutation–a new paradigm for cooperation among prostate tumor cells. International Journal of Cancer, 121, 1238–1244.
97.
go back to reference Jagla, M., Fève, M., Kessler, P., Lapouge, G., Erdmann, E., Serra, S., et al. (2007). A splicing variant of the androgen receptor detected in a metastatic prostate cancer exhibits exclusively cytoplasmic actions. Endocrinology, 148, 4334–4343.PubMed Jagla, M., Fève, M., Kessler, P., Lapouge, G., Erdmann, E., Serra, S., et al. (2007). A splicing variant of the androgen receptor detected in a metastatic prostate cancer exhibits exclusively cytoplasmic actions. Endocrinology, 148, 4334–4343.PubMed
98.
go back to reference Dehm, S. M., & Tindall, D. J. (2011). Alternatively spliced androgen receptor variants. Endocrine-Related Cancer, 18, R183–196.PubMedCentralPubMed Dehm, S. M., & Tindall, D. J. (2011). Alternatively spliced androgen receptor variants. Endocrine-Related Cancer, 18, R183–196.PubMedCentralPubMed
99.
go back to reference Guo, Z., Yang, X., Sun, F., Jiang, R., Linn, D. E., Chen, H., et al. (2009). A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth. Cancer Research, 69, 2305–2313.PubMedCentralPubMed Guo, Z., Yang, X., Sun, F., Jiang, R., Linn, D. E., Chen, H., et al. (2009). A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth. Cancer Research, 69, 2305–2313.PubMedCentralPubMed
100.
go back to reference Mediwala, S. N., Sun, H., Szafran, A. T., Hartig, S. M., Sonpavde, G., Hayes, T. G., et al. (2013). The activity of the androgen receptor variant AR-V7 is regulated by FOXO1 in a PTEN-PI3K-AKT-dependent way. The Prostate, 73, 267–277.PubMedCentralPubMed Mediwala, S. N., Sun, H., Szafran, A. T., Hartig, S. M., Sonpavde, G., Hayes, T. G., et al. (2013). The activity of the androgen receptor variant AR-V7 is regulated by FOXO1 in a PTEN-PI3K-AKT-dependent way. The Prostate, 73, 267–277.PubMedCentralPubMed
101.
go back to reference Watson, P. A., Chen, Y. F., Balbas, M. D., Wongvipat, J., Socci, N. D., Viale, A., et al. (2010). Constitutively active androgen receptor splice variants expressed in castration-resistant prostate cancer require full-length androgen receptor. Proceedings of the National Academy of Sciences of the United States of America, 107, 16759–16765.PubMedCentralPubMed Watson, P. A., Chen, Y. F., Balbas, M. D., Wongvipat, J., Socci, N. D., Viale, A., et al. (2010). Constitutively active androgen receptor splice variants expressed in castration-resistant prostate cancer require full-length androgen receptor. Proceedings of the National Academy of Sciences of the United States of America, 107, 16759–16765.PubMedCentralPubMed
102.
go back to reference Hu, R., Lu, C., Mostaghel, E. A., Yegnasubramanian, S., Gurel, M., Tannahill, C., et al. (2012). Distinct transcriptional programs mediated by the ligand-dependent full-length androgen receptor and its splice variants in castration-resistant prostate cancer. Cancer Research, 72, 3457–3462.PubMedCentralPubMed Hu, R., Lu, C., Mostaghel, E. A., Yegnasubramanian, S., Gurel, M., Tannahill, C., et al. (2012). Distinct transcriptional programs mediated by the ligand-dependent full-length androgen receptor and its splice variants in castration-resistant prostate cancer. Cancer Research, 72, 3457–3462.PubMedCentralPubMed
103.
go back to reference Li, Y., Chan, S. C., Brand, L. J., Hwang, T. H., Silverstein, K. A. T., & Dehm, S. M. (2013). Androgen receptor splice variants mediate enzalutamide resistance in castration-resistant prostate cancer cell lines. Cancer Research, 73, 483–489.PubMedCentralPubMed Li, Y., Chan, S. C., Brand, L. J., Hwang, T. H., Silverstein, K. A. T., & Dehm, S. M. (2013). Androgen receptor splice variants mediate enzalutamide resistance in castration-resistant prostate cancer cell lines. Cancer Research, 73, 483–489.PubMedCentralPubMed
104.
go back to reference Mostaghel, E. A., Marck, B. T., Plymate, S. R., Vessella, R. L., Balk, S., Matsumoto, A. M., et al. (2011). Resistance to CYP17A1 inhibition with abiraterone in castration-resistant prostate cancer: induction of steroidogenesis and androgen receptor splice variants. Clinical Cancer Research, 17, 5913–5925.PubMedCentralPubMed Mostaghel, E. A., Marck, B. T., Plymate, S. R., Vessella, R. L., Balk, S., Matsumoto, A. M., et al. (2011). Resistance to CYP17A1 inhibition with abiraterone in castration-resistant prostate cancer: induction of steroidogenesis and androgen receptor splice variants. Clinical Cancer Research, 17, 5913–5925.PubMedCentralPubMed
105.
go back to reference Hörnberg, E., Ylitalo, E. B., Crnalic, S., Antti, H., Stattin, P., Widmark, A., et al. (2011). Expression of androgen receptor splice variants in prostate cancer bone metastases is associated with castration-resistance and short survival. PloS One, 6, e19059.PubMedCentralPubMed Hörnberg, E., Ylitalo, E. B., Crnalic, S., Antti, H., Stattin, P., Widmark, A., et al. (2011). Expression of androgen receptor splice variants in prostate cancer bone metastases is associated with castration-resistance and short survival. PloS One, 6, e19059.PubMedCentralPubMed
106.
go back to reference Culig, Z., Hobisch, A., Cronauer, M. V., Radmayr, C., Trapman, J., Hittmair, A., et al. (1994). Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-I, keratinocyte growth factor, and epidermal growth factor. Cancer Research, 54, 5474–5478.PubMed Culig, Z., Hobisch, A., Cronauer, M. V., Radmayr, C., Trapman, J., Hittmair, A., et al. (1994). Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-I, keratinocyte growth factor, and epidermal growth factor. Cancer Research, 54, 5474–5478.PubMed
107.
go back to reference Liu, Y., Karaca, M., Zhang, Z., Gioeli, D., Earp, H. S., & Whang, Y. E. (2010). Dasatinib inhibits site-specific tyrosine phosphorylation of androgen receptor by Ack1 and Src kinases. Oncogene, 29, 3208–3216.PubMedCentralPubMed Liu, Y., Karaca, M., Zhang, Z., Gioeli, D., Earp, H. S., & Whang, Y. E. (2010). Dasatinib inhibits site-specific tyrosine phosphorylation of androgen receptor by Ack1 and Src kinases. Oncogene, 29, 3208–3216.PubMedCentralPubMed
108.
go back to reference Craft, N., Shostak, Y., Carey, M., & Sawyers, C. L. (1999). A mechanism for hormone-independent prostate cancer through modulation of androgen receptor signaling by the HER-2/neu tyrosine kinase. Nature Medicine, 5, 280–285.PubMed Craft, N., Shostak, Y., Carey, M., & Sawyers, C. L. (1999). A mechanism for hormone-independent prostate cancer through modulation of androgen receptor signaling by the HER-2/neu tyrosine kinase. Nature Medicine, 5, 280–285.PubMed
109.
go back to reference Nazareth, L. V., & Weigel, N. L. (1996). Activation of the human androgen receptor through a protein kinase A signaling pathway. The Journal of Biological Chemistry, 271, 19900–19907.PubMed Nazareth, L. V., & Weigel, N. L. (1996). Activation of the human androgen receptor through a protein kinase A signaling pathway. The Journal of Biological Chemistry, 271, 19900–19907.PubMed
110.
go back to reference Wang, G., Jones, S. J. M., Marra, M. A., & Sadar, M. D. (2006). Identification of genes targeted by the androgen and PKA signaling pathways in prostate cancer cells. Oncogene, 25, 7311–7323.PubMed Wang, G., Jones, S. J. M., Marra, M. A., & Sadar, M. D. (2006). Identification of genes targeted by the androgen and PKA signaling pathways in prostate cancer cells. Oncogene, 25, 7311–7323.PubMed
111.
go back to reference Yuan, T.-C., Veeramani, S., & Lin, M.-F. (2007). Neuroendocrine-like prostate cancer cells: neuroendocrine transdifferentiation of prostate adenocarcinoma cells. Endocrine-Related Cancer, 14, 531–547.PubMed Yuan, T.-C., Veeramani, S., & Lin, M.-F. (2007). Neuroendocrine-like prostate cancer cells: neuroendocrine transdifferentiation of prostate adenocarcinoma cells. Endocrine-Related Cancer, 14, 531–547.PubMed
112.
go back to reference Desai, S. J., Ma, A.-H., Tepper, C. G., Chen, H.-W., & Kung, H.-J. (2006). Inappropriate activation of the androgen receptor by nonsteroids: involvement of the Src kinase pathway and its therapeutic implications. Cancer Research, 66, 10449–10459.PubMed Desai, S. J., Ma, A.-H., Tepper, C. G., Chen, H.-W., & Kung, H.-J. (2006). Inappropriate activation of the androgen receptor by nonsteroids: involvement of the Src kinase pathway and its therapeutic implications. Cancer Research, 66, 10449–10459.PubMed
113.
go back to reference Giri, D., Ozen, M., & Ittmann, M. (2001). Interleukin-6 is an autocrine growth factor in human prostate cancer. The American Journal of Pathology, 159, 2159–2165.PubMedCentralPubMed Giri, D., Ozen, M., & Ittmann, M. (2001). Interleukin-6 is an autocrine growth factor in human prostate cancer. The American Journal of Pathology, 159, 2159–2165.PubMedCentralPubMed
114.
go back to reference Culig, Z., Steiner, H., Bartsch, G., & Hobisch, A. (2005). Interleukin-6 regulation of prostate cancer cell growth. Journal of Cellular Biochemistry, 95, 497–505.PubMed Culig, Z., Steiner, H., Bartsch, G., & Hobisch, A. (2005). Interleukin-6 regulation of prostate cancer cell growth. Journal of Cellular Biochemistry, 95, 497–505.PubMed
115.
go back to reference Jin, R. J., Lho, Y., Connelly, L., Wang, Y., Yu, X., Saint Jean, L., et al. (2008). The nuclear factor-kappaB pathway controls the progression of prostate cancer to androgen-independent growth. Cancer Research, 68, 6762–6769.PubMedCentralPubMed Jin, R. J., Lho, Y., Connelly, L., Wang, Y., Yu, X., Saint Jean, L., et al. (2008). The nuclear factor-kappaB pathway controls the progression of prostate cancer to androgen-independent growth. Cancer Research, 68, 6762–6769.PubMedCentralPubMed
116.
go back to reference Ueda, T., Bruchovsky, N., & Sadar, M. D. (2002). Activation of the androgen receptor N-terminal domain by interleukin-6 via MAPK and STAT3 signal transduction pathways. The Journal of Biological Chemistry, 277, 7076–7085.PubMed Ueda, T., Bruchovsky, N., & Sadar, M. D. (2002). Activation of the androgen receptor N-terminal domain by interleukin-6 via MAPK and STAT3 signal transduction pathways. The Journal of Biological Chemistry, 277, 7076–7085.PubMed
117.
go back to reference Guo, Z., Dai, B., Jiang, T., Xu, K., Xie, Y., Kim, O., et al. (2006). Regulation of androgen receptor activity by tyrosine phosphorylation. Cancer Cell, 10, 309–319.PubMed Guo, Z., Dai, B., Jiang, T., Xu, K., Xie, Y., Kim, O., et al. (2006). Regulation of androgen receptor activity by tyrosine phosphorylation. Cancer Cell, 10, 309–319.PubMed
118.
go back to reference Asim, M., Siddiqui, I. A., Hafeez, B. B., Baniahmad, A., & Mukhtar, H. (2008). Src kinase potentiates androgen receptor transactivation function and invasion of androgen-independent prostate cancer C4-2 cells. Oncogene, 27, 3596–3604.PubMed Asim, M., Siddiqui, I. A., Hafeez, B. B., Baniahmad, A., & Mukhtar, H. (2008). Src kinase potentiates androgen receptor transactivation function and invasion of androgen-independent prostate cancer C4-2 cells. Oncogene, 27, 3596–3604.PubMed
119.
go back to reference Twillie, D. A., Eisenberger, M. A., Carducci, M. A., Hseih, W. S., Kim, W. Y., & Simons, J. W. (1995). Interleukin-6: a candidate mediator of human prostate cancer morbidity. Urology, 45, 542–549.PubMed Twillie, D. A., Eisenberger, M. A., Carducci, M. A., Hseih, W. S., Kim, W. Y., & Simons, J. W. (1995). Interleukin-6: a candidate mediator of human prostate cancer morbidity. Urology, 45, 542–549.PubMed
120.
go back to reference Hobisch, A., Rogatsch, H., Hittmair, A., Fuchs, D., Bartsch, G., Jr., Klocker, H., et al. (2000). Immunohistochemical localization of interleukin-6 and its receptor in benign, premalignant and malignant prostate tissue. The Journal of Pathology, 191, 239–244.PubMed Hobisch, A., Rogatsch, H., Hittmair, A., Fuchs, D., Bartsch, G., Jr., Klocker, H., et al. (2000). Immunohistochemical localization of interleukin-6 and its receptor in benign, premalignant and malignant prostate tissue. The Journal of Pathology, 191, 239–244.PubMed
121.
go back to reference Santer, F. R., Malinowska, K., Culig, Z., & Cavarretta, I. T. (2010). Interleukin-6 trans-signalling differentially regulates proliferation, migration, adhesion and maspin expression in human prostate cancer cells. Endocrine-Related Cancer, 17, 241–253.PubMedCentralPubMed Santer, F. R., Malinowska, K., Culig, Z., & Cavarretta, I. T. (2010). Interleukin-6 trans-signalling differentially regulates proliferation, migration, adhesion and maspin expression in human prostate cancer cells. Endocrine-Related Cancer, 17, 241–253.PubMedCentralPubMed
122.
go back to reference Spiotto, M. T., & Chung, T. D. (2000). STAT3 mediates IL-6-induced neuroendocrine differentiation in prostate cancer cells. The Prostate, 42, 186–195.PubMed Spiotto, M. T., & Chung, T. D. (2000). STAT3 mediates IL-6-induced neuroendocrine differentiation in prostate cancer cells. The Prostate, 42, 186–195.PubMed
123.
go back to reference Malinowska, K., Neuwirt, H., Cavarretta, I. T., Bektic, J., Steiner, H., Dietrich, H., et al. (2009). Interleukin-6 stimulation of growth of prostate cancer in vitro and in vivo through activation of the androgen receptor. Endocrine-Related Cancer, 16, 155–169.PubMed Malinowska, K., Neuwirt, H., Cavarretta, I. T., Bektic, J., Steiner, H., Dietrich, H., et al. (2009). Interleukin-6 stimulation of growth of prostate cancer in vitro and in vivo through activation of the androgen receptor. Endocrine-Related Cancer, 16, 155–169.PubMed
124.
go back to reference Gross, M., Liu, B., Tan, J., French, F. S., Carey, M., & Shuai, K. (2001). Distinct effects of PIAS proteins on androgen-mediated gene activation in prostate cancer cells. Oncogene, 20, 3880–3887.PubMed Gross, M., Liu, B., Tan, J., French, F. S., Carey, M., & Shuai, K. (2001). Distinct effects of PIAS proteins on androgen-mediated gene activation in prostate cancer cells. Oncogene, 20, 3880–3887.PubMed
125.
go back to reference Hoefer, J., Schäfer, G., Klocker, H., Erb, H. H. H., Mills, I. G., Hengst, L., et al. (2012). PIAS1 is increased in human prostate cancer and enhances proliferation through inhibition of p21. The American Journal of Pathology, 180, 2097–2107.PubMed Hoefer, J., Schäfer, G., Klocker, H., Erb, H. H. H., Mills, I. G., Hengst, L., et al. (2012). PIAS1 is increased in human prostate cancer and enhances proliferation through inhibition of p21. The American Journal of Pathology, 180, 2097–2107.PubMed
126.
go back to reference Chun, J. Y., Nadiminty, N., Dutt, S., Lou, W., Yang, J. C., Kung, H.-J., et al. (2009). Interleukin-6 regulates androgen synthesis in prostate cancer cells. Clinical Cancer Research, 15, 4815–4822.PubMedCentralPubMed Chun, J. Y., Nadiminty, N., Dutt, S., Lou, W., Yang, J. C., Kung, H.-J., et al. (2009). Interleukin-6 regulates androgen synthesis in prostate cancer cells. Clinical Cancer Research, 15, 4815–4822.PubMedCentralPubMed
127.
go back to reference Smith, P. C., & Keller, E. T. (2001). Anti-interleukin-6 monoclonal antibody induces regression of human prostate cancer xenografts in nude mice. The Prostate, 48, 47–53.PubMed Smith, P. C., & Keller, E. T. (2001). Anti-interleukin-6 monoclonal antibody induces regression of human prostate cancer xenografts in nude mice. The Prostate, 48, 47–53.PubMed
128.
go back to reference Wallner, L., Dai, J., Escara-Wilke, J., Zhang, J., Yao, Z., Lu, Y., et al. (2006). Inhibition of interleukin-6 with CNTO328, an anti-interleukin-6 monoclonal antibody, inhibits conversion of androgen-dependent prostate cancer to an androgen-independent phenotype in orchiectomized mice. Cancer Research, 66, 3087–3095.PubMed Wallner, L., Dai, J., Escara-Wilke, J., Zhang, J., Yao, Z., Lu, Y., et al. (2006). Inhibition of interleukin-6 with CNTO328, an anti-interleukin-6 monoclonal antibody, inhibits conversion of androgen-dependent prostate cancer to an androgen-independent phenotype in orchiectomized mice. Cancer Research, 66, 3087–3095.PubMed
129.
go back to reference Karkera, J., Steiner, H., Li, W., Skradski, V., Moser, P. L., Riethdorf, S., et al. (2011). The anti-interleukin-6 antibody siltuximab down-regulates genes implicated in tumorigenesis in prostate cancer patients from a phase I study. The Prostate, 71, 1455–1465.PubMed Karkera, J., Steiner, H., Li, W., Skradski, V., Moser, P. L., Riethdorf, S., et al. (2011). The anti-interleukin-6 antibody siltuximab down-regulates genes implicated in tumorigenesis in prostate cancer patients from a phase I study. The Prostate, 71, 1455–1465.PubMed
130.
go back to reference Kreisberg, J. I., Malik, S. N., Prihoda, T. J., Bedolla, R. G., Troyer, D. A., Kreisberg, S., et al. (2004). Phosphorylation of Akt (Ser473) is an excellent predictor of poor clinical outcome in prostate cancer. Cancer Research, 64, 5232–5236.PubMed Kreisberg, J. I., Malik, S. N., Prihoda, T. J., Bedolla, R. G., Troyer, D. A., Kreisberg, S., et al. (2004). Phosphorylation of Akt (Ser473) is an excellent predictor of poor clinical outcome in prostate cancer. Cancer Research, 64, 5232–5236.PubMed
131.
go back to reference Bakin, R. E., Gioeli, D., Sikes, R. A., Bissonette, E. A., & Weber, M. J. (2003). Constitutive activation of the Ras/mitogen-activated protein kinase signaling pathway promotes androgen hypersensitivity in LNCaP prostate cancer cells. Cancer Research, 63, 1981–1989.PubMed Bakin, R. E., Gioeli, D., Sikes, R. A., Bissonette, E. A., & Weber, M. J. (2003). Constitutive activation of the Ras/mitogen-activated protein kinase signaling pathway promotes androgen hypersensitivity in LNCaP prostate cancer cells. Cancer Research, 63, 1981–1989.PubMed
132.
go back to reference Shu, S.-K., Liu, Q., Coppola, D., & Cheng, J. Q. (2010). Phosphorylation and activation of androgen receptor by Aurora-A. The Journal of Biological Chemistry, 285, 33045–33053.PubMedCentralPubMed Shu, S.-K., Liu, Q., Coppola, D., & Cheng, J. Q. (2010). Phosphorylation and activation of androgen receptor by Aurora-A. The Journal of Biological Chemistry, 285, 33045–33053.PubMedCentralPubMed
133.
go back to reference Mahajan, K., Challa, S., Coppola, D., Lawrence, H., Luo, Y., Gevariya, H., et al. (2010). Effect of Ack1 tyrosine kinase inhibitor on ligand-independent androgen receptor activity. The Prostate, 70, 1274–1285.PubMedCentralPubMed Mahajan, K., Challa, S., Coppola, D., Lawrence, H., Luo, Y., Gevariya, H., et al. (2010). Effect of Ack1 tyrosine kinase inhibitor on ligand-independent androgen receptor activity. The Prostate, 70, 1274–1285.PubMedCentralPubMed
134.
go back to reference Seaton, A., Scullin, P., Maxwell, P. J., Wilson, C., Pettigrew, J., Gallagher, R., et al. (2008). Interleukin-8 signaling promotes androgen-independent proliferation of prostate cancer cells via induction of androgen receptor expression and activation. Carcinogenesis, 29, 1148–1156.PubMed Seaton, A., Scullin, P., Maxwell, P. J., Wilson, C., Pettigrew, J., Gallagher, R., et al. (2008). Interleukin-8 signaling promotes androgen-independent proliferation of prostate cancer cells via induction of androgen receptor expression and activation. Carcinogenesis, 29, 1148–1156.PubMed
135.
go back to reference Lee, S. O., Lou, W., Hou, M., Onate, S. A., & Gao, A. C. (2003). Interleukin-4 enhances prostate-specific antigen expression by activation of the androgen receptor and Akt pathway. Oncogene, 22, 7981–7988.PubMed Lee, S. O., Lou, W., Hou, M., Onate, S. A., & Gao, A. C. (2003). Interleukin-4 enhances prostate-specific antigen expression by activation of the androgen receptor and Akt pathway. Oncogene, 22, 7981–7988.PubMed
136.
go back to reference Korenman, S. G., & Lipsett, M. B. (1965). Direct peripheral conversion of dehydroepiandrosterone to testosterone glucuronoside. Steroids, 5, 509–517. Korenman, S. G., & Lipsett, M. B. (1965). Direct peripheral conversion of dehydroepiandrosterone to testosterone glucuronoside. Steroids, 5, 509–517.
137.
go back to reference Locke, J. A., Guns, E. S., Lubik, A. A., Adomat, H. H., Hendy, S. C., Wood, C. A., et al. (2008). Androgen levels increase by intratumoral de novo steroidogenesis during progression of castration-resistant prostate cancer. Cancer Research, 68, 6407–6415.PubMed Locke, J. A., Guns, E. S., Lubik, A. A., Adomat, H. H., Hendy, S. C., Wood, C. A., et al. (2008). Androgen levels increase by intratumoral de novo steroidogenesis during progression of castration-resistant prostate cancer. Cancer Research, 68, 6407–6415.PubMed
138.
go back to reference Barrie, S. E., Potter, G. A., Goddard, P. M., Haynes, B. P., Dowsett, M., & Jarman, M. (1994). Pharmacology of novel steroidal inhibitors of cytochrome P450(17) alpha (17 alpha-hydroxylase/C17-20 lyase). The Journal of Steroid Biochemistry and Molecular Biology, 50, 267–273.PubMed Barrie, S. E., Potter, G. A., Goddard, P. M., Haynes, B. P., Dowsett, M., & Jarman, M. (1994). Pharmacology of novel steroidal inhibitors of cytochrome P450(17) alpha (17 alpha-hydroxylase/C17-20 lyase). The Journal of Steroid Biochemistry and Molecular Biology, 50, 267–273.PubMed
139.
go back to reference Attard, G., Reid, A. H. M., Yap, T. A., Raynaud, F., Dowsett, M., Settatree, S., et al. (2008). Phase I clinical trial of a selective inhibitor of CYP17, abiraterone acetate, confirms that castration-resistant prostate cancer commonly remains hormone driven. Journal of Clinical Oncology, 26, 4563–4571.PubMed Attard, G., Reid, A. H. M., Yap, T. A., Raynaud, F., Dowsett, M., Settatree, S., et al. (2008). Phase I clinical trial of a selective inhibitor of CYP17, abiraterone acetate, confirms that castration-resistant prostate cancer commonly remains hormone driven. Journal of Clinical Oncology, 26, 4563–4571.PubMed
140.
go back to reference Danila, D. C., Morris, M. J., de Bono, J. S., Ryan, C. J., Denmeade, S. R., Smith, M. R., et al. (2010). Phase II multicenter study of abiraterone acetate plus prednisone therapy in patients with docetaxel-treated castration-resistant prostate cancer. Journal of Clinical Oncology, 28, 1496–1501.PubMedCentralPubMed Danila, D. C., Morris, M. J., de Bono, J. S., Ryan, C. J., Denmeade, S. R., Smith, M. R., et al. (2010). Phase II multicenter study of abiraterone acetate plus prednisone therapy in patients with docetaxel-treated castration-resistant prostate cancer. Journal of Clinical Oncology, 28, 1496–1501.PubMedCentralPubMed
141.
go back to reference Fizazi, K., Scher, H. I., Molina, A., Logothetis, C. J., Chi, K. N., Jones, R. J., et al. (2012). Abiraterone acetate for treatment of metastatic castration-resistant prostate cancer: final overall survival analysis of the COU-AA-301 randomised, double-blind, placebo-controlled phase 3 study. The Lancet Oncology, 13, 983–992.PubMed Fizazi, K., Scher, H. I., Molina, A., Logothetis, C. J., Chi, K. N., Jones, R. J., et al. (2012). Abiraterone acetate for treatment of metastatic castration-resistant prostate cancer: final overall survival analysis of the COU-AA-301 randomised, double-blind, placebo-controlled phase 3 study. The Lancet Oncology, 13, 983–992.PubMed
142.
go back to reference Ryan, C. J., Smith, M. R., de Bono, J. S., Molina, A., Logothetis, C. J., de Souza, P., et al. (2013). Abiraterone in metastatic prostate cancer without previous chemotherapy. The New England Journal of Medicine, 368, 138–148.PubMedCentralPubMed Ryan, C. J., Smith, M. R., de Bono, J. S., Molina, A., Logothetis, C. J., de Souza, P., et al. (2013). Abiraterone in metastatic prostate cancer without previous chemotherapy. The New England Journal of Medicine, 368, 138–148.PubMedCentralPubMed
143.
go back to reference Cai, C., Chen, S., Ng, P., Bubley, G. J., Nelson, P. S., Mostaghel, E. A., et al. (2011). Intratumoral de novo steroid synthesis activates androgen receptor in castration-resistant prostate cancer and is upregulated by treatment with CYP17A1 inhibitors. Cancer Research, 71, 6503–6513.PubMedCentralPubMed Cai, C., Chen, S., Ng, P., Bubley, G. J., Nelson, P. S., Mostaghel, E. A., et al. (2011). Intratumoral de novo steroid synthesis activates androgen receptor in castration-resistant prostate cancer and is upregulated by treatment with CYP17A1 inhibitors. Cancer Research, 71, 6503–6513.PubMedCentralPubMed
144.
go back to reference Veldscholte, J., Ris-Stalpers, C., Kuiper, G. G., Jenster, G., Berrevoets, C., Claassen, E., et al. (1990). A mutation in the ligand binding domain of the androgen receptor of human LNCaP cells affects steroid binding characteristics and response to anti-androgens. Biochemical and Biophysical Research Communications, 173, 534–540.PubMed Veldscholte, J., Ris-Stalpers, C., Kuiper, G. G., Jenster, G., Berrevoets, C., Claassen, E., et al. (1990). A mutation in the ligand binding domain of the androgen receptor of human LNCaP cells affects steroid binding characteristics and response to anti-androgens. Biochemical and Biophysical Research Communications, 173, 534–540.PubMed
145.
go back to reference Tran, C., Ouk, S., Clegg, N. J., Chen, Y., Watson, P. A., Arora, V., et al. (2009). Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science, 324, 787–790.PubMedCentralPubMed Tran, C., Ouk, S., Clegg, N. J., Chen, Y., Watson, P. A., Arora, V., et al. (2009). Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science, 324, 787–790.PubMedCentralPubMed
146.
go back to reference Scher, H. I., Fizazi, K., Saad, F., Taplin, M.-E., Sternberg, C. N., Miller, K., et al. (2012). Increased survival with enzalutamide in prostate cancer after chemotherapy. The New England Journal of Medicine, 367, 1187–1197.PubMed Scher, H. I., Fizazi, K., Saad, F., Taplin, M.-E., Sternberg, C. N., Miller, K., et al. (2012). Increased survival with enzalutamide in prostate cancer after chemotherapy. The New England Journal of Medicine, 367, 1187–1197.PubMed
147.
go back to reference Scher, H. I., Beer, T. M., Higano, C. S., Anand, A., Taplin, M.-E., Efstathiou, E., et al. (2010). Antitumour activity of MDV3100 in castration-resistant prostate cancer: a phase 1-2 study. Lancet, 375, 1437–1446.PubMedCentralPubMed Scher, H. I., Beer, T. M., Higano, C. S., Anand, A., Taplin, M.-E., Efstathiou, E., et al. (2010). Antitumour activity of MDV3100 in castration-resistant prostate cancer: a phase 1-2 study. Lancet, 375, 1437–1446.PubMedCentralPubMed
148.
go back to reference Loriot, Y., Bianchini, D., Ileana, E., Sandhu, S., Patrikidou, A., Pezaro, C., et al. (2013). Antitumour activity of abiraterone acetate against metastatic castration-resistant prostate cancer progressing after docetaxel and enzalutamide (MDV3100). Annals of Oncology. Loriot, Y., Bianchini, D., Ileana, E., Sandhu, S., Patrikidou, A., Pezaro, C., et al. (2013). Antitumour activity of abiraterone acetate against metastatic castration-resistant prostate cancer progressing after docetaxel and enzalutamide (MDV3100). Annals of Oncology.
149.
go back to reference Handratta, V. D., Vasaitis, T. S., Njar, V. C. O., Gediya, L. K., Kataria, R., Chopra, P., et al. (2005). Novel C-17-heteroaryl steroidal CYP17 inhibitors/antiandrogens: synthesis, in vitro biological activity, pharmacokinetics, and antitumor activity in the LAPC4 human prostate cancer xenograft model. Journal of Medicinal Chemistry, 48, 2972–2984.PubMed Handratta, V. D., Vasaitis, T. S., Njar, V. C. O., Gediya, L. K., Kataria, R., Chopra, P., et al. (2005). Novel C-17-heteroaryl steroidal CYP17 inhibitors/antiandrogens: synthesis, in vitro biological activity, pharmacokinetics, and antitumor activity in the LAPC4 human prostate cancer xenograft model. Journal of Medicinal Chemistry, 48, 2972–2984.PubMed
150.
go back to reference Vasaitis, T., Belosay, A., Schayowitz, A., Khandelwal, A., Chopra, P., Gediya, L. K., et al. (2008). Androgen receptor inactivation contributes to antitumor efficacy of 17{alpha}-hydroxylase/17,20-lyase inhibitor 3beta-hydroxy-17-(1H-benzimidazole-1-yl)androsta-5,16-diene in prostate cancer. Molecular Cancer Therapeutics, 7, 2348–2357.PubMedCentralPubMed Vasaitis, T., Belosay, A., Schayowitz, A., Khandelwal, A., Chopra, P., Gediya, L. K., et al. (2008). Androgen receptor inactivation contributes to antitumor efficacy of 17{alpha}-hydroxylase/17,20-lyase inhibitor 3beta-hydroxy-17-(1H-benzimidazole-1-yl)androsta-5,16-diene in prostate cancer. Molecular Cancer Therapeutics, 7, 2348–2357.PubMedCentralPubMed
151.
go back to reference Clegg, N. J., Wongvipat, J., Joseph, J. D., Tran, C., Ouk, S., Dilhas, A., et al. (2012). ARN-509: a novel antiandrogen for prostate cancer treatment. Cancer Research, 72, 1494–1503.PubMedCentralPubMed Clegg, N. J., Wongvipat, J., Joseph, J. D., Tran, C., Ouk, S., Dilhas, A., et al. (2012). ARN-509: a novel antiandrogen for prostate cancer treatment. Cancer Research, 72, 1494–1503.PubMedCentralPubMed
152.
go back to reference Attar, R. M., Jure-Kunkel, M., Balog, A., Cvijic, M. E., Dell-John, J., Rizzo, C. A., et al. (2009). Discovery of BMS-641988, a novel and potent inhibitor of androgen receptor signaling for the treatment of prostate cancer. Cancer Research, 69, 6522–6530.PubMed Attar, R. M., Jure-Kunkel, M., Balog, A., Cvijic, M. E., Dell-John, J., Rizzo, C. A., et al. (2009). Discovery of BMS-641988, a novel and potent inhibitor of androgen receptor signaling for the treatment of prostate cancer. Cancer Research, 69, 6522–6530.PubMed
153.
go back to reference Rathkopf, D., Liu, G., Carducci, M. A., Eisenberger, M. A., Anand, A., Morris, M. J., et al. (2011). Phase I dose-escalation study of the novel antiandrogen BMS-641988 in patients with castration-resistant prostate cancer. Clinical Cancer Research, 17, 880–887.PubMedCentralPubMed Rathkopf, D., Liu, G., Carducci, M. A., Eisenberger, M. A., Anand, A., Morris, M. J., et al. (2011). Phase I dose-escalation study of the novel antiandrogen BMS-641988 in patients with castration-resistant prostate cancer. Clinical Cancer Research, 17, 880–887.PubMedCentralPubMed
154.
go back to reference Kaku, T., Hitaka, T., Ojida, A., Matsunaga, N., Adachi, M., Tanaka, T., et al. (2011). Discovery of orteronel (TAK-700), a naphthylmethylimidazole derivative, as a highly selective 17,20-lyase inhibitor with potential utility in the treatment of prostate cancer. Bioorganic & Medicinal Chemistry, 19, 6383–6399. Kaku, T., Hitaka, T., Ojida, A., Matsunaga, N., Adachi, M., Tanaka, T., et al. (2011). Discovery of orteronel (TAK-700), a naphthylmethylimidazole derivative, as a highly selective 17,20-lyase inhibitor with potential utility in the treatment of prostate cancer. Bioorganic & Medicinal Chemistry, 19, 6383–6399.
155.
go back to reference Yamaoka, M., Hara, T., Hitaka, T., Kaku, T., Takeuchi, T., Takahashi, J., et al. (2012). Orteronel (TAK-700), a novel non-steroidal 17,20-lyase inhibitor: effects on steroid synthesis in human and monkey adrenal cells and serum steroid levels in cynomolgus monkeys. The Journal of Steroid Biochemistry and Molecular Biology, 129, 115–128.PubMed Yamaoka, M., Hara, T., Hitaka, T., Kaku, T., Takeuchi, T., Takahashi, J., et al. (2012). Orteronel (TAK-700), a novel non-steroidal 17,20-lyase inhibitor: effects on steroid synthesis in human and monkey adrenal cells and serum steroid levels in cynomolgus monkeys. The Journal of Steroid Biochemistry and Molecular Biology, 129, 115–128.PubMed
156.
go back to reference Hara, T., Kouno, J., Kaku, T., Takeuchi, T., Kusaka, M., Tasaka, A., et al. (2013). Effect of a novel 17,20-lyase inhibitor, orteronel (TAK-700), on androgen synthesis in male rats. The Journal of Steroid Biochemistry and Molecular Biology, 134, 80–91.PubMed Hara, T., Kouno, J., Kaku, T., Takeuchi, T., Kusaka, M., Tasaka, A., et al. (2013). Effect of a novel 17,20-lyase inhibitor, orteronel (TAK-700), on androgen synthesis in male rats. The Journal of Steroid Biochemistry and Molecular Biology, 134, 80–91.PubMed
157.
go back to reference Andersen, R. J., Mawji, N. R., Wang, J., Wang, G., Haile, S., Myung, J.-K., et al. (2010). Regression of castrate-recurrent prostate cancer by a small-molecule inhibitor of the amino-terminus domain of the androgen receptor. Cancer Cell, 17, 535–546.PubMed Andersen, R. J., Mawji, N. R., Wang, J., Wang, G., Haile, S., Myung, J.-K., et al. (2010). Regression of castrate-recurrent prostate cancer by a small-molecule inhibitor of the amino-terminus domain of the androgen receptor. Cancer Cell, 17, 535–546.PubMed
158.
go back to reference Jenster, G., van der Korput, H. A. G. M., van Vroonhoven, C., van der Kwast, T. H., Trapman, J., & Brinkmann, A. O. (1991). Domains of the human androgen receptor involved in steroid binding, transcriptional activation, and subcellular localization. Molecular Endocrinology, 5, 1396–1404.PubMed Jenster, G., van der Korput, H. A. G. M., van Vroonhoven, C., van der Kwast, T. H., Trapman, J., & Brinkmann, A. O. (1991). Domains of the human androgen receptor involved in steroid binding, transcriptional activation, and subcellular localization. Molecular Endocrinology, 5, 1396–1404.PubMed
159.
go back to reference Fang, Y., Fliss, A. E., Robins, D. M., & Caplan, A. J. (1996). Hsp90 regulates androgen receptor hormone binding affinity in vivo. The Journal of Biological Chemistry, 271, 28697–28702.PubMed Fang, Y., Fliss, A. E., Robins, D. M., & Caplan, A. J. (1996). Hsp90 regulates androgen receptor hormone binding affinity in vivo. The Journal of Biological Chemistry, 271, 28697–28702.PubMed
160.
go back to reference Vanaja, D. K., Mitchell, S. H., Toft, D. O., & Young, C. Y. F. (2002). Effect of geldanamycin on androgen receptor function and stability. Cell Stress & Chaperones, 7, 55–64. Vanaja, D. K., Mitchell, S. H., Toft, D. O., & Young, C. Y. F. (2002). Effect of geldanamycin on androgen receptor function and stability. Cell Stress & Chaperones, 7, 55–64.
161.
go back to reference Heath, E. I., Hillman, D. W., Vaishampayan, U., Sheng, S., Sarkar, F., Harper, F., et al. (2008). A phase II trial of 17-allylamino-17-demethoxygeldanamycin in patients with hormone-refractory metastatic prostate cancer. Clinical Cancer Research, 14, 7940–7946.PubMedCentralPubMed Heath, E. I., Hillman, D. W., Vaishampayan, U., Sheng, S., Sarkar, F., Harper, F., et al. (2008). A phase II trial of 17-allylamino-17-demethoxygeldanamycin in patients with hormone-refractory metastatic prostate cancer. Clinical Cancer Research, 14, 7940–7946.PubMedCentralPubMed
162.
go back to reference Oh, W. K., Galsky, M. D., Stadler, W. M., Srinivas, S., Chu, F., Bubley, G., et al. (2011). Multicenter phase II trial of the heat shock protein 90 inhibitor, retaspimycin hydrochloride (ipi-504), in patients with castration-resistant prostate cancer. Urology, 78, 626–630.PubMedCentralPubMed Oh, W. K., Galsky, M. D., Stadler, W. M., Srinivas, S., Chu, F., Bubley, G., et al. (2011). Multicenter phase II trial of the heat shock protein 90 inhibitor, retaspimycin hydrochloride (ipi-504), in patients with castration-resistant prostate cancer. Urology, 78, 626–630.PubMedCentralPubMed
163.
go back to reference Shafi, A. A., Cox, M. B., & Weigel, N. L. (2013). Androgen receptor splice variants are resistant to inhibitors of Hsp90 and FKBP52, which alter androgen receptor activity and expression. Steroids, 78, 548–554.PubMedCentralPubMed Shafi, A. A., Cox, M. B., & Weigel, N. L. (2013). Androgen receptor splice variants are resistant to inhibitors of Hsp90 and FKBP52, which alter androgen receptor activity and expression. Steroids, 78, 548–554.PubMedCentralPubMed
164.
go back to reference He, S., Zhang, C., Shafi, A. A., Sequeira, M., Acquaviva, J., Friedland, J. C., et al. (2013). Potent activity of the Hsp90 inhibitor ganetespib in prostate cancer cells irrespective of androgen receptor status or variant receptor expression. International Journal of Oncology, 42, 35–43.PubMedCentralPubMed He, S., Zhang, C., Shafi, A. A., Sequeira, M., Acquaviva, J., Friedland, J. C., et al. (2013). Potent activity of the Hsp90 inhibitor ganetespib in prostate cancer cells irrespective of androgen receptor status or variant receptor expression. International Journal of Oncology, 42, 35–43.PubMedCentralPubMed
165.
go back to reference Chou, Y.-W., Chaturvedi, N. K., Ouyang, S., Lin, F.-F., Kaushik, D., Wang, J., et al. (2011). Histone deacetylase inhibitor valproic acid suppresses the growth and increases the androgen responsiveness of prostate cancer cells. Cancer Letters, 311, 177–186.PubMedCentralPubMed Chou, Y.-W., Chaturvedi, N. K., Ouyang, S., Lin, F.-F., Kaushik, D., Wang, J., et al. (2011). Histone deacetylase inhibitor valproic acid suppresses the growth and increases the androgen responsiveness of prostate cancer cells. Cancer Letters, 311, 177–186.PubMedCentralPubMed
166.
go back to reference Gravina, G. L., Marampon, F., Muzi, P., Mancini, A., Piccolella, M., Negri-Cesi, P., et al. (2013). PXD101 potentiates hormonal therapy and prevents the onset of castration-resistant phenotype modulating androgen receptor, HSP90, and CRM1 in preclinical models of prostate cancer. Endocrine-Related Cancer, 20, 321–337.PubMed Gravina, G. L., Marampon, F., Muzi, P., Mancini, A., Piccolella, M., Negri-Cesi, P., et al. (2013). PXD101 potentiates hormonal therapy and prevents the onset of castration-resistant phenotype modulating androgen receptor, HSP90, and CRM1 in preclinical models of prostate cancer. Endocrine-Related Cancer, 20, 321–337.PubMed
167.
go back to reference Iacopino, F., Urbano, R., Graziani, G., Muzi, A., Navarra, P., & Sica, G. (2008). Valproic acid activity in androgen-sensitive and -insensitive human prostate cancer cells. International Journal of Oncology, 32, 1293–1303.PubMed Iacopino, F., Urbano, R., Graziani, G., Muzi, A., Navarra, P., & Sica, G. (2008). Valproic acid activity in androgen-sensitive and -insensitive human prostate cancer cells. International Journal of Oncology, 32, 1293–1303.PubMed
168.
go back to reference Welsbie, D. S., Xu, J., Chen, Y., Borsu, L., Scher, H. I., Rosen, N., et al. (2009). Histone deacetylases are required for androgen receptor function in hormone-sensitive and castrate-resistant prostate cancer. Cancer Research, 69, 958–966.PubMedCentralPubMed Welsbie, D. S., Xu, J., Chen, Y., Borsu, L., Scher, H. I., Rosen, N., et al. (2009). Histone deacetylases are required for androgen receptor function in hormone-sensitive and castrate-resistant prostate cancer. Cancer Research, 69, 958–966.PubMedCentralPubMed
169.
go back to reference Molife, L. R., Attard, G., Fong, P. C., Karavasilis, V., Reid, A. H. M., Patterson, S., et al. (2010). Phase II, two-stage, single-arm trial of the histone deacetylase inhibitor (HDACi) romidepsin in metastatic castration-resistant prostate cancer (CRPC). Annals of Oncology, 21, 109–113.PubMed Molife, L. R., Attard, G., Fong, P. C., Karavasilis, V., Reid, A. H. M., Patterson, S., et al. (2010). Phase II, two-stage, single-arm trial of the histone deacetylase inhibitor (HDACi) romidepsin in metastatic castration-resistant prostate cancer (CRPC). Annals of Oncology, 21, 109–113.PubMed
170.
go back to reference Wang, Y., Lonard, D. M., Yu, Y., Chow, D.-C., Palzkill, T. G., & O’Malley, B. W. (2011). Small molecule inhibition of the steroid receptor coactivators, SRC-3 and SRC-1. Molecular Endocrinology, 25, 2041–2053.PubMedCentralPubMed Wang, Y., Lonard, D. M., Yu, Y., Chow, D.-C., Palzkill, T. G., & O’Malley, B. W. (2011). Small molecule inhibition of the steroid receptor coactivators, SRC-3 and SRC-1. Molecular Endocrinology, 25, 2041–2053.PubMedCentralPubMed
Metadata
Title
Androgen receptor signaling in prostate cancer
Authors
Zoran Culig
Frédéric R. Santer
Publication date
01-09-2014
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 2-3/2014
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-013-9474-0

Other articles of this Issue 2-3/2014

Cancer and Metastasis Reviews 2-3/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine