Skip to main content
Top
Published in: Cancer and Metastasis Reviews 3-4/2012

01-12-2012 | NON-THEMATIC REVIEW

Role of the EpCAM (CD326) in prostate cancer metastasis and progression

Authors: Jie Ni, Paul J. Cozzi, Wei Duan, Sarah Shigdar, Peter H. Graham, Kearsley H. John, Yong Li

Published in: Cancer and Metastasis Reviews | Issue 3-4/2012

Login to get access

Abstract

Despite significant advances in surgery, radiotherapy and chemotherapy to treat prostate cancer (CaP), many patients die of secondary disease (metastases). Current therapeutic approaches are limited, and there is no cure for metastatic castration-resistant prostate cancer (CRPC). Epithelial cell adhesion molecule (EpCAM, also known as CD326) is a transmembrane glycoprotein that is highly expressed in rapidly proliferating carcinomas and plays an important role in the prevention of cell–cell adhesion, cell signalling, migration, proliferation and differentiation. Stably and highly expressed EpCAM has been found in primary CaP tissues, effusions and CaP metastases, making it an ideal candidate of tumour-associated antigen to detect metastasis of CaP cells in the circulation as well as a promising therapeutic target to control metastatic CRPC disease. In this review, we discuss the implications of the newly identified roles of EpCAM in terms of its diagnostic and metastatic relevance to CaP. We also summarize EpCAM expression in human CaP and EpCAM-mediated signalling pathways in cancer metastasis. Finally, emerging and innovative approaches to the management of the disease and expanding potential therapeutic applications of EpCAM for targeted strategies in future CaP therapy will be explored.
Literature
1.
go back to reference Beltran, H., Beer, T. M., Carducci, M. A., de Bono, J., Gleave, M., Hussain, M., et al. (2011). New therapies for castration-resistant prostate cancer: efficacy and safety. European Urology, 60, 279–290.PubMed Beltran, H., Beer, T. M., Carducci, M. A., de Bono, J., Gleave, M., Hussain, M., et al. (2011). New therapies for castration-resistant prostate cancer: efficacy and safety. European Urology, 60, 279–290.PubMed
2.
go back to reference Logothetis, C. J. (2002). Docetaxel in the integrated management of prostate cancer. Current applications and future promise. Oncology (Williston Park, N.Y.), 16(6 Suppl 6), 63–72. Logothetis, C. J. (2002). Docetaxel in the integrated management of prostate cancer. Current applications and future promise. Oncology (Williston Park, N.Y.), 16(6 Suppl 6), 63–72.
3.
go back to reference Petrylak, D. P., Tangen, C. M., Hussain, M. H., Lara, P. N., Jr., Jones, J. A., Taplin, M. E., et al. (2004). Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. The New England Journal of Medicine, 351(15), 1513–1520.PubMed Petrylak, D. P., Tangen, C. M., Hussain, M. H., Lara, P. N., Jr., Jones, J. A., Taplin, M. E., et al. (2004). Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. The New England Journal of Medicine, 351(15), 1513–1520.PubMed
4.
go back to reference Tannock, I. F., de Wit, R., Berry, W. R., Horti, J., Pluzanska, A., Chi, K. N., et al. (2004). Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. The New England Journal of Medicine, 351, 1502–1512.PubMed Tannock, I. F., de Wit, R., Berry, W. R., Horti, J., Pluzanska, A., Chi, K. N., et al. (2004). Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. The New England Journal of Medicine, 351, 1502–1512.PubMed
5.
go back to reference Calabro, F., & Sternberg, C. N. (2007). Current indications for chemotherapy in prostate cancer patients. European Urology, 51, 17–26.PubMed Calabro, F., & Sternberg, C. N. (2007). Current indications for chemotherapy in prostate cancer patients. European Urology, 51, 17–26.PubMed
6.
go back to reference Petrylak, D. P. (2005). Future directions in the treatment of androgen-independent prostate cancer. Urology, 65(6 Suppl), 8–12.PubMed Petrylak, D. P. (2005). Future directions in the treatment of androgen-independent prostate cancer. Urology, 65(6 Suppl), 8–12.PubMed
7.
go back to reference Higano, C. S., & Crawford, E. D. (2011). New and emerging agents for the treatment of castration-resistant prostate cancer. Urologic Oncology, 29(6 Suppl), S1–S8.PubMed Higano, C. S., & Crawford, E. D. (2011). New and emerging agents for the treatment of castration-resistant prostate cancer. Urologic Oncology, 29(6 Suppl), S1–S8.PubMed
8.
go back to reference Caffo, O., Pappagallo, G., Brugnara, S., Caldara, A., di Pasquale, M. C., Ferro, A., et al. (2012). Multiple rechallenges for castration-resistant prostate cancer patients responding to first-line docetaxel: assessment of clinical outcomes and predictive factors. Urology, 79, 644–649.PubMed Caffo, O., Pappagallo, G., Brugnara, S., Caldara, A., di Pasquale, M. C., Ferro, A., et al. (2012). Multiple rechallenges for castration-resistant prostate cancer patients responding to first-line docetaxel: assessment of clinical outcomes and predictive factors. Urology, 79, 644–649.PubMed
9.
go back to reference Hao, J. L., Cozzi, P. J., Khatri, A., Power, C. A., & Li, Y. (2010). CD147/EMMPRIN and CD44 are potential therapeutic target for metastatic prostate cancer. Current Cancer Drug Targets, 10, 287–306.PubMed Hao, J. L., Cozzi, P. J., Khatri, A., Power, C. A., & Li, Y. (2010). CD147/EMMPRIN and CD44 are potential therapeutic target for metastatic prostate cancer. Current Cancer Drug Targets, 10, 287–306.PubMed
10.
go back to reference Li, Y., Cozzi, P. J., & Russell, P. J. (2010). Promising tumor-associated antigens for future prostate cancer therapy. Medicinal Research Reviews, 30, 67–101.PubMed Li, Y., Cozzi, P. J., & Russell, P. J. (2010). Promising tumor-associated antigens for future prostate cancer therapy. Medicinal Research Reviews, 30, 67–101.PubMed
11.
go back to reference Li, Y., & Cozzi, P. J. (2010). Angiogenesis as a strategic target for prostate cancer therapy. Medicinal Research Reviews, 30, 23–66.PubMed Li, Y., & Cozzi, P. J. (2010). Angiogenesis as a strategic target for prostate cancer therapy. Medicinal Research Reviews, 30, 23–66.PubMed
12.
go back to reference Mukherji, D., Pezaro, C. J., & De-Bono, J. S. (2012). MDV3100 for the treatment of prostate cancer. Expert Opinion on Investigational Drugs, 21, 227–233.PubMed Mukherji, D., Pezaro, C. J., & De-Bono, J. S. (2012). MDV3100 for the treatment of prostate cancer. Expert Opinion on Investigational Drugs, 21, 227–233.PubMed
13.
go back to reference Villanueva, C., Bazan, F., Kim, S., Demarchi, M., Chaigneau, L., Thiery-Vuillemin, A., et al. (2011). Cabazitaxel: a novel microtubule inhibitor. Drugs, 71, 1251–1258.PubMed Villanueva, C., Bazan, F., Kim, S., Demarchi, M., Chaigneau, L., Thiery-Vuillemin, A., et al. (2011). Cabazitaxel: a novel microtubule inhibitor. Drugs, 71, 1251–1258.PubMed
14.
go back to reference Bellmunt, J., Attard, G., Bahl, A., Huland, H., Klotz, L., Kuban, D., et al. (2012). Advances in the management of high-risk localised and metastatic prostate cancer. British Journal of Urology International, 109(Suppl 2), 8–13. Bellmunt, J., Attard, G., Bahl, A., Huland, H., Klotz, L., Kuban, D., et al. (2012). Advances in the management of high-risk localised and metastatic prostate cancer. British Journal of Urology International, 109(Suppl 2), 8–13.
15.
go back to reference Baeuerle, P. A., & Gires, O. (2007). EpCAM (CD326) finding its role in cancer. British Journal of Cancer, 96, 417–423.PubMed Baeuerle, P. A., & Gires, O. (2007). EpCAM (CD326) finding its role in cancer. British Journal of Cancer, 96, 417–423.PubMed
16.
go back to reference Patriarca, C., Macchi, R. M., Marschner, A. K., & Mellstedt, H. (2012). Epithelial cell adhesion molecule expression (CD326) in cancer: a short review. Cancer Treatment Reviews, 38, 68–75.PubMed Patriarca, C., Macchi, R. M., Marschner, A. K., & Mellstedt, H. (2012). Epithelial cell adhesion molecule expression (CD326) in cancer: a short review. Cancer Treatment Reviews, 38, 68–75.PubMed
17.
go back to reference Went, P., Vasei, M., Bubendorf, L., Terracciano, L., Tornillo, L., Riede, U., et al. (2006). Frequent high-level expression of the immunotherapeutic target Ep-CAM in colon, stomach, prostate and lung cancers. British Journal of Cancer, 94, 128–135.PubMed Went, P., Vasei, M., Bubendorf, L., Terracciano, L., Tornillo, L., Riede, U., et al. (2006). Frequent high-level expression of the immunotherapeutic target Ep-CAM in colon, stomach, prostate and lung cancers. British Journal of Cancer, 94, 128–135.PubMed
18.
go back to reference Armstrong, A. J., Marengo, M. S., Oltean, S., Kemeny, G., Bitting, R. L., Turnbull, J. D., et al. (2011). Circulating tumor cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markers. Molecular Cancer Research, 9, 997–1007.PubMed Armstrong, A. J., Marengo, M. S., Oltean, S., Kemeny, G., Bitting, R. L., Turnbull, J. D., et al. (2011). Circulating tumor cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markers. Molecular Cancer Research, 9, 997–1007.PubMed
19.
go back to reference Trzpis, M., McLaughlin, P. M., de Leij, L. M., & Harmsen, M. C. (2007). Epithelial cell adhesion molecule: more than a carcinoma marker and adhesion molecule. The American Journal of Pathology, 171, 386–395.PubMed Trzpis, M., McLaughlin, P. M., de Leij, L. M., & Harmsen, M. C. (2007). Epithelial cell adhesion molecule: more than a carcinoma marker and adhesion molecule. The American Journal of Pathology, 171, 386–395.PubMed
20.
go back to reference van der Gun, B. T., Melchers, L. J., Ruiters, M. H., de Leij, L. F., McLaughlin, P. M., & Rots, M. G. (2010). EpCAM in carcinogenesis: the good, the bad or the ugly. Carcinogenesis, 31, 1913–1921.PubMed van der Gun, B. T., Melchers, L. J., Ruiters, M. H., de Leij, L. F., McLaughlin, P. M., & Rots, M. G. (2010). EpCAM in carcinogenesis: the good, the bad or the ugly. Carcinogenesis, 31, 1913–1921.PubMed
21.
go back to reference Seligson, D. B., Pantuck, A. J., Liu, X., Huang, Y., Horvath, S., Bui, M. H., et al. (2004). Epithelial cell adhesion molecule (KSA) expression: pathobiology and its role as an independent predictor of survival in renal cell carcinoma. Clinical Cancer Research, 10, 2659–2669.PubMed Seligson, D. B., Pantuck, A. J., Liu, X., Huang, Y., Horvath, S., Bui, M. H., et al. (2004). Epithelial cell adhesion molecule (KSA) expression: pathobiology and its role as an independent predictor of survival in renal cell carcinoma. Clinical Cancer Research, 10, 2659–2669.PubMed
22.
go back to reference Songun, I., Litvinov, S. V., van de Velde, C. J., Pals, S. T., Hermans, J., & van Krieken, J. H. (2005). Loss of Ep-CAM (CO17-1A) expression predicts survival in patients with gastric cancer. British Journal of Cancer, 92, 1767–1772.PubMed Songun, I., Litvinov, S. V., van de Velde, C. J., Pals, S. T., Hermans, J., & van Krieken, J. H. (2005). Loss of Ep-CAM (CO17-1A) expression predicts survival in patients with gastric cancer. British Journal of Cancer, 92, 1767–1772.PubMed
23.
go back to reference Ensinger, C., Kremser, R., Prommegger, R., Spizzo, G., & Schmid, K. W. (2006). EpCAM overexpression in thyroid carcinomas: a histopathological study of 121 cases. Journal of Immunotherapy, 29, 569–573.PubMed Ensinger, C., Kremser, R., Prommegger, R., Spizzo, G., & Schmid, K. W. (2006). EpCAM overexpression in thyroid carcinomas: a histopathological study of 121 cases. Journal of Immunotherapy, 29, 569–573.PubMed
24.
go back to reference Kimura, H., Kato, H., Faried, A., Sohda, M., Nakajima, M., Fukai, Y., et al. (2007). Prognostic significance of EpCAM expression in human esophageal cancer. International Journal of Oncology, 30, 171–179.PubMed Kimura, H., Kato, H., Faried, A., Sohda, M., Nakajima, M., Fukai, Y., et al. (2007). Prognostic significance of EpCAM expression in human esophageal cancer. International Journal of Oncology, 30, 171–179.PubMed
25.
go back to reference Hwang, E. Y., Yu, C. H., Cheng, S. J., Chang, J. Y., Chen, H. M., & Chiang, C. P. (2009). Decreased expression of Ep-CAM protein is significantly associated with the progression and prognosis of oral squamous cell carcinomas in Taiwan. Journal of Oral Pathology & Medicine, 38, 87–93. Hwang, E. Y., Yu, C. H., Cheng, S. J., Chang, J. Y., Chen, H. M., & Chiang, C. P. (2009). Decreased expression of Ep-CAM protein is significantly associated with the progression and prognosis of oral squamous cell carcinomas in Taiwan. Journal of Oral Pathology & Medicine, 38, 87–93.
26.
go back to reference Spizzo, G., Went, P., Dirnhofer, S., Obrist, P., Simon, R., Spichtin, H., et al. (2004). High Ep-CAM expression is associated with poor prognosis in node-positive breast cancer. Breast Cancer Research and Treatment, 86, 207–213.PubMed Spizzo, G., Went, P., Dirnhofer, S., Obrist, P., Simon, R., Spichtin, H., et al. (2004). High Ep-CAM expression is associated with poor prognosis in node-positive breast cancer. Breast Cancer Research and Treatment, 86, 207–213.PubMed
27.
go back to reference Varga, M., Obrist, P., Schneeberger, S., Muhlmann, G., Felgel-Farnholz, C., Fong, D., et al. (2004). Overexpression of epithelial cell adhesion molecule antigen in gallbladder carcinoma is an independent marker for poor survival. Clinical Cancer Research, 10, 3131–3136.PubMed Varga, M., Obrist, P., Schneeberger, S., Muhlmann, G., Felgel-Farnholz, C., Fong, D., et al. (2004). Overexpression of epithelial cell adhesion molecule antigen in gallbladder carcinoma is an independent marker for poor survival. Clinical Cancer Research, 10, 3131–3136.PubMed
28.
go back to reference Brunner, A., Prelog, M., Verdorfer, I., Tzankov, A., Mikuz, G., & Ensinger, C. (2008). EpCAM is predominantly expressed in high grade and advanced stage urothelial carcinoma of the bladder. Journal of Clinical Pathology, 61, 307–310.PubMed Brunner, A., Prelog, M., Verdorfer, I., Tzankov, A., Mikuz, G., & Ensinger, C. (2008). EpCAM is predominantly expressed in high grade and advanced stage urothelial carcinoma of the bladder. Journal of Clinical Pathology, 61, 307–310.PubMed
29.
go back to reference Fong, D., Steurer, M., Obrist, P., Barbieri, V., Margreiter, R., Amberger, A., et al. (2008). Ep-CAM expression in pancreatic and ampullary carcinomas: frequency and prognostic relevance. Journal of Clinical Pathology, 61, 31–35.PubMed Fong, D., Steurer, M., Obrist, P., Barbieri, V., Margreiter, R., Amberger, A., et al. (2008). Ep-CAM expression in pancreatic and ampullary carcinomas: frequency and prognostic relevance. Journal of Clinical Pathology, 61, 31–35.PubMed
30.
go back to reference Nubel, T., Preobraschenski, J., Tuncay, H., Weiss, T., Kuhn, S., Ladwein, M., et al. (2009). Claudin-7 regulates EpCAM-mediated functions in tumor progression. Molecular Cancer Research, 7, 285–299.PubMed Nubel, T., Preobraschenski, J., Tuncay, H., Weiss, T., Kuhn, S., Ladwein, M., et al. (2009). Claudin-7 regulates EpCAM-mediated functions in tumor progression. Molecular Cancer Research, 7, 285–299.PubMed
31.
go back to reference Visvader, J. E., & Lindeman, G. J. (2008). Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nature Reviews. Cancer, 8, 755–768.PubMed Visvader, J. E., & Lindeman, G. J. (2008). Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nature Reviews. Cancer, 8, 755–768.PubMed
32.
go back to reference Osta, W. A., Chen, Y., Mikhitarian, K., Mitas, M., Salem, M., Hannun, Y. A., et al. (2004). EpCAM is overexpressed in breast cancer and is a potential target for breast cancer gene therapy. Cancer Research, 64, 5818–5824.PubMed Osta, W. A., Chen, Y., Mikhitarian, K., Mitas, M., Salem, M., Hannun, Y. A., et al. (2004). EpCAM is overexpressed in breast cancer and is a potential target for breast cancer gene therapy. Cancer Research, 64, 5818–5824.PubMed
33.
go back to reference Maetzel, D., Denzel, S., Mack, B., Canis, M., Went, P., Benk, M., et al. (2009). Nuclear signalling by tumour-associated antigen EpCAM. Nature Cell Biology, 11, 162–171.PubMed Maetzel, D., Denzel, S., Mack, B., Canis, M., Went, P., Benk, M., et al. (2009). Nuclear signalling by tumour-associated antigen EpCAM. Nature Cell Biology, 11, 162–171.PubMed
34.
go back to reference Munz, M., Baeuerle, P. A., & Gires, O. (2009). The emerging role of EpCAM in cancer and stem cell signaling. Cancer Research, 69, 5627–5629.PubMed Munz, M., Baeuerle, P. A., & Gires, O. (2009). The emerging role of EpCAM in cancer and stem cell signaling. Cancer Research, 69, 5627–5629.PubMed
35.
go back to reference Maaser, K., & Borlak, J. (2008). A genome-wide expression analysis identifies a network of EpCAM-induced cell cycle regulators. British Journal of Cancer, 99, 1635–1643.PubMed Maaser, K., & Borlak, J. (2008). A genome-wide expression analysis identifies a network of EpCAM-induced cell cycle regulators. British Journal of Cancer, 99, 1635–1643.PubMed
36.
go back to reference Gonzalez, B., Denzel, S., Mack, B., Conrad, M., & Gires, O. (2009). EpCAM is involved in maintenance of the murine embryonic stem cell phenotype. Stem Cells, 27, 1782–1791.PubMed Gonzalez, B., Denzel, S., Mack, B., Conrad, M., & Gires, O. (2009). EpCAM is involved in maintenance of the murine embryonic stem cell phenotype. Stem Cells, 27, 1782–1791.PubMed
37.
go back to reference Benko, G., Spajic, B., Kruslin, B., Tomas, D. (2012). Impact of the EpCAM expression on biochemical recurrence-free survival in clinically localized prostate cancer. Urologic Oncology (in press). Benko, G., Spajic, B., Kruslin, B., Tomas, D. (2012). Impact of the EpCAM expression on biochemical recurrence-free survival in clinically localized prostate cancer. Urologic Oncology (in press).
38.
go back to reference Tewes, M., Aktas, B., Welt, A., Mueller, S., Hauch, S., Kimmig, R., et al. (2009). Molecular profiling and predictive value of circulating tumor cells in patients with metastatic breast cancer: an option for monitoring response to breast cancer related therapies. Breast Cancer Research and Treatment, 115, 581–590.PubMed Tewes, M., Aktas, B., Welt, A., Mueller, S., Hauch, S., Kimmig, R., et al. (2009). Molecular profiling and predictive value of circulating tumor cells in patients with metastatic breast cancer: an option for monitoring response to breast cancer related therapies. Breast Cancer Research and Treatment, 115, 581–590.PubMed
39.
go back to reference Paterlini-Brechot, P., & Benali, N. L. (2007). Circulating tumor cells (CTC) detection: clinical impact and future directions. Cancer Letters, 253, 180–204.PubMed Paterlini-Brechot, P., & Benali, N. L. (2007). Circulating tumor cells (CTC) detection: clinical impact and future directions. Cancer Letters, 253, 180–204.PubMed
40.
go back to reference Mostert, B., Sleijfer, S., Foekens, J. A., & Gratama, J. W. (2009). Circulating tumor cells (CTCs): detection methods and their clinical relevance in breast cancer. Cancer Treatment Reviews, 35, 463–474.PubMed Mostert, B., Sleijfer, S., Foekens, J. A., & Gratama, J. W. (2009). Circulating tumor cells (CTCs): detection methods and their clinical relevance in breast cancer. Cancer Treatment Reviews, 35, 463–474.PubMed
41.
go back to reference Kaiser, J. (2010). Medicine. Cancer's circulation problem. Science, 327, 1072–1074.PubMed Kaiser, J. (2010). Medicine. Cancer's circulation problem. Science, 327, 1072–1074.PubMed
42.
go back to reference Miller, M. C., Doyle, G. V., & Terstappen, L. W. (2010). Significance of circulating tumor cells detected by the cell search system in patients with metastatic breast colorectal and prostate cancer. Journal of Oncology, 2010, 617421.PubMed Miller, M. C., Doyle, G. V., & Terstappen, L. W. (2010). Significance of circulating tumor cells detected by the cell search system in patients with metastatic breast colorectal and prostate cancer. Journal of Oncology, 2010, 617421.PubMed
43.
go back to reference Morgan, T. M., Lange, P. H., & Vessella, R. L. (2007). Detection and characterization of circulating and disseminated prostate cancer cells. Frontiers in Bioscience, 12, 3000–3009.PubMed Morgan, T. M., Lange, P. H., & Vessella, R. L. (2007). Detection and characterization of circulating and disseminated prostate cancer cells. Frontiers in Bioscience, 12, 3000–3009.PubMed
44.
go back to reference Nagrath, S., Sequist, L. V., Maheswaran, S., Bell, D. W., Irimia, D., Ulkus, L., et al. (2007). Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature, 450, 1235–1239.PubMed Nagrath, S., Sequist, L. V., Maheswaran, S., Bell, D. W., Irimia, D., Ulkus, L., et al. (2007). Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature, 450, 1235–1239.PubMed
45.
go back to reference Stott, S. L., Hsu, C. H., Tsukrov, D. I., Yu, M., Miyamoto, D. T., Waltman, B. A., et al. (2010). Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proceedings of the National Academy of Sciences of the United States of America, 107, 18392–18397.PubMed Stott, S. L., Hsu, C. H., Tsukrov, D. I., Yu, M., Miyamoto, D. T., Waltman, B. A., et al. (2010). Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proceedings of the National Academy of Sciences of the United States of America, 107, 18392–18397.PubMed
46.
go back to reference Smerage, J. B., & Hayes, D. F. (2006). The measurement and therapeutic implications of circulating tumour cells in breast cancer. British Journal of Cancer, 94, 8–12.PubMed Smerage, J. B., & Hayes, D. F. (2006). The measurement and therapeutic implications of circulating tumour cells in breast cancer. British Journal of Cancer, 94, 8–12.PubMed
47.
go back to reference Moreno, J. G., Miller, M. C., Gross, S., Allard, W. J., Gomella, L. G., & Terstappen, L. W. (2005). Circulating tumor cells predict survival in patients with metastatic prostate cancer. Urology, 65, 713–718.PubMed Moreno, J. G., Miller, M. C., Gross, S., Allard, W. J., Gomella, L. G., & Terstappen, L. W. (2005). Circulating tumor cells predict survival in patients with metastatic prostate cancer. Urology, 65, 713–718.PubMed
48.
go back to reference Danila, D. C., Heller, G., Gignac, G. A., Gonzalez-Espinoza, R., Anand, A., Tanaka, E., et al. (2007). Circulating tumor cell number and prognosis in progressive castration-resistant prostate cancer. Clinical Cancer Research, 13, 7053–7058.PubMed Danila, D. C., Heller, G., Gignac, G. A., Gonzalez-Espinoza, R., Anand, A., Tanaka, E., et al. (2007). Circulating tumor cell number and prognosis in progressive castration-resistant prostate cancer. Clinical Cancer Research, 13, 7053–7058.PubMed
49.
go back to reference Garcia, J. A., Rosenberg, J. E., Weinberg, V., Scott, J., Frohlich, M., Park, J. W., et al. (2007). Evaluation and significance of circulating epithelial cells in patients with hormone-refractory prostate cancer. British Journal of Urology International, 99, 519–524. Garcia, J. A., Rosenberg, J. E., Weinberg, V., Scott, J., Frohlich, M., Park, J. W., et al. (2007). Evaluation and significance of circulating epithelial cells in patients with hormone-refractory prostate cancer. British Journal of Urology International, 99, 519–524.
50.
go back to reference de Bono, J. S., Scher, H. I., Montgomery, R. B., Parker, C., Miller, M. C., Tissing, H., et al. (2008). Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clinical Cancer Research, 14, 6302–6309.PubMed de Bono, J. S., Scher, H. I., Montgomery, R. B., Parker, C., Miller, M. C., Tissing, H., et al. (2008). Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clinical Cancer Research, 14, 6302–6309.PubMed
51.
go back to reference Jost, M., Day, J. R., Slaughter, R., Koreckij, T. D., Gonzales, D., Kinnunen, M., et al. (2010). Molecular assays for the detection of prostate tumor derived nucleic acids in peripheral blood. Molecular Cancer, 9, 174.PubMed Jost, M., Day, J. R., Slaughter, R., Koreckij, T. D., Gonzales, D., Kinnunen, M., et al. (2010). Molecular assays for the detection of prostate tumor derived nucleic acids in peripheral blood. Molecular Cancer, 9, 174.PubMed
52.
go back to reference Kolostova, K., Pinterova, D., Hoffman, R. M., & Bobek, V. (2011). Circulating human prostate cancer cells from an orthotopic mouse model rapidly captured by immunomagnetic beads and imaged by GFP expression. Anticancer Research, 31, 1535–1539.PubMed Kolostova, K., Pinterova, D., Hoffman, R. M., & Bobek, V. (2011). Circulating human prostate cancer cells from an orthotopic mouse model rapidly captured by immunomagnetic beads and imaged by GFP expression. Anticancer Research, 31, 1535–1539.PubMed
53.
go back to reference Farace, F., Massard, C., Vimond, N., Drusch, F., Jacques, N., Billiot, F., et al. (2011). A direct comparison of Cell Search and ISET for circulating tumour-cell detection in patients with metastatic carcinomas. British Journal of Cancer, 105, 847–853.PubMed Farace, F., Massard, C., Vimond, N., Drusch, F., Jacques, N., Billiot, F., et al. (2011). A direct comparison of Cell Search and ISET for circulating tumour-cell detection in patients with metastatic carcinomas. British Journal of Cancer, 105, 847–853.PubMed
54.
go back to reference Riethdorf, S., Fritsche, H., Muller, V., Rau, T., Schindlbeck, C., Rack, B., et al. (2007). Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the Cell Search system. Clinical Cancer Research, 13, 920–928.PubMed Riethdorf, S., Fritsche, H., Muller, V., Rau, T., Schindlbeck, C., Rack, B., et al. (2007). Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the Cell Search system. Clinical Cancer Research, 13, 920–928.PubMed
55.
go back to reference Wang, S., Owens, G. E., & Tseng, H. R. (2011). Nano “fly paper” technology for the capture of circulating tumor cells. Methods in Molecular Biology, 726, 141–150.PubMed Wang, S., Owens, G. E., & Tseng, H. R. (2011). Nano “fly paper” technology for the capture of circulating tumor cells. Methods in Molecular Biology, 726, 141–150.PubMed
56.
go back to reference Hoshino, K., Huang, Y. Y., Lane, N., Huebschman, M., Uhr, J. W., Frenkel, E. P., et al. (2011). Microchip-based immunomagnetic detection of circulating tumor cells. Lab on a Chip, 11, 3449–3457.PubMed Hoshino, K., Huang, Y. Y., Lane, N., Huebschman, M., Uhr, J. W., Frenkel, E. P., et al. (2011). Microchip-based immunomagnetic detection of circulating tumor cells. Lab on a Chip, 11, 3449–3457.PubMed
57.
go back to reference Zheng, X., Cheung, L. S., Schroeder, J. A., Jiang, L., & Zohar, Y. (2011). A high-performance microsystem for isolating circulating tumor cells. Lab on a Chip, 11, 3269–3276.PubMed Zheng, X., Cheung, L. S., Schroeder, J. A., Jiang, L., & Zohar, Y. (2011). A high-performance microsystem for isolating circulating tumor cells. Lab on a Chip, 11, 3269–3276.PubMed
58.
go back to reference Dharmasiri, U., Njoroge, S. K., Witek, M. A., Adebiyi, M. G., Kamande, J. W., Hupert, M. L., et al. (2011). High-throughput selection, enumeration, electrokinetic manipulation, and molecular profiling of low-abundance circulating tumor cells using a microfluidic system. Analytical Chemistry, 83, 2301–2309.PubMed Dharmasiri, U., Njoroge, S. K., Witek, M. A., Adebiyi, M. G., Kamande, J. W., Hupert, M. L., et al. (2011). High-throughput selection, enumeration, electrokinetic manipulation, and molecular profiling of low-abundance circulating tumor cells using a microfluidic system. Analytical Chemistry, 83, 2301–2309.PubMed
59.
go back to reference Poczatek, R. B., Myers, R. B., Manne, U., Oelschlager, D. K., Weiss, H. L., Bostwick, D. G., et al. (1999). Ep-Cam levels in prostatic adenocarcinoma and prostatic intraepithelial neoplasia. The Journal of Urology, 162, 1462–1466.PubMed Poczatek, R. B., Myers, R. B., Manne, U., Oelschlager, D. K., Weiss, H. L., Bostwick, D. G., et al. (1999). Ep-Cam levels in prostatic adenocarcinoma and prostatic intraepithelial neoplasia. The Journal of Urology, 162, 1462–1466.PubMed
60.
go back to reference Went, P. T., Lugli, A., Meier, S., Bundi, M., Mirlacher, M., Sauter, G., et al. (2004). Frequent EpCam protein expression in human carcinomas. Human Pathology, 35, 122–128.PubMed Went, P. T., Lugli, A., Meier, S., Bundi, M., Mirlacher, M., Sauter, G., et al. (2004). Frequent EpCam protein expression in human carcinomas. Human Pathology, 35, 122–128.PubMed
61.
go back to reference Zellweger, T., Ninck, C., Bloch, M., Mirlacher, M., Koivisto, P. A., Helin, H. J., et al. (2005). Expression patterns of potential therapeutic targets in prostate cancer. International Journal of Cancer, 113, 619–628. Zellweger, T., Ninck, C., Bloch, M., Mirlacher, M., Koivisto, P. A., Helin, H. J., et al. (2005). Expression patterns of potential therapeutic targets in prostate cancer. International Journal of Cancer, 113, 619–628.
62.
go back to reference Cunha, G. R., Ricke, W., Thomson, A., Marker, P. C., Risbridger, G., Hayward, S. W., et al. (2004). Hormonal, cellular, and molecular regulation of normal and neoplastic prostatic development. The Journal of Steroid Biochemistry and Molecular Biology, 92, 221–236.PubMed Cunha, G. R., Ricke, W., Thomson, A., Marker, P. C., Risbridger, G., Hayward, S. W., et al. (2004). Hormonal, cellular, and molecular regulation of normal and neoplastic prostatic development. The Journal of Steroid Biochemistry and Molecular Biology, 92, 221–236.PubMed
63.
go back to reference Ghosh, K., & Ingber, D. E. (2007). Micromechanical control of cell and tissue development: implications for tissue engineering. Advanced Drug Delivery Reviews, 59, 1306–1318.PubMed Ghosh, K., & Ingber, D. E. (2007). Micromechanical control of cell and tissue development: implications for tissue engineering. Advanced Drug Delivery Reviews, 59, 1306–1318.PubMed
64.
go back to reference Chung, L. W. (2005). Better to give than receive: my exciting journey in science. Cancer Biology & Therapy, 4, 348–352. Chung, L. W. (2005). Better to give than receive: my exciting journey in science. Cancer Biology & Therapy, 4, 348–352.
65.
go back to reference Mukherjee, S., Richardson, A. M., Rodriguez-Canales, J., Ylaya, K., Erickson, H. S., Player, A., et al. (2009). Identification of EpCAM as a molecular target of prostate cancer stroma. The American Journal of Pathology, 175, 2277–2287.PubMed Mukherjee, S., Richardson, A. M., Rodriguez-Canales, J., Ylaya, K., Erickson, H. S., Player, A., et al. (2009). Identification of EpCAM as a molecular target of prostate cancer stroma. The American Journal of Pathology, 175, 2277–2287.PubMed
66.
go back to reference Furusato, B., Tsunoda, T., Shaheduzzaman, S., Nau, M. E., Vahey, M., Petrovics, G., et al. (2010). Osteoblast-specific factor 2 expression in prostate cancer-associated stroma: identification through microarray technology. Urology, 75, 768–772.PubMed Furusato, B., Tsunoda, T., Shaheduzzaman, S., Nau, M. E., Vahey, M., Petrovics, G., et al. (2010). Osteoblast-specific factor 2 expression in prostate cancer-associated stroma: identification through microarray technology. Urology, 75, 768–772.PubMed
67.
go back to reference Sung, S. Y., & Chung, L. W. (2002). Prostate tumor–stroma interaction: molecular mechanisms and opportunities for therapeutic targeting. Differentiation, 70, 506–521.PubMed Sung, S. Y., & Chung, L. W. (2002). Prostate tumor–stroma interaction: molecular mechanisms and opportunities for therapeutic targeting. Differentiation, 70, 506–521.PubMed
68.
go back to reference Richardson, A. M., Woodson, K., Wang, Y., Rodriguez-Canales, J., Erickson, H. S., Tangrea, M. A., et al. (2007). Global expression analysis of prostate cancer-associated stroma and epithelia. Diagnostic Molecular Pathology, 16, 189–197.PubMed Richardson, A. M., Woodson, K., Wang, Y., Rodriguez-Canales, J., Erickson, H. S., Tangrea, M. A., et al. (2007). Global expression analysis of prostate cancer-associated stroma and epithelia. Diagnostic Molecular Pathology, 16, 189–197.PubMed
69.
go back to reference Munz, M., Kieu, C., Mack, B., Schmitt, B., Zeidler, R., & Gires, O. (2004). The carcinoma-associated antigen EpCAM upregulates c-myc and induces cell proliferation. Oncogene, 23, 5748–5758.PubMed Munz, M., Kieu, C., Mack, B., Schmitt, B., Zeidler, R., & Gires, O. (2004). The carcinoma-associated antigen EpCAM upregulates c-myc and induces cell proliferation. Oncogene, 23, 5748–5758.PubMed
70.
go back to reference Eferl, R., & Wagner, E. F. (2003). AP-1: a double-edged sword in tumorigenesis. Nature Reviews. Cancer, 3, 859–868.PubMed Eferl, R., & Wagner, E. F. (2003). AP-1: a double-edged sword in tumorigenesis. Nature Reviews. Cancer, 3, 859–868.PubMed
71.
go back to reference Sankpal, N. V., Mayfield, J. D., Willman, M. W., Fleming, T. P., & Gillanders, W. E. (2011). Activator protein 1 (AP-1) contributes to EpCAM-dependent breast cancer invasion. Breast Cancer Research, 13, R124.PubMed Sankpal, N. V., Mayfield, J. D., Willman, M. W., Fleming, T. P., & Gillanders, W. E. (2011). Activator protein 1 (AP-1) contributes to EpCAM-dependent breast cancer invasion. Breast Cancer Research, 13, R124.PubMed
72.
go back to reference Gostner, J. M., Fong, D., Wrulich, O. A., Lehne, F., Zitt, M., Hermann, M., et al. (2011). Effects of EpCAM overexpression on human breast cancer cell lines. BMC Cancer, 11, 45.PubMed Gostner, J. M., Fong, D., Wrulich, O. A., Lehne, F., Zitt, M., Hermann, M., et al. (2011). Effects of EpCAM overexpression on human breast cancer cell lines. BMC Cancer, 11, 45.PubMed
73.
go back to reference Carpenter, G., & Red Brewer, M. (2009). EpCAM: another surface-to-nucleus missile. Cancer Cell, 15, 165–166.PubMed Carpenter, G., & Red Brewer, M. (2009). EpCAM: another surface-to-nucleus missile. Cancer Cell, 15, 165–166.PubMed
74.
go back to reference Denzel, S., Maetzel, D., Mack, B., Eggert, C., Barr, G., & Gires, O. (2009). Initial activation of EpCAM cleavage via cell-to-cell contact. BMC Cancer, 9, 402.PubMed Denzel, S., Maetzel, D., Mack, B., Eggert, C., Barr, G., & Gires, O. (2009). Initial activation of EpCAM cleavage via cell-to-cell contact. BMC Cancer, 9, 402.PubMed
75.
go back to reference Naundorf, S., Preithner, S., Mayer, P., Lippold, S., Wolf, A., Hanakam, F., et al. (2002). In vitro and in vivo activity of MT201, a fully human monoclonal antibody for pancarcinoma treatment. International Journal of Cancer, 100, 101–110. Naundorf, S., Preithner, S., Mayer, P., Lippold, S., Wolf, A., Hanakam, F., et al. (2002). In vitro and in vivo activity of MT201, a fully human monoclonal antibody for pancarcinoma treatment. International Journal of Cancer, 100, 101–110.
76.
go back to reference Kurtz, J. E., & Dufour, P. (2010). Adecatumumab: an anti-EpCAM monoclonal antibody, from the bench to the bedside. Expert Opinion on Biological Therapy, 10, 951–958.PubMed Kurtz, J. E., & Dufour, P. (2010). Adecatumumab: an anti-EpCAM monoclonal antibody, from the bench to the bedside. Expert Opinion on Biological Therapy, 10, 951–958.PubMed
77.
go back to reference Gires, O., & Bauerle, P. A. (2010). EpCAM as a target in cancer therapy. Journal of Clinical Oncology, 28(15), e239–240. author reply e241–e232.PubMed Gires, O., & Bauerle, P. A. (2010). EpCAM as a target in cancer therapy. Journal of Clinical Oncology, 28(15), e239–240. author reply e241–e232.PubMed
78.
go back to reference Bellati, F., Napoletano, C., Gasparri, M. L., Visconti, V., Zizzari, I. G., Ruscito, I., et al. (2011). Monoclonal antibodies in gynecological cancer: a critical point of view. Clinical & Developmental Immunology, 2011, 890758. Bellati, F., Napoletano, C., Gasparri, M. L., Visconti, V., Zizzari, I. G., Ruscito, I., et al. (2011). Monoclonal antibodies in gynecological cancer: a critical point of view. Clinical & Developmental Immunology, 2011, 890758.
79.
go back to reference Groth, A., Salnikov, A. V., Ottinger, S., Gladkich, J., Liu, L., Kallifatidis, G., et al. (2012). New gene-immunotherapy combining TRAIL-lymphocytes and EpCAMxCD3 bispecific antibody for tumor targeting. Clinical Cancer Research, 18, 1028–1038.PubMed Groth, A., Salnikov, A. V., Ottinger, S., Gladkich, J., Liu, L., Kallifatidis, G., et al. (2012). New gene-immunotherapy combining TRAIL-lymphocytes and EpCAMxCD3 bispecific antibody for tumor targeting. Clinical Cancer Research, 18, 1028–1038.PubMed
80.
go back to reference Oberneder, R., Weckermann, D., Ebner, B., Quadt, C., Kirchinger, P., Raum, T., et al. (2006). A phase I study with adecatumumab, a human antibody directed against epithelial cell adhesion molecule, in hormone refractory prostate cancer patients. European Journal of Cancer, 42, 2530–2538.PubMed Oberneder, R., Weckermann, D., Ebner, B., Quadt, C., Kirchinger, P., Raum, T., et al. (2006). A phase I study with adecatumumab, a human antibody directed against epithelial cell adhesion molecule, in hormone refractory prostate cancer patients. European Journal of Cancer, 42, 2530–2538.PubMed
81.
go back to reference Suzuki, K., Nakamura, K., Kato, K., Hamada, H., & Tsukamoto, T. (2007). Exploration of target molecules for prostate cancer gene therapy. The Prostate, 67, 1163–1173.PubMed Suzuki, K., Nakamura, K., Kato, K., Hamada, H., & Tsukamoto, T. (2007). Exploration of target molecules for prostate cancer gene therapy. The Prostate, 67, 1163–1173.PubMed
82.
go back to reference Moldenhauer, G., Salnikov, A. V., Luttgau, S., Herr, I., Anderl, J., & Faulstich, H. (2012). Therapeutic potential of amanitin-conjugated anti-epithelial cell adhesion molecule monoclonal antibody against pancreatic carcinoma. Journal of the National Cancer Institute, 104, 622–634.PubMed Moldenhauer, G., Salnikov, A. V., Luttgau, S., Herr, I., Anderl, J., & Faulstich, H. (2012). Therapeutic potential of amanitin-conjugated anti-epithelial cell adhesion molecule monoclonal antibody against pancreatic carcinoma. Journal of the National Cancer Institute, 104, 622–634.PubMed
83.
go back to reference Yamashita, T., Ji, J., Budhu, A., Forgues, M., Yang, W., Wang, H. Y., et al. (2009). EpCAM-positive hepatocellular carcinoma cells are tumor-initiating cells with stem/progenitor cell features. Gastroenterology, 136, 1012–1024.PubMed Yamashita, T., Ji, J., Budhu, A., Forgues, M., Yang, W., Wang, H. Y., et al. (2009). EpCAM-positive hepatocellular carcinoma cells are tumor-initiating cells with stem/progenitor cell features. Gastroenterology, 136, 1012–1024.PubMed
84.
go back to reference Terris, B., Cavard, C., & Perret, C. (2010). EpCAM, a new marker for cancer stem cells in hepatocellular carcinoma. Journal of Hepatology, 52, 280–281.PubMed Terris, B., Cavard, C., & Perret, C. (2010). EpCAM, a new marker for cancer stem cells in hepatocellular carcinoma. Journal of Hepatology, 52, 280–281.PubMed
85.
go back to reference Kawashima, R., Abei, M., Fukuda, K., Nakamura, K., Murata, T., Wakayama, M., et al. (2011). EpCAM- and EGFR-targeted selective gene therapy for biliary cancers using Z33-fiber-modified adenovirus. International Journal of Cancer, 129, 1244–1253. Kawashima, R., Abei, M., Fukuda, K., Nakamura, K., Murata, T., Wakayama, M., et al. (2011). EpCAM- and EGFR-targeted selective gene therapy for biliary cancers using Z33-fiber-modified adenovirus. International Journal of Cancer, 129, 1244–1253.
86.
go back to reference Marme, A., Strauss, G., Bastert, G., Grischke, E. M., & Moldenhauer, G. (2002). Intraperitoneal bispecific antibody (HEA125xOKT3) therapy inhibits malignant ascites production in advanced ovarian carcinoma. International Journal of Cancer, 101, 183–189. Marme, A., Strauss, G., Bastert, G., Grischke, E. M., & Moldenhauer, G. (2002). Intraperitoneal bispecific antibody (HEA125xOKT3) therapy inhibits malignant ascites production in advanced ovarian carcinoma. International Journal of Cancer, 101, 183–189.
87.
go back to reference Salnikov, A. V., Groth, A., Apel, A., Kallifatidis, G., Beckermann, B. M., Khamidjanov, A., et al. (2009). Targeting of cancer stem cell marker EpCAM by bispecific antibody EpCAMxCD3 inhibits pancreatic carcinoma. Journal of Cellular and Molecular Medicine, 13, 4023–4033.PubMed Salnikov, A. V., Groth, A., Apel, A., Kallifatidis, G., Beckermann, B. M., Khamidjanov, A., et al. (2009). Targeting of cancer stem cell marker EpCAM by bispecific antibody EpCAMxCD3 inhibits pancreatic carcinoma. Journal of Cellular and Molecular Medicine, 13, 4023–4033.PubMed
88.
go back to reference Ammons, W. S., Bauer, R. J., Horwitz, A. H., Chen, Z. J., Bautista, E., Ruan, H. H., et al. (2003). In vitro and in vivo pharmacology and pharmacokinetics of a human engineered monoclonal antibody to epithelial cell adhesion molecule. Neoplasia, 5, 146–154.PubMed Ammons, W. S., Bauer, R. J., Horwitz, A. H., Chen, Z. J., Bautista, E., Ruan, H. H., et al. (2003). In vitro and in vivo pharmacology and pharmacokinetics of a human engineered monoclonal antibody to epithelial cell adhesion molecule. Neoplasia, 5, 146–154.PubMed
89.
go back to reference Goel, S., Bauer, R. J., Desai, K., Bulgaru, A., Iqbal, T., Strachan, B. K., et al. (2007). Pharmacokinetic and safety study of subcutaneously administered weekly ING-1, a human engineere monoclonal antibody targeting human EpCAM, in patients with advanced solid tumors. Annals of Oncology, 18, 1704–1707.PubMed Goel, S., Bauer, R. J., Desai, K., Bulgaru, A., Iqbal, T., Strachan, B. K., et al. (2007). Pharmacokinetic and safety study of subcutaneously administered weekly ING-1, a human engineere monoclonal antibody targeting human EpCAM, in patients with advanced solid tumors. Annals of Oncology, 18, 1704–1707.PubMed
90.
go back to reference Winkler, J., Martin-Killias, P., Pluckthun, A., & Zangemeister-Wittke, U. (2009). EpCAM-targeted delivery of nanocomplexed siRNA to tumor cells with designed ankyrin repeat proteins. Molecular Cancer Therapeutics, 8, 2674–2683.PubMed Winkler, J., Martin-Killias, P., Pluckthun, A., & Zangemeister-Wittke, U. (2009). EpCAM-targeted delivery of nanocomplexed siRNA to tumor cells with designed ankyrin repeat proteins. Molecular Cancer Therapeutics, 8, 2674–2683.PubMed
91.
go back to reference Seimetz, D., Lindhofer, H., & Bokemeyer, C. (2010). Development and approval of the trifunctional antibody catumaxomab (anti-EpCAM x anti-CD3) as a targeted cancer immunotherapy. Cancer Treatment Reviews, 36, 458–467.PubMed Seimetz, D., Lindhofer, H., & Bokemeyer, C. (2010). Development and approval of the trifunctional antibody catumaxomab (anti-EpCAM x anti-CD3) as a targeted cancer immunotherapy. Cancer Treatment Reviews, 36, 458–467.PubMed
92.
go back to reference Heiss, M. M., Strohlein, M. A., Jager, M., Kimmig, R., Burges, A., Schoberth, A., et al. (2005). Immunotherapy of malignant ascites with trifunctional antibodies. International Journal of Cancer, 117, 435–443. Heiss, M. M., Strohlein, M. A., Jager, M., Kimmig, R., Burges, A., Schoberth, A., et al. (2005). Immunotherapy of malignant ascites with trifunctional antibodies. International Journal of Cancer, 117, 435–443.
93.
go back to reference Burges, A., Wimberger, P., Kumper, C., Gorbounova, V., Sommer, H., Schmalfeldt, B., et al. (2007). Effective relief of malignant ascites in patients with advanced ovarian cancer by a trifunctional anti-EpCAM x anti-CD3 antibody: a phase I/II study. Clinical Cancer Research, 13, 3899–3905.PubMed Burges, A., Wimberger, P., Kumper, C., Gorbounova, V., Sommer, H., Schmalfeldt, B., et al. (2007). Effective relief of malignant ascites in patients with advanced ovarian cancer by a trifunctional anti-EpCAM x anti-CD3 antibody: a phase I/II study. Clinical Cancer Research, 13, 3899–3905.PubMed
94.
go back to reference Jager, M., Schoberth, A., Ruf, P., Hess, J., Hennig, M., Schmalfeldt, B., et al. (2012). Immunomonitoring results of a phase II/III study of malignant ascites patients treated with the trifunctional antibody catumaxomab (anti-EpCAM x anti-CD3). Cancer Research, 72, 24–32.PubMed Jager, M., Schoberth, A., Ruf, P., Hess, J., Hennig, M., Schmalfeldt, B., et al. (2012). Immunomonitoring results of a phase II/III study of malignant ascites patients treated with the trifunctional antibody catumaxomab (anti-EpCAM x anti-CD3). Cancer Research, 72, 24–32.PubMed
95.
go back to reference Shigdar, S., Lin, J., Yu, Y., Pastuovic, M., Wei, M., & Duan, W. (2011). RNA aptamer against a cancer stem cell marker epithelial cell adhesion molecule. Cancer Science, 102, 991–998.PubMed Shigdar, S., Lin, J., Yu, Y., Pastuovic, M., Wei, M., & Duan, W. (2011). RNA aptamer against a cancer stem cell marker epithelial cell adhesion molecule. Cancer Science, 102, 991–998.PubMed
96.
go back to reference Barbas, A. S., & White, R. R. (2009). The development and testing of aptamers for cancer. Current Opinion in Investigational Drugs, 10, 572–578.PubMed Barbas, A. S., & White, R. R. (2009). The development and testing of aptamers for cancer. Current Opinion in Investigational Drugs, 10, 572–578.PubMed
97.
go back to reference Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100, 3983–3988.PubMed Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100, 3983–3988.PubMed
98.
go back to reference Dalerba, P., Cho, R. W., & Clarke, M. F. (2007). Cancer stem cells: models and concepts. Annual Review of Medicine, 58, 267–284.PubMed Dalerba, P., Cho, R. W., & Clarke, M. F. (2007). Cancer stem cells: models and concepts. Annual Review of Medicine, 58, 267–284.PubMed
99.
go back to reference O'Brien, C. A., Pollett, A., Gallinger, S., & Dick, J. E. (2007). A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature, 445, 106–110.PubMed O'Brien, C. A., Pollett, A., Gallinger, S., & Dick, J. E. (2007). A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature, 445, 106–110.PubMed
100.
go back to reference Li, C., Heidt, D. G., Dalerba, P., Burant, C. F., Zhang, L., Adsay, V., et al. (2007). Identification of pancreatic cancer stem cells. Cancer Research, 67, 1030–1037.PubMed Li, C., Heidt, D. G., Dalerba, P., Burant, C. F., Zhang, L., Adsay, V., et al. (2007). Identification of pancreatic cancer stem cells. Cancer Research, 67, 1030–1037.PubMed
101.
go back to reference Lugli, A., Iezzi, G., Hostettler, I., Muraro, M. G., Mele, V., Tornillo, L., et al. (2010). Prognostic impact of the expression of putative cancer stem cell markers CD133, CD166, CD44s, EpCAM, and ALDH1 in colorectal cancer. British Journal of Cancer, 103, 382–390.PubMed Lugli, A., Iezzi, G., Hostettler, I., Muraro, M. G., Mele, V., Tornillo, L., et al. (2010). Prognostic impact of the expression of putative cancer stem cell markers CD133, CD166, CD44s, EpCAM, and ALDH1 in colorectal cancer. British Journal of Cancer, 103, 382–390.PubMed
102.
go back to reference Han, M. E., Jeon, T. Y., Hwang, S. H., Lee, Y. S., Kim, H. J., Shim, H. E., et al. (2011). Cancer spheres from gastric cancer patients provide an ideal model system for cancer stem cell research. Cellular and Molecular Life Sciences, 68, 3589–3605.PubMed Han, M. E., Jeon, T. Y., Hwang, S. H., Lee, Y. S., Kim, H. J., Shim, H. E., et al. (2011). Cancer spheres from gastric cancer patients provide an ideal model system for cancer stem cell research. Cellular and Molecular Life Sciences, 68, 3589–3605.PubMed
103.
go back to reference Meirelles, K., Benedict, L. A., Dombkowski, D., Pepin, D., Preffer, F. I., Teixeira, J., et al. (2012). Human ovarian cancer stem/progenitor cells are stimulated by doxorubicin but inhibited by Mullerian inhibiting substance. Proceedings of the National Academy of Sciences of the United States of America, 109, 2358–2363.PubMed Meirelles, K., Benedict, L. A., Dombkowski, D., Pepin, D., Preffer, F. I., Teixeira, J., et al. (2012). Human ovarian cancer stem/progenitor cells are stimulated by doxorubicin but inhibited by Mullerian inhibiting substance. Proceedings of the National Academy of Sciences of the United States of America, 109, 2358–2363.PubMed
104.
go back to reference Coumans, F. A., Doggen, C. J., Attard, G., de Bono, J. S., & Terstappen, L. W. (2010). All circulating EpCAM+CK+CD45− objects predict overall survival in castration-resistant prostate cancer. Annals of Oncology, 21, 1851–1857.PubMed Coumans, F. A., Doggen, C. J., Attard, G., de Bono, J. S., & Terstappen, L. W. (2010). All circulating EpCAM+CK+CD45 objects predict overall survival in castration-resistant prostate cancer. Annals of Oncology, 21, 1851–1857.PubMed
105.
go back to reference Aktas, B., Muller, V., Tewes, M., Zeitz, J., Kasimir-Bauer, S., Loehberg, C. R., et al. (2011). Comparison of estrogen and progesterone receptor status of circulating tumor cells and the primary tumor in metastatic breast cancer patients. Gynecologic Oncology, 122, 356–360.PubMed Aktas, B., Muller, V., Tewes, M., Zeitz, J., Kasimir-Bauer, S., Loehberg, C. R., et al. (2011). Comparison of estrogen and progesterone receptor status of circulating tumor cells and the primary tumor in metastatic breast cancer patients. Gynecologic Oncology, 122, 356–360.PubMed
Metadata
Title
Role of the EpCAM (CD326) in prostate cancer metastasis and progression
Authors
Jie Ni
Paul J. Cozzi
Wei Duan
Sarah Shigdar
Peter H. Graham
Kearsley H. John
Yong Li
Publication date
01-12-2012
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 3-4/2012
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-012-9389-1

Other articles of this Issue 3-4/2012

Cancer and Metastasis Reviews 3-4/2012 Go to the issue

Announcement

Biographies

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine