Skip to main content
Top
Published in: Cancer and Metastasis Reviews 3-4/2013

01-12-2013

Aneuploidy and chromosomal instability: a vicious cycle driving cellular evolution and cancer genome chaos

Authors: Tamara A. Potapova, Jin Zhu, Rong Li

Published in: Cancer and Metastasis Reviews | Issue 3-4/2013

Login to get access

Abstract

Aneuploidy and chromosomal instability frequently co-exist, and aneuploidy is recognized as a direct outcome of chromosomal instability. However, chromosomal instability is widely viewed as a consequence of mutations in genes involved in DNA replication, chromosome segregation, and cell cycle checkpoints. Telomere attrition and presence of extra centrosomes have also been recognized as causative for errors in genomic transmission. Here, we examine recent studies suggesting that aneuploidy itself can be responsible for the procreation of chromosomal instability. Evidence from both yeast and mammalian experimental models suggests that changes in chromosome copy number can cause changes in dosage of the products of many genes located on aneuploid chromosomes. These effects on gene expression can alter the balanced stoichiometry of various protein complexes, causing perturbations of their functions. Therefore, phenotypic consequences of aneuploidy will include chromosomal instability if the balanced stoichiometry of protein machineries responsible for accurate chromosome segregation is affected enough to perturb the function. The degree of chromosomal instability will depend on specific karyotypic changes, which may be due to dosage imbalances of specific genes or lack of scaling between chromosome segregation load and the capacity of the mitotic system. We propose that the relationship between aneuploidy and chromosomal instability can be envisioned as a “vicious cycle,” where aneuploidy potentiates chromosomal instability leading to further karyotype diversity in the affected population.
Literature
1.
go back to reference Chimpanzee Sequencing and Analysis Consortium. (2005). Initial sequence of the chimpanzee genome and comparison with the human genome. Nature, 437, 69–87.CrossRef Chimpanzee Sequencing and Analysis Consortium. (2005). Initial sequence of the chimpanzee genome and comparison with the human genome. Nature, 437, 69–87.CrossRef
2.
go back to reference Dobzhansky, T. (Ed.). (1951). Genetics and the origin of species (3rd ed., pp. 73–118). New York: Columbia University Press. Dobzhansky, T. (Ed.). (1951). Genetics and the origin of species (3rd ed., pp. 73–118). New York: Columbia University Press.
3.
go back to reference Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144, 646–674.PubMedCrossRef Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144, 646–674.PubMedCrossRef
5.
go back to reference Anders, K., Kudrna, J., Keller, K., Kinghorn, B., Miller, E., et al. (2009). A strategy for constructing aneuploid yeast strains by transient nondisjunction of a target chromosome. BMC Genetics, 10, 36.PubMedCrossRef Anders, K., Kudrna, J., Keller, K., Kinghorn, B., Miller, E., et al. (2009). A strategy for constructing aneuploid yeast strains by transient nondisjunction of a target chromosome. BMC Genetics, 10, 36.PubMedCrossRef
6.
go back to reference Torres, E. M., Sokolsky, T., Tucker, C. M., Chan, L. Y., Boselli, M., et al. (2007). Effects of aneuploidy on cellular physiology and cell division in haploid yeast. Science, 317, 916–924.PubMedCrossRef Torres, E. M., Sokolsky, T., Tucker, C. M., Chan, L. Y., Boselli, M., et al. (2007). Effects of aneuploidy on cellular physiology and cell division in haploid yeast. Science, 317, 916–924.PubMedCrossRef
7.
go back to reference Ezov, T. K., Boger-Nadjar, E., Frenkel, Z., Katsperovski, I., Kemeny, S., et al. (2006). Molecular-genetic biodiversity in a natural population of the yeast Saccharomyces cerevisiae from “Evolution Canyon”: microsatellite polymorphism, ploidy and controversial sexual status. Genetics, 174, 1455–1468.PubMedCrossRef Ezov, T. K., Boger-Nadjar, E., Frenkel, Z., Katsperovski, I., Kemeny, S., et al. (2006). Molecular-genetic biodiversity in a natural population of the yeast Saccharomyces cerevisiae from “Evolution Canyon”: microsatellite polymorphism, ploidy and controversial sexual status. Genetics, 174, 1455–1468.PubMedCrossRef
8.
go back to reference Hughes T. R., Roberts C. J., Dai H., Jones A. R., Meyer M. R., et al. (2000). Widespread aneuploidy revealed by DNA microarray expression profiling. Nat Genet, 25, 333–337. Hughes T. R., Roberts C. J., Dai H., Jones A. R., Meyer M. R., et al. (2000). Widespread aneuploidy revealed by DNA microarray expression profiling. Nat Genet, 25, 333–337.
9.
go back to reference Parry, E. M., & Cox, B. S. (1970). The tolerance of aneuploidy in yeast. Genetical Research, 16, 333–340.PubMedCrossRef Parry, E. M., & Cox, B. S. (1970). The tolerance of aneuploidy in yeast. Genetical Research, 16, 333–340.PubMedCrossRef
10.
go back to reference Campbell, D., Doctor, J. S., Feuersanger, J. H., & Doolittle, M. M. (1981). Differential mitotic stability of yeast disomes derived from triploid meiosis. Genetics, 98, 239–255.PubMed Campbell, D., Doctor, J. S., Feuersanger, J. H., & Doolittle, M. M. (1981). Differential mitotic stability of yeast disomes derived from triploid meiosis. Genetics, 98, 239–255.PubMed
11.
go back to reference Charles, J. S., Hamilton, M. L., & Petes, T. D. (2010). Meiotic chromosome segregation in triploid strains of Saccharomyces cerevisiae. Genetics, 186, 537–550.CrossRef Charles, J. S., Hamilton, M. L., & Petes, T. D. (2010). Meiotic chromosome segregation in triploid strains of Saccharomyces cerevisiae. Genetics, 186, 537–550.CrossRef
12.
go back to reference Pavelka, N., Rancati, G., Zhu, J., Bradford, W. D., Saraf, A., et al. (2010). Aneuploidy confers quantitative proteome changes and phenotypic variation in budding yeast. Nature, 468, 321–325.PubMedCrossRef Pavelka, N., Rancati, G., Zhu, J., Bradford, W. D., Saraf, A., et al. (2010). Aneuploidy confers quantitative proteome changes and phenotypic variation in budding yeast. Nature, 468, 321–325.PubMedCrossRef
13.
go back to reference Sheltzer, J. M., Blank, H. M., Pfau, S. J., Tange, Y., George, B. M., et al. (2011). Aneuploidy drives genomic instability in yeast. Science, 333, 1026–1030.PubMedCrossRef Sheltzer, J. M., Blank, H. M., Pfau, S. J., Tange, Y., George, B. M., et al. (2011). Aneuploidy drives genomic instability in yeast. Science, 333, 1026–1030.PubMedCrossRef
14.
go back to reference Waghmare, S. K., & Bruschi, C. V. (2005). Differential chromosome control of ploidy in the yeast Saccharomyces cerevisiae. Yeast, 22, 625–639.PubMedCrossRef Waghmare, S. K., & Bruschi, C. V. (2005). Differential chromosome control of ploidy in the yeast Saccharomyces cerevisiae. Yeast, 22, 625–639.PubMedCrossRef
15.
go back to reference Zang, Y., Garrè, M., Gjuracic, K., & Bruschi, C. V. (2002). Chromosome V loss due to centromere knockout or MAD2-deletion is immediately followed by restitution of homozygous diploidy in Saccharomyces cerevisiae. Yeast, 19, 553–564.PubMedCrossRef Zang, Y., Garrè, M., Gjuracic, K., & Bruschi, C. V. (2002). Chromosome V loss due to centromere knockout or MAD2-deletion is immediately followed by restitution of homozygous diploidy in Saccharomyces cerevisiae. Yeast, 19, 553–564.PubMedCrossRef
16.
go back to reference Zhu, J., Pavelka, N., Bradford, W. D., Rancati, G., & Li, R. (2012). Karyotypic determinants of chromosome instability in aneuploid budding yeast. PLoS Genetics, 8, e1002719.PubMedCrossRef Zhu, J., Pavelka, N., Bradford, W. D., Rancati, G., & Li, R. (2012). Karyotypic determinants of chromosome instability in aneuploid budding yeast. PLoS Genetics, 8, e1002719.PubMedCrossRef
17.
go back to reference Koncz, C., Chua, N.-H., Schell, J. (1992). Methods in arabidopsis research (pp. 496). Singapore: World Scientific Publishing. Koncz, C., Chua, N.-H., Schell, J. (1992). Methods in arabidopsis research (pp. 496). Singapore: World Scientific Publishing.
18.
go back to reference Papp, I., Iglesias, V. A., Moscone, E. A., Michalowski, S., Spiker, S., et al. (1996). Structural instability of a transgene locus in tobacco is associated with aneuploidy. The Plant Journal, 10, 469–478.PubMedCrossRef Papp, I., Iglesias, V. A., Moscone, E. A., Michalowski, S., Spiker, S., et al. (1996). Structural instability of a transgene locus in tobacco is associated with aneuploidy. The Plant Journal, 10, 469–478.PubMedCrossRef
19.
go back to reference Hernandez, D., & Fisher, E. M. (1999). Mouse autosomal trisomy: two's company, three's a crowd. Trends in Genetics, 15, 241–247.PubMedCrossRef Hernandez, D., & Fisher, E. M. (1999). Mouse autosomal trisomy: two's company, three's a crowd. Trends in Genetics, 15, 241–247.PubMedCrossRef
20.
go back to reference Reish, O., Regev, M., Kanesky, A., Girafi, S., & Mashevich, M. (2011). Sporadic aneuploidy in PHA-stimulated lymphocytes of trisomies 21, 18, and 13. Cytogenetic and Genome Research, 133, 184–189.PubMedCrossRef Reish, O., Regev, M., Kanesky, A., Girafi, S., & Mashevich, M. (2011). Sporadic aneuploidy in PHA-stimulated lymphocytes of trisomies 21, 18, and 13. Cytogenetic and Genome Research, 133, 184–189.PubMedCrossRef
21.
go back to reference Reish, O., Brosh, N., Gobazov, R., Rosenblat, M., Libman, V., et al. (2006). Sporadic aneuploidy in PHA-stimulated lymphocytes of Turner's syndrome patients. Chromosome Research, 14, 527–534.PubMedCrossRef Reish, O., Brosh, N., Gobazov, R., Rosenblat, M., Libman, V., et al. (2006). Sporadic aneuploidy in PHA-stimulated lymphocytes of Turner's syndrome patients. Chromosome Research, 14, 527–534.PubMedCrossRef
22.
go back to reference Khan, I., Malinge, S., & Crispino, J. (2011). Myeloid leukemia in Down syndrome. Critical Reviews in Oncogenesis, 16, 25–36.PubMedCrossRef Khan, I., Malinge, S., & Crispino, J. (2011). Myeloid leukemia in Down syndrome. Critical Reviews in Oncogenesis, 16, 25–36.PubMedCrossRef
23.
go back to reference Schoemaker, M. J., Swerdlow, A. J., Higgins, C. D., Wright, A. F., & Jacobs, P. A. (2008). Cancer incidence in women with Turner syndrome in Great Britain: a national cohort study. The Lancet Oncology, 9, 239–246.PubMedCrossRef Schoemaker, M. J., Swerdlow, A. J., Higgins, C. D., Wright, A. F., & Jacobs, P. A. (2008). Cancer incidence in women with Turner syndrome in Great Britain: a national cohort study. The Lancet Oncology, 9, 239–246.PubMedCrossRef
24.
go back to reference Swerdlow, A. J., Schoemaker, M. J., Higgins, C. D., Wright, A. F., & Jacobs, P. A. (2005). Cancer incidence and mortality in men with Klinefelter syndrome: a cohort study. Journal of the National Cancer Institute, 97, 1204–1210.PubMedCrossRef Swerdlow, A. J., Schoemaker, M. J., Higgins, C. D., Wright, A. F., & Jacobs, P. A. (2005). Cancer incidence and mortality in men with Klinefelter syndrome: a cohort study. Journal of the National Cancer Institute, 97, 1204–1210.PubMedCrossRef
25.
go back to reference Higgins, C. D., Swerdlow, A. J., Schoemaker, M. J., Wright, A. F., & Jacobs, P. A. (2007). Mortality and cancer incidence in males with Y polysomy in Britain: a cohort study. Human Genetics, 121, 691–696.PubMedCrossRef Higgins, C. D., Swerdlow, A. J., Schoemaker, M. J., Wright, A. F., & Jacobs, P. A. (2007). Mortality and cancer incidence in males with Y polysomy in Britain: a cohort study. Human Genetics, 121, 691–696.PubMedCrossRef
26.
go back to reference Friedberg, E. C., Henning, K., Lambert, C., Saxon, P. J., Schultz, R. A., et al. (1990). Microcell-mediated chromosome transfer: a strategy for studying the genetics and molecular pathology of human hereditary diseases with abnormal responses to DNA damage. Basic Life Sciences, 52, 257–267.PubMed Friedberg, E. C., Henning, K., Lambert, C., Saxon, P. J., Schultz, R. A., et al. (1990). Microcell-mediated chromosome transfer: a strategy for studying the genetics and molecular pathology of human hereditary diseases with abnormal responses to DNA damage. Basic Life Sciences, 52, 257–267.PubMed
27.
go back to reference Nawata, H., Kashino, G., Tano, K., Daino, K., Shimada, Y., et al. (2011). Dysregulation of gene expression in the artificial human trisomy cells of chromosome 8 associated with transformed cell phenotypes. PLoS One, 6, e25319.PubMedCrossRef Nawata, H., Kashino, G., Tano, K., Daino, K., Shimada, Y., et al. (2011). Dysregulation of gene expression in the artificial human trisomy cells of chromosome 8 associated with transformed cell phenotypes. PLoS One, 6, e25319.PubMedCrossRef
28.
go back to reference Kost-Alimova, M., Fedorova, L., Yang, Y., Klein, G., & Imreh, S. (2004). Microcell-mediated chromosome transfer provides evidence that polysomy promotes structural instability in tumor cell chromosomes through asynchronous replication and breakage within late-replicating regions. Genes, Chromosomes & Cancer, 40, 316–324.CrossRef Kost-Alimova, M., Fedorova, L., Yang, Y., Klein, G., & Imreh, S. (2004). Microcell-mediated chromosome transfer provides evidence that polysomy promotes structural instability in tumor cell chromosomes through asynchronous replication and breakage within late-replicating regions. Genes, Chromosomes & Cancer, 40, 316–324.CrossRef
29.
go back to reference Thompson, S. L., & Compton, D. A. (2010). Proliferation of aneuploid human cells is limited by a p53-dependent mechanism. The Journal of Cell Biology, 188, 369–381.PubMedCrossRef Thompson, S. L., & Compton, D. A. (2010). Proliferation of aneuploid human cells is limited by a p53-dependent mechanism. The Journal of Cell Biology, 188, 369–381.PubMedCrossRef
30.
go back to reference Upender, M. B., Habermann, J. K., McShane, L. M., Korn, E. L., Barrett, J. C., et al. (2004). Chromosome transfer induced aneuploidy results in complex dysregulation of the cellular transcriptome in immortalized and cancer cells. Cancer Research, 64, 6941–6949.PubMedCrossRef Upender, M. B., Habermann, J. K., McShane, L. M., Korn, E. L., Barrett, J. C., et al. (2004). Chromosome transfer induced aneuploidy results in complex dysregulation of the cellular transcriptome in immortalized and cancer cells. Cancer Research, 64, 6941–6949.PubMedCrossRef
31.
go back to reference Stingele, S., Stoehr, G., Peplowska, K., Cox, J., Mann, M., et al. (2012). Global analysis of genome, transcriptome and proteome reveals the response to aneuploidy in human cells. Molecular Systems Biology, 8, 608.PubMedCrossRef Stingele, S., Stoehr, G., Peplowska, K., Cox, J., Mann, M., et al. (2012). Global analysis of genome, transcriptome and proteome reveals the response to aneuploidy in human cells. Molecular Systems Biology, 8, 608.PubMedCrossRef
32.
go back to reference Williams, B. R., Prabhu, V. R., Hunter, K. E., Glazier, C. M., Whittaker, C. A., et al. (2008). Aneuploidy affects proliferation and spontaneous immortalization in mammalian cells. Science, 322, 703–709.PubMedCrossRef Williams, B. R., Prabhu, V. R., Hunter, K. E., Glazier, C. M., Whittaker, C. A., et al. (2008). Aneuploidy affects proliferation and spontaneous immortalization in mammalian cells. Science, 322, 703–709.PubMedCrossRef
33.
go back to reference Hughes, T. R., Roberts, C. J., Dai, H., Jones, A. R., Meyer, M. R., et al. (2000). Widespread aneuploidy revealed by DNA microarray expression profiling. Nature Genetics, 25, 333–337.PubMedCrossRef Hughes, T. R., Roberts, C. J., Dai, H., Jones, A. R., Meyer, M. R., et al. (2000). Widespread aneuploidy revealed by DNA microarray expression profiling. Nature Genetics, 25, 333–337.PubMedCrossRef
34.
go back to reference Rancati, G., Pavelka, N., Fleharty, B., Noll, A., Trimble, R., et al. (2008). Aneuploidy underlies rapid adaptive evolution of yeast cells deprived of a conserved cytokinesis motor. Cell, 135, 879–893.PubMedCrossRef Rancati, G., Pavelka, N., Fleharty, B., Noll, A., Trimble, R., et al. (2008). Aneuploidy underlies rapid adaptive evolution of yeast cells deprived of a conserved cytokinesis motor. Cell, 135, 879–893.PubMedCrossRef
35.
go back to reference Mao, R., Zielke, C. L., Zielke, H. R., & Pevsner, J. (2003). Global up-regulation of chromosome 21 gene expression in the developing Down syndrome brain. Genomics, 81, 457–467.PubMedCrossRef Mao, R., Zielke, C. L., Zielke, H. R., & Pevsner, J. (2003). Global up-regulation of chromosome 21 gene expression in the developing Down syndrome brain. Genomics, 81, 457–467.PubMedCrossRef
36.
go back to reference FitzPatrick, D. R., Ramsay, J., McGill, N. I., Shade, M., Carothers, A. D., et al. (2002). Transcriptome analysis of human autosomal trisomy. Human Molecular Genetics, 11, 3249–3256.PubMedCrossRef FitzPatrick, D. R., Ramsay, J., McGill, N. I., Shade, M., Carothers, A. D., et al. (2002). Transcriptome analysis of human autosomal trisomy. Human Molecular Genetics, 11, 3249–3256.PubMedCrossRef
37.
go back to reference Ait Yahya-Graison, E., Aubert, J., Dauphinot, L., Rivals, I., Prieur, M., et al. (2007). Classification of human chromosome 21 gene-expression variations in Down syndrome: impact on disease phenotypes. American Journal of Human Genetics, 81, 475–491.PubMedCrossRef Ait Yahya-Graison, E., Aubert, J., Dauphinot, L., Rivals, I., Prieur, M., et al. (2007). Classification of human chromosome 21 gene-expression variations in Down syndrome: impact on disease phenotypes. American Journal of Human Genetics, 81, 475–491.PubMedCrossRef
38.
go back to reference Torres, E. M., Dephoure, N., Panneerselvam, A., Tucker, C. M., Whittaker, C. A., et al. (2010). Identification of aneuploidy-tolerating mutations. Cell, 143, 71–83.PubMedCrossRef Torres, E. M., Dephoure, N., Panneerselvam, A., Tucker, C. M., Whittaker, C. A., et al. (2010). Identification of aneuploidy-tolerating mutations. Cell, 143, 71–83.PubMedCrossRef
39.
go back to reference Barnhart, E. L., Dorer, R. K., Murray, A. W., & Schuyler, S. C. (2011). Reduced Mad2 expression keeps relaxed kinetochores from arresting budding yeast in mitosis. Molecular Biology of the Cell, 22, 2448–2457.PubMedCrossRef Barnhart, E. L., Dorer, R. K., Murray, A. W., & Schuyler, S. C. (2011). Reduced Mad2 expression keeps relaxed kinetochores from arresting budding yeast in mitosis. Molecular Biology of the Cell, 22, 2448–2457.PubMedCrossRef
40.
go back to reference Musacchio, A., & Salmon, E. D. (2007). The spindle-assembly checkpoint in space and time. Nature Reviews Molecular Cell Biology, 8, 379–393.PubMedCrossRef Musacchio, A., & Salmon, E. D. (2007). The spindle-assembly checkpoint in space and time. Nature Reviews Molecular Cell Biology, 8, 379–393.PubMedCrossRef
41.
go back to reference Iwanaga, Y., Chi, Y. H., Miyazato, A., Sheleg, S., Haller, K., et al. (2007). Heterozygous deletion of mitotic arrest-deficient protein 1 (MAD1) increases the incidence of tumors in mice. Cancer Research, 67, 160–166.PubMedCrossRef Iwanaga, Y., Chi, Y. H., Miyazato, A., Sheleg, S., Haller, K., et al. (2007). Heterozygous deletion of mitotic arrest-deficient protein 1 (MAD1) increases the incidence of tumors in mice. Cancer Research, 67, 160–166.PubMedCrossRef
42.
go back to reference Sotillo, R., Schvartzman, J. M., Socci, N. D., & Benezra, R. (2010). Mad2-induced chromosome instability leads to lung tumour relapse after oncogene withdrawal. Nature, 464, 436–440.PubMedCrossRef Sotillo, R., Schvartzman, J. M., Socci, N. D., & Benezra, R. (2010). Mad2-induced chromosome instability leads to lung tumour relapse after oncogene withdrawal. Nature, 464, 436–440.PubMedCrossRef
43.
go back to reference Weaver, B. A., Bonday, Z. Q., Putkey, F. R., Kops, G. J., Silk, A. D., et al. (2003). Centromere-associated protein-E is essential for the mammalian mitotic checkpoint to prevent aneuploidy due to single chromosome loss. The Journal of Cell Biology, 162, 551–563.PubMedCrossRef Weaver, B. A., Bonday, Z. Q., Putkey, F. R., Kops, G. J., Silk, A. D., et al. (2003). Centromere-associated protein-E is essential for the mammalian mitotic checkpoint to prevent aneuploidy due to single chromosome loss. The Journal of Cell Biology, 162, 551–563.PubMedCrossRef
44.
go back to reference Baker, D. J., Jin, F., Jeganathan, K. B., & van Deursen, J. M. (2009). Whole chromosome instability caused by Bub1 insufficiency drives tumorigenesis through tumor suppressor gene loss of heterozygosity. Cancer Cell, 16, 475–486.PubMedCrossRef Baker, D. J., Jin, F., Jeganathan, K. B., & van Deursen, J. M. (2009). Whole chromosome instability caused by Bub1 insufficiency drives tumorigenesis through tumor suppressor gene loss of heterozygosity. Cancer Cell, 16, 475–486.PubMedCrossRef
45.
go back to reference Hartman, T. K., Wengenack, T. M., Poduslo, J. F., & van Deursen, J. M. (2007). Mutant mice with small amounts of BubR1 display accelerated age-related gliosis. Neurobiology of Aging, 28, 921–927.PubMedCrossRef Hartman, T. K., Wengenack, T. M., Poduslo, J. F., & van Deursen, J. M. (2007). Mutant mice with small amounts of BubR1 display accelerated age-related gliosis. Neurobiology of Aging, 28, 921–927.PubMedCrossRef
46.
go back to reference Baker, D. J., Jeganathan, K. B., Malureanu, L., Perez-Terzic, C., Terzic, A., et al. (2006). Early aging-associated phenotypes in Bub3/Rae1 haploinsufficient mice. The Journal of Cell Biology, 172, 529–540.PubMedCrossRef Baker, D. J., Jeganathan, K. B., Malureanu, L., Perez-Terzic, C., Terzic, A., et al. (2006). Early aging-associated phenotypes in Bub3/Rae1 haploinsufficient mice. The Journal of Cell Biology, 172, 529–540.PubMedCrossRef
47.
go back to reference Storchova, Z., & Kuffer, C. (2008). The consequences of tetraploidy and aneuploidy. Journal of Cell Science, 121, 3859–3866.PubMedCrossRef Storchova, Z., & Kuffer, C. (2008). The consequences of tetraploidy and aneuploidy. Journal of Cell Science, 121, 3859–3866.PubMedCrossRef
48.
go back to reference Ryan, S. D., Britigan, E. M., Zasadil, L. M., Witte, K., Audhya, A., et al. (2012). Up-regulation of the mitotic checkpoint component Mad1 causes chromosomal instability and resistance to microtubule poisons. Proceedings of the National Academy of Sciences of the United States of America, 109, E2205–E2214.PubMedCrossRef Ryan, S. D., Britigan, E. M., Zasadil, L. M., Witte, K., Audhya, A., et al. (2012). Up-regulation of the mitotic checkpoint component Mad1 causes chromosomal instability and resistance to microtubule poisons. Proceedings of the National Academy of Sciences of the United States of America, 109, E2205–E2214.PubMedCrossRef
49.
go back to reference Sotillo, R., Hernando, E., Diaz-Rodriguez, E., Teruya-Feldstein, J., Cordon-Cardo, C., et al. (2007). Mad2 overexpression promotes aneuploidy and tumorigenesis in mice. Cancer Cell, 11, 9–23.PubMedCrossRef Sotillo, R., Hernando, E., Diaz-Rodriguez, E., Teruya-Feldstein, J., Cordon-Cardo, C., et al. (2007). Mad2 overexpression promotes aneuploidy and tumorigenesis in mice. Cancer Cell, 11, 9–23.PubMedCrossRef
50.
go back to reference Ricke, R. M., Jeganathan, K. B., & van Deursen, J. M. (2011). Bub1 overexpression induces aneuploidy and tumor formation through Aurora B kinase hyperactivation. The Journal of Cell Biology, 193, 1049–1064.PubMedCrossRef Ricke, R. M., Jeganathan, K. B., & van Deursen, J. M. (2011). Bub1 overexpression induces aneuploidy and tumor formation through Aurora B kinase hyperactivation. The Journal of Cell Biology, 193, 1049–1064.PubMedCrossRef
51.
go back to reference Zhang, N., Ge, G., Meyer, R., Sethi, S., Basu, D., et al. (2008). Overexpression of Separase induces aneuploidy and mammary tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 105, 13033–13038.PubMedCrossRef Zhang, N., Ge, G., Meyer, R., Sethi, S., Basu, D., et al. (2008). Overexpression of Separase induces aneuploidy and mammary tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 105, 13033–13038.PubMedCrossRef
52.
go back to reference Yu, R., Lu, W., Chen, J., McCabe, C. J., & Melmed, S. (2003). Overexpressed pituitary tumor-transforming gene causes aneuploidy in live human cells. Endocrinology, 144, 4991–4998.PubMedCrossRef Yu, R., Lu, W., Chen, J., McCabe, C. J., & Melmed, S. (2003). Overexpressed pituitary tumor-transforming gene causes aneuploidy in live human cells. Endocrinology, 144, 4991–4998.PubMedCrossRef
53.
go back to reference Schvartzman, J. M., Duijf, P. H., Sotillo, R., Coker, C., & Benezra, R. (2011). Mad2 is a critical mediator of the chromosome instability observed upon Rb and p53 pathway inhibition. Cancer Cell, 19, 701–714.PubMedCrossRef Schvartzman, J. M., Duijf, P. H., Sotillo, R., Coker, C., & Benezra, R. (2011). Mad2 is a critical mediator of the chromosome instability observed upon Rb and p53 pathway inhibition. Cancer Cell, 19, 701–714.PubMedCrossRef
54.
go back to reference Kabeche, L., & Compton, D. A. (2012). Checkpoint-independent stabilization of kinetochore-microtubule attachments by Mad2 in human cells. Current Biology, 22, 638–644.PubMedCrossRef Kabeche, L., & Compton, D. A. (2012). Checkpoint-independent stabilization of kinetochore-microtubule attachments by Mad2 in human cells. Current Biology, 22, 638–644.PubMedCrossRef
55.
go back to reference Ricke, R. M., & van Deursen, J. M. (2011). Aurora B hyperactivation by Bub1 overexpression promotes chromosome missegregation. Cell Cycle, 10, 3645–3651.PubMedCrossRef Ricke, R. M., & van Deursen, J. M. (2011). Aurora B hyperactivation by Bub1 overexpression promotes chromosome missegregation. Cell Cycle, 10, 3645–3651.PubMedCrossRef
56.
go back to reference Bakhoum, S. F., Thompson, S. L., Manning, A. L., & Compton, D. A. (2009). Genome stability is ensured by temporal control of kinetochore-microtubule dynamics. Nature Cell Biology, 11, 27–35.PubMedCrossRef Bakhoum, S. F., Thompson, S. L., Manning, A. L., & Compton, D. A. (2009). Genome stability is ensured by temporal control of kinetochore-microtubule dynamics. Nature Cell Biology, 11, 27–35.PubMedCrossRef
57.
go back to reference Kline-Smith, S. L., Khodjakov, A., Hergert, P., & Walczak, C. E. (2004). Depletion of centromeric MCAK leads to chromosome congression and segregation defects due to improper kinetochore attachments. Molecular Biology of the Cell, 15, 1146–1159.PubMedCrossRef Kline-Smith, S. L., Khodjakov, A., Hergert, P., & Walczak, C. E. (2004). Depletion of centromeric MCAK leads to chromosome congression and segregation defects due to improper kinetochore attachments. Molecular Biology of the Cell, 15, 1146–1159.PubMedCrossRef
58.
go back to reference Janssen, A., van der Burg, M., Szuhai, K., Kops, G. J., & Medema, R. H. (2011). Chromosome segregation errors as a cause of DNA damage and structural chromosome aberrations. Science, 333, 1895–1898.PubMedCrossRef Janssen, A., van der Burg, M., Szuhai, K., Kops, G. J., & Medema, R. H. (2011). Chromosome segregation errors as a cause of DNA damage and structural chromosome aberrations. Science, 333, 1895–1898.PubMedCrossRef
59.
go back to reference Crasta, K., Ganem, N. J., Dagher, R., Lantermann, A. B., Ivanova, E. V., et al. (2012). DNA breaks and chromosome pulverization from errors in mitosis. Nature, 482, 53–58.PubMedCrossRef Crasta, K., Ganem, N. J., Dagher, R., Lantermann, A. B., Ivanova, E. V., et al. (2012). DNA breaks and chromosome pulverization from errors in mitosis. Nature, 482, 53–58.PubMedCrossRef
60.
go back to reference Stevens, J. B., Liu, G., Bremer, S. W., Ye, K. J., Xu, W., et al. (2007). Mitotic cell death by chromosome fragmentation. Cancer Research, 67, 7686–7694.PubMedCrossRef Stevens, J. B., Liu, G., Bremer, S. W., Ye, K. J., Xu, W., et al. (2007). Mitotic cell death by chromosome fragmentation. Cancer Research, 67, 7686–7694.PubMedCrossRef
61.
go back to reference Stephens, P. J., Greenman, C. D., Fu, B., Yang, F., Bignell, G. R., et al. (2011). Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell, 144, 27–40.PubMedCrossRef Stephens, P. J., Greenman, C. D., Fu, B., Yang, F., Bignell, G. R., et al. (2011). Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell, 144, 27–40.PubMedCrossRef
62.
go back to reference Heng, H. H., Stevens, J. B., Bremer, S. W., Liu, G., Abdallah, B. Y., et al. (2011). Evolutionary mechanisms and diversity in cancer. Advances in Cancer Research, 112, 217–253.PubMedCrossRef Heng, H. H., Stevens, J. B., Bremer, S. W., Liu, G., Abdallah, B. Y., et al. (2011). Evolutionary mechanisms and diversity in cancer. Advances in Cancer Research, 112, 217–253.PubMedCrossRef
63.
go back to reference Normand, G., & King, R. W. (2010). Understanding cytokinesis failure. Advances in Experimental Medicine and Biology, 676, 27–55.PubMedCrossRef Normand, G., & King, R. W. (2010). Understanding cytokinesis failure. Advances in Experimental Medicine and Biology, 676, 27–55.PubMedCrossRef
64.
go back to reference Shi, Q., & King, R. W. (2005). Chromosome nondisjunction yields tetraploid rather than aneuploid cells in human cell lines. Nature, 437, 1038–1042.PubMedCrossRef Shi, Q., & King, R. W. (2005). Chromosome nondisjunction yields tetraploid rather than aneuploid cells in human cell lines. Nature, 437, 1038–1042.PubMedCrossRef
65.
go back to reference Routhier, E. L., Burn, T. C., Abbaszade, I., Summers, M., Albright, C. F., et al. (2001). Human BIN3 complements the F-actin localization defects caused by loss of Hob3p, the fission yeast homolog of Rvs161p. Journal of Biological Chemistry, 276, 21670–21677.PubMedCrossRef Routhier, E. L., Burn, T. C., Abbaszade, I., Summers, M., Albright, C. F., et al. (2001). Human BIN3 complements the F-actin localization defects caused by loss of Hob3p, the fission yeast homolog of Rvs161p. Journal of Biological Chemistry, 276, 21670–21677.PubMedCrossRef
66.
go back to reference Kouranti, I., Sachse, M., Arouche, N., Goud, B., & Echard, A. (2006). Rab35 regulates an endocytic recycling pathway essential for the terminal steps of cytokinesis. Current Biology, 16, 1719–1725.PubMedCrossRef Kouranti, I., Sachse, M., Arouche, N., Goud, B., & Echard, A. (2006). Rab35 regulates an endocytic recycling pathway essential for the terminal steps of cytokinesis. Current Biology, 16, 1719–1725.PubMedCrossRef
67.
go back to reference Madaule, P., Eda, M., Watanabe, N., Fujisawa, K., Matsuoka, T., et al. (1998). Role of citron kinase as a target of the small GTPase Rho in cytokinesis. Nature, 394, 491–494.PubMedCrossRef Madaule, P., Eda, M., Watanabe, N., Fujisawa, K., Matsuoka, T., et al. (1998). Role of citron kinase as a target of the small GTPase Rho in cytokinesis. Nature, 394, 491–494.PubMedCrossRef
68.
go back to reference Yuce, O., Piekny, A., & Glotzer, M. (2005). An ECT2-centralspindlin complex regulates the localization and function of RhoA. The Journal of Cell Biology, 170, 571–582.PubMedCrossRef Yuce, O., Piekny, A., & Glotzer, M. (2005). An ECT2-centralspindlin complex regulates the localization and function of RhoA. The Journal of Cell Biology, 170, 571–582.PubMedCrossRef
69.
go back to reference Therman, E., Trunca, C., Kuhn, E. M., & Sarto, G. E. (1986). Dicentric chromosomes and the inactivation of the centromere. Human Genetics, 72, 191–195.PubMedCrossRef Therman, E., Trunca, C., Kuhn, E. M., & Sarto, G. E. (1986). Dicentric chromosomes and the inactivation of the centromere. Human Genetics, 72, 191–195.PubMedCrossRef
70.
go back to reference Acilan, C., Potter, D. M., & Saunders, W. S. (2007). DNA repair pathways involved in anaphase bridge formation. Genes, Chromosomes & Cancer, 46, 522–531.CrossRef Acilan, C., Potter, D. M., & Saunders, W. S. (2007). DNA repair pathways involved in anaphase bridge formation. Genes, Chromosomes & Cancer, 46, 522–531.CrossRef
71.
go back to reference Steigemann, P., Wurzenberger, C., Schmitz, M. H., Held, M., Guizetti, J., et al. (2009). Aurora B-mediated abscission checkpoint protects against tetraploidization. Cell, 136, 473–484.PubMedCrossRef Steigemann, P., Wurzenberger, C., Schmitz, M. H., Held, M., Guizetti, J., et al. (2009). Aurora B-mediated abscission checkpoint protects against tetraploidization. Cell, 136, 473–484.PubMedCrossRef
72.
go back to reference Nigg, E. A. (2006). Origins and consequences of centrosome aberrations in human cancers. International Journal of Cancer, 119, 2717–2723.CrossRef Nigg, E. A. (2006). Origins and consequences of centrosome aberrations in human cancers. International Journal of Cancer, 119, 2717–2723.CrossRef
73.
go back to reference Ganem, N. J., Godinho, S. A., & Pellman, D. (2009). A mechanism linking extra centrosomes to chromosomal instability. Nature, 460, 278–282.PubMedCrossRef Ganem, N. J., Godinho, S. A., & Pellman, D. (2009). A mechanism linking extra centrosomes to chromosomal instability. Nature, 460, 278–282.PubMedCrossRef
74.
go back to reference Godinho, S. A., Kwon, M., & Pellman, D. (2009). Centrosomes and cancer: how cancer cells divide with too many centrosomes. Cancer and Metastasis Reviews, 28, 85–98.PubMedCrossRef Godinho, S. A., Kwon, M., & Pellman, D. (2009). Centrosomes and cancer: how cancer cells divide with too many centrosomes. Cancer and Metastasis Reviews, 28, 85–98.PubMedCrossRef
75.
go back to reference Gisselsson, D., Jin, Y., Lindgren, D., Persson, J., Gisselsson, L., et al. (2010). Generation of trisomies in cancer cells by multipolar mitosis and incomplete cytokinesis. Proceedings of the National Academy of Sciences of the United States of America, 107, 20489–20493.PubMedCrossRef Gisselsson, D., Jin, Y., Lindgren, D., Persson, J., Gisselsson, L., et al. (2010). Generation of trisomies in cancer cells by multipolar mitosis and incomplete cytokinesis. Proceedings of the National Academy of Sciences of the United States of America, 107, 20489–20493.PubMedCrossRef
76.
go back to reference Kwon, M., Godinho, S. A., Chandhok, N. S., Ganem, N. J., Azioune, A., et al. (2008). Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes & Development, 22, 2189–2203.CrossRef Kwon, M., Godinho, S. A., Chandhok, N. S., Ganem, N. J., Azioune, A., et al. (2008). Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes & Development, 22, 2189–2203.CrossRef
77.
go back to reference Fujiwara, T., Bandi, M., Nitta, M., Ivanova, E. V., Bronson, R. T., et al. (2005). Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature, 437, 1043–1047.PubMedCrossRef Fujiwara, T., Bandi, M., Nitta, M., Ivanova, E. V., Bronson, R. T., et al. (2005). Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature, 437, 1043–1047.PubMedCrossRef
78.
go back to reference Ganem, N. J., Storchova, Z., & Pellman, D. (2007). Tetraploidy, aneuploidy and cancer. Current Opinion in Genetics and Development, 17, 157–162.PubMedCrossRef Ganem, N. J., Storchova, Z., & Pellman, D. (2007). Tetraploidy, aneuploidy and cancer. Current Opinion in Genetics and Development, 17, 157–162.PubMedCrossRef
79.
go back to reference Carter, S. L., Cibulskis, K., Helman, E., McKenna, A., Shen, H., et al. (2012). Absolute quantification of somatic DNA alterations in human cancer. Nature Biotechnology, 30, 413–421.PubMedCrossRef Carter, S. L., Cibulskis, K., Helman, E., McKenna, A., Shen, H., et al. (2012). Absolute quantification of somatic DNA alterations in human cancer. Nature Biotechnology, 30, 413–421.PubMedCrossRef
80.
go back to reference Duncan, A. W., Taylor, M. H., Hickey, R. D., Hanlon Newell, A. E., Lenzi, M. L., et al. (2010). The ploidy conveyor of mature hepatocytes as a source of genetic variation. Nature, 467, 707–710.PubMedCrossRef Duncan, A. W., Taylor, M. H., Hickey, R. D., Hanlon Newell, A. E., Lenzi, M. L., et al. (2010). The ploidy conveyor of mature hepatocytes as a source of genetic variation. Nature, 467, 707–710.PubMedCrossRef
81.
go back to reference Duncan, A. W., Hanlon Newell, A. E., Smith, L., Wilson, E. M., Olson, S. B., et al. (2012). Frequent aneuploidy among normal human hepatocytes. Gastroenterology, 142, 25–28.PubMedCrossRef Duncan, A. W., Hanlon Newell, A. E., Smith, L., Wilson, E. M., Olson, S. B., et al. (2012). Frequent aneuploidy among normal human hepatocytes. Gastroenterology, 142, 25–28.PubMedCrossRef
82.
go back to reference Duncan, A. W., Hanlon Newell, A. E., Bi, W., Finegold, M. J., Olson, S. B., et al. (2012). Aneuploidy as a mechanism for stress-induced liver adaptation. The Journal of Clinical Investigation, 122, 3307–3315.PubMedCrossRef Duncan, A. W., Hanlon Newell, A. E., Bi, W., Finegold, M. J., Olson, S. B., et al. (2012). Aneuploidy as a mechanism for stress-induced liver adaptation. The Journal of Clinical Investigation, 122, 3307–3315.PubMedCrossRef
83.
go back to reference Chen, G., Bradford, W. D., Seidel, C. W., & Li, R. (2012). Hsp90 stress potentiates rapid cellular adaptation through induction of aneuploidy. Nature, 482, 246–250.PubMed Chen, G., Bradford, W. D., Seidel, C. W., & Li, R. (2012). Hsp90 stress potentiates rapid cellular adaptation through induction of aneuploidy. Nature, 482, 246–250.PubMed
84.
go back to reference Albertson, D. G., Collins, C., McCormick, F., & Gray, J. W. (2003). Chromosome aberrations in solid tumors. Nature Genetics, 34, 369–376.PubMedCrossRef Albertson, D. G., Collins, C., McCormick, F., & Gray, J. W. (2003). Chromosome aberrations in solid tumors. Nature Genetics, 34, 369–376.PubMedCrossRef
85.
go back to reference Duesberg, P., Rausch, C., Rasnick, D., & Hehlmann, R. (1998). Genetic instability of cancer cells is proportional to their degree of aneuploidy. Proceedings of the National Academy of Sciences of the United States of America, 95, 13692–13697.PubMedCrossRef Duesberg, P., Rausch, C., Rasnick, D., & Hehlmann, R. (1998). Genetic instability of cancer cells is proportional to their degree of aneuploidy. Proceedings of the National Academy of Sciences of the United States of America, 95, 13692–13697.PubMedCrossRef
86.
go back to reference Gordon, D. J., Resio, B., & Pellman, D. (2012). Causes and consequences of aneuploidy in cancer. Nature Reviews Genetics, 13, 189–203.PubMed Gordon, D. J., Resio, B., & Pellman, D. (2012). Causes and consequences of aneuploidy in cancer. Nature Reviews Genetics, 13, 189–203.PubMed
87.
go back to reference Weaver, B. A., Silk, A. D., Montagna, C., Verdier-Pinard, P., & Cleveland, D. W. (2007). Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell, 11, 25–36.PubMedCrossRef Weaver, B. A., Silk, A. D., Montagna, C., Verdier-Pinard, P., & Cleveland, D. W. (2007). Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell, 11, 25–36.PubMedCrossRef
88.
89.
go back to reference Olivier, M., Hollstein, M., & Hainaut, P. (2010). TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harbor Perspectives in Biology, 2, a001008.PubMedCrossRef Olivier, M., Hollstein, M., & Hainaut, P. (2010). TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harbor Perspectives in Biology, 2, a001008.PubMedCrossRef
90.
go back to reference Brown, C. J., Lain, S., Verma, C. S., Fersht, A. R., & Lane, D. P. (2009). Awakening guardian angels: drugging the p53 pathway. Nature Reviews. Cancer, 9, 862–873.PubMedCrossRef Brown, C. J., Lain, S., Verma, C. S., Fersht, A. R., & Lane, D. P. (2009). Awakening guardian angels: drugging the p53 pathway. Nature Reviews. Cancer, 9, 862–873.PubMedCrossRef
91.
92.
go back to reference Horn, H. F., & Vousden, K. H. (2007). Coping with stress: multiple ways to activate p53. Oncogene, 26, 1306–1316.PubMedCrossRef Horn, H. F., & Vousden, K. H. (2007). Coping with stress: multiple ways to activate p53. Oncogene, 26, 1306–1316.PubMedCrossRef
93.
go back to reference Vousden, K. H., & Lane, D. P. (2007). p53 in health and disease. Nature Reviews Molecular Cell Biology, 8, 275–283.PubMedCrossRef Vousden, K. H., & Lane, D. P. (2007). p53 in health and disease. Nature Reviews Molecular Cell Biology, 8, 275–283.PubMedCrossRef
94.
go back to reference Tang, Y. C., Williams, B. R., Siegel, J. J., & Amon, A. (2011). Identification of aneuploidy-selective antiproliferation compounds. Cell, 144, 499–512.PubMedCrossRef Tang, Y. C., Williams, B. R., Siegel, J. J., & Amon, A. (2011). Identification of aneuploidy-selective antiproliferation compounds. Cell, 144, 499–512.PubMedCrossRef
95.
go back to reference Rehen, S. K., Yung, Y. C., McCreight, M. P., Kaushal, D., Yang, A. H., et al. (2005). Constitutional aneuploidy in the normal human brain. Journal of Neuroscience, 25, 2176–2180.PubMedCrossRef Rehen, S. K., Yung, Y. C., McCreight, M. P., Kaushal, D., Yang, A. H., et al. (2005). Constitutional aneuploidy in the normal human brain. Journal of Neuroscience, 25, 2176–2180.PubMedCrossRef
Metadata
Title
Aneuploidy and chromosomal instability: a vicious cycle driving cellular evolution and cancer genome chaos
Authors
Tamara A. Potapova
Jin Zhu
Rong Li
Publication date
01-12-2013
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 3-4/2013
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-013-9436-6

Other articles of this Issue 3-4/2013

Cancer and Metastasis Reviews 3-4/2013 Go to the issue

Editorial

Editorial

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine