Skip to main content
Top
Published in: Cancer and Metastasis Reviews 3-4/2012

01-12-2012 | Non-Thematic Review

Pharmacological strategies to spare normal tissues from radiation damage: useless or overlooked therapeutics?

Authors: Céline Bourgier, Antonin Levy, Marie-Catherine Vozenin, Eric Deutsch

Published in: Cancer and Metastasis Reviews | Issue 3-4/2012

Login to get access

Abstract

Half of all the patients with a solid malignant tumor will receive radiation therapy (RT) with a curative or palliative intent during the course of their treatment. Deleterious effects may result in acute and chronic toxicities that reduce the long-term health-related quality of life of these patients. High-tech RT enables precise beam delivery that conforms closely to the shape of tumors yielding an improved efficacy/toxicity ratio. However, sophisticated RT will not completely prevent toxicity in the irradiated field, especially as normal tissue constraints are offset by dose escalation or concurrent chemotherapy. Pharmacological agents can be used before or after RT to reduce side effects and are classified based on the timing of RT delivery. “Radioprotectors,” used as a molecular prophylactic strategy before RT, are mostly based on antioxidant properties. Currently, amifostine is the only radioprotector approved for use in the clinic. “Mitigators,” given during or shortly after RT, reduce the action of cellular ionizing radiation on normal tissues before the emergence of symptoms. Lastly, a “treatment” is the administration of an agent once symptoms have developed in order to reverse those that are mostly due to fibrosis. This review presents the major known physiopathological mechanisms involved in radiation response and tissue damage for which potential pharmacological candidates are emerging. We discuss the potential clinical relevance of such therapeutics in the era of high-precision radiotherapy.
Literature
1.
go back to reference Stone, H. B., Moulder, J. E., Coleman, C. N., Ang, K. K., Anscher, M. S., Barcellos-Hoff, M. H., et al. (2004). Models for evaluating agents intended for the prophylaxis, mitigation and treatment of radiation injuries. Report of an NCI Workshop, December 3–4, 2003. Radiation Research, 162(6), 711–728.PubMed Stone, H. B., Moulder, J. E., Coleman, C. N., Ang, K. K., Anscher, M. S., Barcellos-Hoff, M. H., et al. (2004). Models for evaluating agents intended for the prophylaxis, mitigation and treatment of radiation injuries. Report of an NCI Workshop, December 3–4, 2003. Radiation Research, 162(6), 711–728.PubMed
2.
go back to reference Movsas, B., Vikram, B., Hauer-Jensen, M., Moulder, J. E., Basch, E., Brown, S. L., et al. (2011). Decreasing the adverse effects of cancer therapy: National Cancer Institute guidance for the clinical development of radiation injury mitigators. Clinical Cancer Research, 17(2), 222–228. doi:10.1158/1078-0432.CCR-10-1402.PubMed Movsas, B., Vikram, B., Hauer-Jensen, M., Moulder, J. E., Basch, E., Brown, S. L., et al. (2011). Decreasing the adverse effects of cancer therapy: National Cancer Institute guidance for the clinical development of radiation injury mitigators. Clinical Cancer Research, 17(2), 222–228. doi:10.​1158/​1078-0432.​CCR-10-1402.PubMed
4.
go back to reference Calabro-Jones, P. M., Fahey, R. C., Smoluk, G. D., & Ward, J. F. (1985). Alkaline phosphatase promotes radioprotection and accumulation of WR-1065 in V79-171 cells incubated in medium containing WR-2721. International Journal of Radiation Biology and Related Studies in Physics, Chemistry, and Medicine, 47(1), 23–27.PubMed Calabro-Jones, P. M., Fahey, R. C., Smoluk, G. D., & Ward, J. F. (1985). Alkaline phosphatase promotes radioprotection and accumulation of WR-1065 in V79-171 cells incubated in medium containing WR-2721. International Journal of Radiation Biology and Related Studies in Physics, Chemistry, and Medicine, 47(1), 23–27.PubMed
5.
go back to reference Brizel, D. M., Wasserman, T. H., Henke, M., Strnad, V., Rudat, V., Monnier, A., et al. (2000). Phase III randomized trial of amifostine as a radioprotector in head and neck cancer. Journal of Clinical Oncology, 18(19), 3339–3345.PubMed Brizel, D. M., Wasserman, T. H., Henke, M., Strnad, V., Rudat, V., Monnier, A., et al. (2000). Phase III randomized trial of amifostine as a radioprotector in head and neck cancer. Journal of Clinical Oncology, 18(19), 3339–3345.PubMed
6.
go back to reference Athanassiou, H., Antonadou, D., Coliarakis, N., Kouveli, A., Synodinou, M., Paraskevaidis, M., et al. (2003). Protective effect of amifostine during fractionated radiotherapy in patients with pelvic carcinomas: results of a randomized trial. International Journal of Radiation Oncology, Biology, Physics, 56(4), 1154–1160.PubMed Athanassiou, H., Antonadou, D., Coliarakis, N., Kouveli, A., Synodinou, M., Paraskevaidis, M., et al. (2003). Protective effect of amifostine during fractionated radiotherapy in patients with pelvic carcinomas: results of a randomized trial. International Journal of Radiation Oncology, Biology, Physics, 56(4), 1154–1160.PubMed
7.
go back to reference Anne, P. R., Machtay, M., Rosenthal, D. I., Brizel, D. M., Morrison, W. H., Irwin, D. H., et al. (2007). A phase II trial of subcutaneous amifostine and radiation therapy in patients with head-and-neck cancer. International Journal of Radiation Oncology, Biology, Physics, 67(2), 445–452. doi:10.1016/j.ijrobp.2006.08.044.PubMed Anne, P. R., Machtay, M., Rosenthal, D. I., Brizel, D. M., Morrison, W. H., Irwin, D. H., et al. (2007). A phase II trial of subcutaneous amifostine and radiation therapy in patients with head-and-neck cancer. International Journal of Radiation Oncology, Biology, Physics, 67(2), 445–452. doi:10.​1016/​j.​ijrobp.​2006.​08.​044.PubMed
8.
go back to reference Wasserman, T. H., Brizel, D. M., Henke, M., Monnier, A., Eschwege, F., Sauer, R., et al. (2005). Influence of intravenous amifostine on xerostomia, tumor control, and survival after radiotherapy for head-and-neck cancer: 2-year follow-up of a prospective, randomized, phase III trial. International Journal of Radiation Oncology, Biology, Physics, 63(4), 985–990. doi:10.1016/j.ijrobp.2005.07.966.PubMed Wasserman, T. H., Brizel, D. M., Henke, M., Monnier, A., Eschwege, F., Sauer, R., et al. (2005). Influence of intravenous amifostine on xerostomia, tumor control, and survival after radiotherapy for head-and-neck cancer: 2-year follow-up of a prospective, randomized, phase III trial. International Journal of Radiation Oncology, Biology, Physics, 63(4), 985–990. doi:10.​1016/​j.​ijrobp.​2005.​07.​966.PubMed
9.
go back to reference Koukourakis, M. I., Kyrias, G., Kakolyris, S., Kouroussis, C., Frangiadaki, C., Giatromanolaki, A., et al. (2000). Subcutaneous administration of amifostine during fractionated radiotherapy: a randomized phase II study. Journal of Clinical Oncology, 18(11), 2226–2233.PubMed Koukourakis, M. I., Kyrias, G., Kakolyris, S., Kouroussis, C., Frangiadaki, C., Giatromanolaki, A., et al. (2000). Subcutaneous administration of amifostine during fractionated radiotherapy: a randomized phase II study. Journal of Clinical Oncology, 18(11), 2226–2233.PubMed
10.
go back to reference Antonadou, D., Coliarakis, N., Synodinou, M., Athanassiou, H., Kouveli, A., Verigos, C., et al. (2001). Randomized phase III trial of radiation treatment +/− amifostine in patients with advanced-stage lung cancer. International Journal of Radiation Oncology, Biology, Physics, 51(4), 915–922.PubMed Antonadou, D., Coliarakis, N., Synodinou, M., Athanassiou, H., Kouveli, A., Verigos, C., et al. (2001). Randomized phase III trial of radiation treatment +/− amifostine in patients with advanced-stage lung cancer. International Journal of Radiation Oncology, Biology, Physics, 51(4), 915–922.PubMed
11.
go back to reference Mitchell, J. B., Samuni, A., Krishna, M. C., DeGraff, W. G., Ahn, M. S., Samuni, U., et al. (1990). Biologically active metal-independent superoxide dismutase mimics. Biochemistry, 29(11), 2802–2807.PubMed Mitchell, J. B., Samuni, A., Krishna, M. C., DeGraff, W. G., Ahn, M. S., Samuni, U., et al. (1990). Biologically active metal-independent superoxide dismutase mimics. Biochemistry, 29(11), 2802–2807.PubMed
12.
go back to reference Citrin, D., Cotrim, A. P., Hyodo, F., Baum, B. J., Krishna, M. C., & Mitchell, J. B. Radioprotectors and mitigators of radiation-induced normal tissue injury. The Oncologist, 15(4), 360–371. doi:10.1634/theoncologist.2009-S104. Citrin, D., Cotrim, A. P., Hyodo, F., Baum, B. J., Krishna, M. C., & Mitchell, J. B. Radioprotectors and mitigators of radiation-induced normal tissue injury. The Oncologist, 15(4), 360–371. doi:10.​1634/​theoncologist.​2009-S104.
13.
go back to reference Hahn, S. M., Sullivan, F. J., DeLuca, A. M., Krishna, C. M., Wersto, N., Venzon, D., et al. (1997). Evaluation of tempol radioprotection in a murine tumor model. Free Radical Biology & Medicine, 22(7), 1211–1216. Hahn, S. M., Sullivan, F. J., DeLuca, A. M., Krishna, C. M., Wersto, N., Venzon, D., et al. (1997). Evaluation of tempol radioprotection in a murine tumor model. Free Radical Biology & Medicine, 22(7), 1211–1216.
14.
go back to reference Kowaltowski, A. J., Castilho, R. F., & Vercesi, A. E. (1996). Opening of the mitochondrial permeability transition pore by uncoupling or inorganic phosphate in the presence of Ca2+ is dependent on mitochondrial-generated reactive oxygen species. FEBS Letters, 378(2), 150–152.PubMed Kowaltowski, A. J., Castilho, R. F., & Vercesi, A. E. (1996). Opening of the mitochondrial permeability transition pore by uncoupling or inorganic phosphate in the presence of Ca2+ is dependent on mitochondrial-generated reactive oxygen species. FEBS Letters, 378(2), 150–152.PubMed
16.
go back to reference Jiang, J., Stoyanovsky, D. A., Belikova, N. A., Tyurina, Y. Y., Zhao, Q., Tungekar, M. A., et al. (2009). A mitochondria-targeted triphenylphosphonium-conjugated nitroxide functions as a radioprotector/mitigator. Radiation Research, 172(6), 706–717. doi:10.1667/RR1729.1.PubMed Jiang, J., Stoyanovsky, D. A., Belikova, N. A., Tyurina, Y. Y., Zhao, Q., Tungekar, M. A., et al. (2009). A mitochondria-targeted triphenylphosphonium-conjugated nitroxide functions as a radioprotector/mitigator. Radiation Research, 172(6), 706–717. doi:10.​1667/​RR1729.​1.PubMed
17.
go back to reference Belikova, N. A., Jiang, J., Stoyanovsky, D. A., Glumac, A., Bayir, H., Greenberger, J. S., et al. (2009). Mitochondria-targeted (2-hydroxyamino-vinyl)-triphenyl-phosphonium releases NO(.) and protects mouse embryonic cells against irradiation-induced apoptosis. FEBS Letters, 583(12), 1945–1950. doi:10.1016/j.febslet.2009.04.050.PubMed Belikova, N. A., Jiang, J., Stoyanovsky, D. A., Glumac, A., Bayir, H., Greenberger, J. S., et al. (2009). Mitochondria-targeted (2-hydroxyamino-vinyl)-triphenyl-phosphonium releases NO(.) and protects mouse embryonic cells against irradiation-induced apoptosis. FEBS Letters, 583(12), 1945–1950. doi:10.​1016/​j.​febslet.​2009.​04.​050.PubMed
18.
go back to reference Davis, T. A., Mungunsukh, O., Zins, S., Day, R. M., & Landauer, M. R. (2008). Genistein induces radioprotection by hematopoietic stem cell quiescence. International Journal of Radiation Biology, 84(9), 713–726. doi:10.1080/09553000802317778.PubMed Davis, T. A., Mungunsukh, O., Zins, S., Day, R. M., & Landauer, M. R. (2008). Genistein induces radioprotection by hematopoietic stem cell quiescence. International Journal of Radiation Biology, 84(9), 713–726. doi:10.​1080/​0955300080231777​8.PubMed
19.
go back to reference Cohen, E. P., Fish, B. L., Irving, A. A., Rajapurkar, M. M., Shah, S. V., & Moulder, J. E. (2009). Radiation nephropathy is not mitigated by antagonists of oxidative stress. Radiation Research, 172(2), 260–264. doi:10.1667/RR1739.PubMed Cohen, E. P., Fish, B. L., Irving, A. A., Rajapurkar, M. M., Shah, S. V., & Moulder, J. E. (2009). Radiation nephropathy is not mitigated by antagonists of oxidative stress. Radiation Research, 172(2), 260–264. doi:10.​1667/​RR1739.PubMed
20.
go back to reference Mahmood, J., Jelveh, S., Calveley, V., Zaidi, A., Doctrow, S. R., & Hill, R. P. (2011). Mitigation of radiation-induced lung injury by genistein and EUK-207. International Journal of Radiation Biology, 87(8), 889–901. doi:10.3109/09553002.2011.583315.PubMed Mahmood, J., Jelveh, S., Calveley, V., Zaidi, A., Doctrow, S. R., & Hill, R. P. (2011). Mitigation of radiation-induced lung injury by genistein and EUK-207. International Journal of Radiation Biology, 87(8), 889–901. doi:10.​3109/​09553002.​2011.​583315.PubMed
21.
go back to reference Hillman, G. G., Singh-Gupta, V., Runyan, L., Yunker, C. K., Rakowski, J. T., Sarkar, F. H., et al. (2011). Soy isoflavones radiosensitize lung cancer while mitigating normal tissue injury. Radiotherapy and Oncology, 101(2), 329–336. doi:10.1016/j.radonc.2011.10.020.PubMed Hillman, G. G., Singh-Gupta, V., Runyan, L., Yunker, C. K., Rakowski, J. T., Sarkar, F. H., et al. (2011). Soy isoflavones radiosensitize lung cancer while mitigating normal tissue injury. Radiotherapy and Oncology, 101(2), 329–336. doi:10.​1016/​j.​radonc.​2011.​10.​020.PubMed
22.
go back to reference Baillet, F., Housset, M., Michelson, A. M., & Puget, K. (1986). Treatment of radiofibrosis with liposomal superoxide dismutase. Preliminary results of 50 cases. Free Radical Research Communications, 1(6), 387–394.PubMed Baillet, F., Housset, M., Michelson, A. M., & Puget, K. (1986). Treatment of radiofibrosis with liposomal superoxide dismutase. Preliminary results of 50 cases. Free Radical Research Communications, 1(6), 387–394.PubMed
23.
go back to reference Delanian, S., Baillet, F., Huart, J., Lefaix, J. L., Maulard, C., & Housset, M. (1994). Successful treatment of radiation-induced fibrosis using liposomal Cu/Zn superoxide dismutase: clinical trial. Radiotherapy and Oncology, 32(1), 12–20.PubMed Delanian, S., Baillet, F., Huart, J., Lefaix, J. L., Maulard, C., & Housset, M. (1994). Successful treatment of radiation-induced fibrosis using liposomal Cu/Zn superoxide dismutase: clinical trial. Radiotherapy and Oncology, 32(1), 12–20.PubMed
24.
go back to reference Molla, M., Panes, J., Casadevall, M., Salas, A., Conill, C., Biete, A., et al. (1999). Influence of dose-rate on inflammatory damage and adhesion molecule expression after abdominal radiation in the rat. International Journal of Radiation Oncology, Biology, Physics, 45(4), 1011–1018.PubMed Molla, M., Panes, J., Casadevall, M., Salas, A., Conill, C., Biete, A., et al. (1999). Influence of dose-rate on inflammatory damage and adhesion molecule expression after abdominal radiation in the rat. International Journal of Radiation Oncology, Biology, Physics, 45(4), 1011–1018.PubMed
25.
go back to reference Liu, H., Xiong, M., Xia, Y. F., Cui, N. J., Lu, R. B., Deng, L., et al. (2009). Studies on pentoxifylline and tocopherol combination for radiation-induced heart disease in rats. International Journal of Radiation Oncology, Biology, Physics, 73(5), 1552–1559. doi:10.1016/j.ijrobp.2008.12.005.PubMed Liu, H., Xiong, M., Xia, Y. F., Cui, N. J., Lu, R. B., Deng, L., et al. (2009). Studies on pentoxifylline and tocopherol combination for radiation-induced heart disease in rats. International Journal of Radiation Oncology, Biology, Physics, 73(5), 1552–1559. doi:10.​1016/​j.​ijrobp.​2008.​12.​005.PubMed
27.
go back to reference Gauter-Fleckenstein, B., Fleckenstein, K., Owzar, K., Jiang, C., Batinic-Haberle, I., & Vujaskovic, Z. (2008). Comparison of two Mn porphyrin-based mimics of superoxide dismutase in pulmonary radioprotection. Free Radical Biology & Medicine, 44(6), 982–989. doi:10.1016/j.freeradbiomed.2007.10.058. Gauter-Fleckenstein, B., Fleckenstein, K., Owzar, K., Jiang, C., Batinic-Haberle, I., & Vujaskovic, Z. (2008). Comparison of two Mn porphyrin-based mimics of superoxide dismutase in pulmonary radioprotection. Free Radical Biology & Medicine, 44(6), 982–989. doi:10.​1016/​j.​freeradbiomed.​2007.​10.​058.
28.
go back to reference Buentzel, J., Micke, O., Adamietz, I. A., Monnier, A., Glatzel, M., & de Vries, A. (2006). Intravenous amifostine during chemoradiotherapy for head-and-neck cancer: a randomized placebo-controlled phase III study. International Journal of Radiation Oncology, Biology, Physics, 64(3), 684–691. doi:10.1016/j.ijrobp.2005.08.005.PubMed Buentzel, J., Micke, O., Adamietz, I. A., Monnier, A., Glatzel, M., & de Vries, A. (2006). Intravenous amifostine during chemoradiotherapy for head-and-neck cancer: a randomized placebo-controlled phase III study. International Journal of Radiation Oncology, Biology, Physics, 64(3), 684–691. doi:10.​1016/​j.​ijrobp.​2005.​08.​005.PubMed
29.
go back to reference Belikova, N. A., Jiang, J., Tyurina, Y. Y., Zhao, Q., Epperly, M. W., Greenberger, J., et al. (2007). Cardiolipin-specific peroxidase reactions of cytochrome C in mitochondria during irradiation-induced apoptosis. International Journal of Radiation Oncology, Biology, Physics, 69(1), 176–186. doi:10.1016/j.ijrobp.2007.03.043.PubMed Belikova, N. A., Jiang, J., Tyurina, Y. Y., Zhao, Q., Epperly, M. W., Greenberger, J., et al. (2007). Cardiolipin-specific peroxidase reactions of cytochrome C in mitochondria during irradiation-induced apoptosis. International Journal of Radiation Oncology, Biology, Physics, 69(1), 176–186. doi:10.​1016/​j.​ijrobp.​2007.​03.​043.PubMed
30.
go back to reference Atkinson, J., Kapralov, A. A., Yanamala, N., Tyurina, Y. Y., Amoscato, A. A., Pearce, L., et al. (2011). A mitochondria-targeted inhibitor of cytochrome c peroxidase mitigates radiation-induced death. Nature Communications, 2, 497. doi:10.1038/ncomms1499.PubMed Atkinson, J., Kapralov, A. A., Yanamala, N., Tyurina, Y. Y., Amoscato, A. A., Pearce, L., et al. (2011). A mitochondria-targeted inhibitor of cytochrome c peroxidase mitigates radiation-induced death. Nature Communications, 2, 497. doi:10.​1038/​ncomms1499.PubMed
32.
go back to reference Paris, F., Fuks, Z., Kang, A., Capodieci, P., Juan, G., Ehleiter, D., et al. (2001). Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science, 293(5528), 293–297. doi:10.1126/science.1060191.PubMed Paris, F., Fuks, Z., Kang, A., Capodieci, P., Juan, G., Ehleiter, D., et al. (2001). Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science, 293(5528), 293–297. doi:10.​1126/​science.​1060191.PubMed
33.
go back to reference Bonnaud, S., Niaudet, C., Legoux, F., Corre, I., Delpon, G., Saulquin, X., et al. (2010). Sphingosine-1-phosphate activates the AKT pathway to protect small intestines from radiation-induced endothelial apoptosis. Cancer Research, 70(23), 9905–9915. doi:10.1158/0008-5472.CAN-10-2043.PubMed Bonnaud, S., Niaudet, C., Legoux, F., Corre, I., Delpon, G., Saulquin, X., et al. (2010). Sphingosine-1-phosphate activates the AKT pathway to protect small intestines from radiation-induced endothelial apoptosis. Cancer Research, 70(23), 9905–9915. doi:10.​1158/​0008-5472.​CAN-10-2043.PubMed
34.
go back to reference Thotala, D. K., Hallahan, D. E., & Yazlovitskaya, E. M. (2008). Inhibition of glycogen synthase kinase 3 beta attenuates neurocognitive dysfunction resulting from cranial irradiation. Cancer Research, 68(14), 5859–5868. doi:10.1158/0008-5472.CAN-07-6327.PubMed Thotala, D. K., Hallahan, D. E., & Yazlovitskaya, E. M. (2008). Inhibition of glycogen synthase kinase 3 beta attenuates neurocognitive dysfunction resulting from cranial irradiation. Cancer Research, 68(14), 5859–5868. doi:10.​1158/​0008-5472.​CAN-07-6327.PubMed
35.
go back to reference Yang, E. S., Nowsheen, S., Wang, T., Thotala, D. K., & Xia, F. (2011). Glycogen synthase kinase 3beta inhibition enhances repair of DNA double-strand breaks in irradiated hippocampal neurons. Neuro-Oncology, 13(5), 459–470. doi:10.1093/neuonc/nor016.PubMed Yang, E. S., Nowsheen, S., Wang, T., Thotala, D. K., & Xia, F. (2011). Glycogen synthase kinase 3beta inhibition enhances repair of DNA double-strand breaks in irradiated hippocampal neurons. Neuro-Oncology, 13(5), 459–470. doi:10.​1093/​neuonc/​nor016.PubMed
36.
go back to reference Thotala, D. K., Geng, L., Dickey, A. K., Hallahan, D. E., & Yazlovitskaya, E. M. A new class of molecular targeted radioprotectors: GSK-3beta inhibitors. International Journal of Radiation Oncology, Biology, Physics, 76(2), 557–565, doi:10.1016/j.ijrobp.2009.09.024. Thotala, D. K., Geng, L., Dickey, A. K., Hallahan, D. E., & Yazlovitskaya, E. M. A new class of molecular targeted radioprotectors: GSK-3beta inhibitors. International Journal of Radiation Oncology, Biology, Physics, 76(2), 557–565, doi:10.​1016/​j.​ijrobp.​2009.​09.​024.
37.
go back to reference Burdelya, L. G., Krivokrysenko, V. I., Tallant, T. C., Strom, E., Gleiberman, A. S., Gupta, D., et al. (2008). An agonist of toll-like receptor 5 has radioprotective activity in mouse and primate models. Science, 320(5873), 226–230. doi:10.1126/science.1154986.PubMed Burdelya, L. G., Krivokrysenko, V. I., Tallant, T. C., Strom, E., Gleiberman, A. S., Gupta, D., et al. (2008). An agonist of toll-like receptor 5 has radioprotective activity in mouse and primate models. Science, 320(5873), 226–230. doi:10.​1126/​science.​1154986.PubMed
38.
go back to reference Burdelya, L. G., Gleiberman, A. S., Toshkov, I., Aygun-Sunar, S., Bapardekar, M., Manderscheid-Kern, P., et al. (2011). Toll-like receptor 5 agonist protects mice from dermatitis and oral mucositis caused by local radiation: implications for head-and-neck cancer radiotherapy. International Journal of Radiation Oncology, Biology, Physics. doi:10.1016/j.ijrobp.2011.05.055. Burdelya, L. G., Gleiberman, A. S., Toshkov, I., Aygun-Sunar, S., Bapardekar, M., Manderscheid-Kern, P., et al. (2011). Toll-like receptor 5 agonist protects mice from dermatitis and oral mucositis caused by local radiation: implications for head-and-neck cancer radiotherapy. International Journal of Radiation Oncology, Biology, Physics. doi:10.​1016/​j.​ijrobp.​2011.​05.​055.
39.
go back to reference Jahroudi, N., Ardekani, A. M., & Greenberger, J. S. (1996). Ionizing irradiation increases transcription of the von Willebrand factor gene in endothelial cells. Blood, 88(10), 3801–3814.PubMed Jahroudi, N., Ardekani, A. M., & Greenberger, J. S. (1996). Ionizing irradiation increases transcription of the von Willebrand factor gene in endothelial cells. Blood, 88(10), 3801–3814.PubMed
41.
go back to reference Savitsky, K., Bar-Shira, A., Gilad, S., Rotman, G., Ziv, Y., Vanagaite, L., et al. (1995). A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science, 268(5218), 1749–1753.PubMed Savitsky, K., Bar-Shira, A., Gilad, S., Rotman, G., Ziv, Y., Vanagaite, L., et al. (1995). A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science, 268(5218), 1749–1753.PubMed
42.
go back to reference Takeoka, M., Ward, W. F., Pollack, H., Kamp, D. W., & Panos, R. J. (1997). KGF facilitates repair of radiation-induced DNA damage in alveolar epithelial cells. American Journal of Physiology, 272(6 Pt 1), L1174–L1180.PubMed Takeoka, M., Ward, W. F., Pollack, H., Kamp, D. W., & Panos, R. J. (1997). KGF facilitates repair of radiation-induced DNA damage in alveolar epithelial cells. American Journal of Physiology, 272(6 Pt 1), L1174–L1180.PubMed
43.
go back to reference Wu, K. I., Pollack, N., Panos, R. J., Sporn, P. H., & Kamp, D. W. (1998). Keratinocyte growth factor promotes alveolar epithelial cell DNA repair after H2O2 exposure. American Journal of Physiology, 275(4 Pt 1), L780–L787.PubMed Wu, K. I., Pollack, N., Panos, R. J., Sporn, P. H., & Kamp, D. W. (1998). Keratinocyte growth factor promotes alveolar epithelial cell DNA repair after H2O2 exposure. American Journal of Physiology, 275(4 Pt 1), L780–L787.PubMed
44.
go back to reference Farrell, C. L., Bready, J. V., Rex, K. L., Chen, J. N., DiPalma, C. R., Whitcomb, K. L., et al. (1998). Keratinocyte growth factor protects mice from chemotherapy and radiation-induced gastrointestinal injury and mortality. Cancer Research, 58(5), 933–939.PubMed Farrell, C. L., Bready, J. V., Rex, K. L., Chen, J. N., DiPalma, C. R., Whitcomb, K. L., et al. (1998). Keratinocyte growth factor protects mice from chemotherapy and radiation-induced gastrointestinal injury and mortality. Cancer Research, 58(5), 933–939.PubMed
45.
go back to reference Farrell, C. L., Rex, K. L., Kaufman, S. A., Dipalma, C. R., Chen, J. N., Scully, S., et al. (1999). Effects of keratinocyte growth factor in the squamous epithelium of the upper aerodigestive tract of normal and irradiated mice. International Journal of Radiation Biology, 75(5), 609–620.PubMed Farrell, C. L., Rex, K. L., Kaufman, S. A., Dipalma, C. R., Chen, J. N., Scully, S., et al. (1999). Effects of keratinocyte growth factor in the squamous epithelium of the upper aerodigestive tract of normal and irradiated mice. International Journal of Radiation Biology, 75(5), 609–620.PubMed
46.
go back to reference Le, Q. T., Kim, H. E., Schneider, C. J., Murakozy, G., Skladowski, K., Reinisch, S., et al. (2011). Palifermin reduces severe mucositis in definitive chemoradiotherapy of locally advanced head and neck cancer: a randomized, placebo-controlled study. Journal of Clinical Oncology, 29(20), 2808–2814. doi:10.1200/JCO.2010.32.4095.PubMed Le, Q. T., Kim, H. E., Schneider, C. J., Murakozy, G., Skladowski, K., Reinisch, S., et al. (2011). Palifermin reduces severe mucositis in definitive chemoradiotherapy of locally advanced head and neck cancer: a randomized, placebo-controlled study. Journal of Clinical Oncology, 29(20), 2808–2814. doi:10.​1200/​JCO.​2010.​32.​4095.PubMed
47.
go back to reference Bentzen, S. M. (2006). Preventing or reducing late side effects of radiation therapy: radiobiology meets molecular pathology. Nature Reviews. Cancer, 6(9), 702–713. doi:10.1038/nrc1950.PubMed Bentzen, S. M. (2006). Preventing or reducing late side effects of radiation therapy: radiobiology meets molecular pathology. Nature Reviews. Cancer, 6(9), 702–713. doi:10.​1038/​nrc1950.PubMed
50.
go back to reference Igarashi, A., Okochi, H., Bradham, D. M., & Grotendorst, G. R. (1993). Regulation of connective tissue growth factor gene expression in human skin fibroblasts and during wound repair. Molecular Biology of the Cell, 4(6), 637–645.PubMed Igarashi, A., Okochi, H., Bradham, D. M., & Grotendorst, G. R. (1993). Regulation of connective tissue growth factor gene expression in human skin fibroblasts and during wound repair. Molecular Biology of the Cell, 4(6), 637–645.PubMed
51.
go back to reference Frazier, K., Williams, S., Kothapalli, D., Klapper, H., & Grotendorst, G. R. (1996). Stimulation of fibroblast cell growth, matrix production, and granulation tissue formation by connective tissue growth factor. The Journal of Investigative Dermatology, 107(3), 404–411.PubMed Frazier, K., Williams, S., Kothapalli, D., Klapper, H., & Grotendorst, G. R. (1996). Stimulation of fibroblast cell growth, matrix production, and granulation tissue formation by connective tissue growth factor. The Journal of Investigative Dermatology, 107(3), 404–411.PubMed
52.
go back to reference Grotendorst, G. R., Okochi, H., & Hayashi, N. (1996). A novel transforming growth factor beta response element controls the expression of the connective tissue growth factor gene. Cell Growth & Differentiation, 7(4), 469–480. Grotendorst, G. R., Okochi, H., & Hayashi, N. (1996). A novel transforming growth factor beta response element controls the expression of the connective tissue growth factor gene. Cell Growth & Differentiation, 7(4), 469–480.
53.
go back to reference Grotendorst, G. R. (1997). Connective tissue growth factor: a mediator of TGF-beta action on fibroblasts. Cytokine & Growth Factor Reviews, 8(3), 171–179. Grotendorst, G. R. (1997). Connective tissue growth factor: a mediator of TGF-beta action on fibroblasts. Cytokine & Growth Factor Reviews, 8(3), 171–179.
54.
go back to reference Duncan, M. R., Frazier, K. S., Abramson, S., Williams, S., Klapper, H., Huang, X., et al. (1999). Connective tissue growth factor mediates transforming growth factor beta-induced collagen synthesis: down-regulation by cAMP. The FASEB Journal, 13(13), 1774–1786. Duncan, M. R., Frazier, K. S., Abramson, S., Williams, S., Klapper, H., Huang, X., et al. (1999). Connective tissue growth factor mediates transforming growth factor beta-induced collagen synthesis: down-regulation by cAMP. The FASEB Journal, 13(13), 1774–1786.
55.
go back to reference Blom, I. E., van Dijk, A. J., Wieten, L., Duran, K., Ito, Y., Kleij, L., et al. (2001). In vitro evidence for differential involvement of CTGF, TGFbeta, and PDGF-BB in mesangial response to injury. Nephrology, Dialysis, Transplantation, 16(6), 1139–1148.PubMed Blom, I. E., van Dijk, A. J., Wieten, L., Duran, K., Ito, Y., Kleij, L., et al. (2001). In vitro evidence for differential involvement of CTGF, TGFbeta, and PDGF-BB in mesangial response to injury. Nephrology, Dialysis, Transplantation, 16(6), 1139–1148.PubMed
56.
go back to reference Gore-Hyer, E., Shegogue, D., Markiewicz, M., Lo, S., Hazen-Martin, D., Greene, E. L., et al. (2002). TGF-beta and CTGF have overlapping and distinct fibrogenic effects on human renal cells. American Journal of Physiology. Renal Physiology, 283(4), F707–F716.PubMed Gore-Hyer, E., Shegogue, D., Markiewicz, M., Lo, S., Hazen-Martin, D., Greene, E. L., et al. (2002). TGF-beta and CTGF have overlapping and distinct fibrogenic effects on human renal cells. American Journal of Physiology. Renal Physiology, 283(4), F707–F716.PubMed
57.
go back to reference Weston, B. S., Wahab, N. A., & Mason, R. M. (2003). CTGF mediates TGF-beta-induced fibronectin matrix deposition by upregulating active alpha5beta1 integrin in human mesangial cells. Journal of the American Society of Nephrology, 14(3), 601–610.PubMed Weston, B. S., Wahab, N. A., & Mason, R. M. (2003). CTGF mediates TGF-beta-induced fibronectin matrix deposition by upregulating active alpha5beta1 integrin in human mesangial cells. Journal of the American Society of Nephrology, 14(3), 601–610.PubMed
58.
go back to reference Haydont, V., Riser, B. L., Aigueperse, J., & Vozenin-Brotons, M. C. (2008). Specific signals involved in the long-term maintenance of radiation-induced fibrogenic differentiation: a role for CCN2 and low concentration of TGF-beta1. American Journal of Physiology. Cell Physiology, 294(6), C1332–C1341. doi:10.1152/ajpcell.90626.2007.PubMed Haydont, V., Riser, B. L., Aigueperse, J., & Vozenin-Brotons, M. C. (2008). Specific signals involved in the long-term maintenance of radiation-induced fibrogenic differentiation: a role for CCN2 and low concentration of TGF-beta1. American Journal of Physiology. Cell Physiology, 294(6), C1332–C1341. doi:10.​1152/​ajpcell.​90626.​2007.PubMed
59.
go back to reference Verrecchia, F., Chu, M. L., & Mauviel, A. (2001). Identification of novel TGF-beta /Smad gene targets in dermal fibroblasts using a combined cDNA microarray/promoter transactivation approach. Journal of Biological Chemistry, 276(20), 17058–17062. doi:10.1074/jbc.M100754200.PubMed Verrecchia, F., Chu, M. L., & Mauviel, A. (2001). Identification of novel TGF-beta /Smad gene targets in dermal fibroblasts using a combined cDNA microarray/promoter transactivation approach. Journal of Biological Chemistry, 276(20), 17058–17062. doi:10.​1074/​jbc.​M100754200.PubMed
60.
go back to reference Vozenin-Brotons, M. C., Milliat, F., Sabourin, J. C., de Gouville, A. C., Francois, A., Lasser, P., et al. (2003). Fibrogenic signals in patients with radiation enteritis are associated with increased connective tissue growth factor expression. International Journal of Radiation Oncology, Biology, Physics, 56(2), 561–572.PubMed Vozenin-Brotons, M. C., Milliat, F., Sabourin, J. C., de Gouville, A. C., Francois, A., Lasser, P., et al. (2003). Fibrogenic signals in patients with radiation enteritis are associated with increased connective tissue growth factor expression. International Journal of Radiation Oncology, Biology, Physics, 56(2), 561–572.PubMed
61.
go back to reference Flanders, K. C., Major, C. D., Arabshahi, A., Aburime, E. E., Okada, M. H., Fujii, M., et al. (2003). Interference with transforming growth factor-beta/ Smad3 signaling results in accelerated healing of wounds in previously irradiated skin. American Journal of Pathology, 163(6), 2247–2257.PubMed Flanders, K. C., Major, C. D., Arabshahi, A., Aburime, E. E., Okada, M. H., Fujii, M., et al. (2003). Interference with transforming growth factor-beta/ Smad3 signaling results in accelerated healing of wounds in previously irradiated skin. American Journal of Pathology, 163(6), 2247–2257.PubMed
62.
go back to reference Vozenin-Brotons, M. C., Milliat, F., Linard, C., Strup, C., Francois, A., Sabourin, J. C., et al. (2004). Gene expression profile in human late radiation enteritis obtained by high-density cDNA array hybridization. Radiation Research, 161(3), 299–311.PubMed Vozenin-Brotons, M. C., Milliat, F., Linard, C., Strup, C., Francois, A., Sabourin, J. C., et al. (2004). Gene expression profile in human late radiation enteritis obtained by high-density cDNA array hybridization. Radiation Research, 161(3), 299–311.PubMed
63.
go back to reference Heusinger-Ribeiro, J., Eberlein, M., Wahab, N. A., & Goppelt-Struebe, M. (2001). Expression of connective tissue growth factor in human renal fibroblasts: regulatory roles of RhoA and cAMP. Journal of the American Society of Nephrology, 12(9), 1853–1861.PubMed Heusinger-Ribeiro, J., Eberlein, M., Wahab, N. A., & Goppelt-Struebe, M. (2001). Expression of connective tissue growth factor in human renal fibroblasts: regulatory roles of RhoA and cAMP. Journal of the American Society of Nephrology, 12(9), 1853–1861.PubMed
64.
go back to reference Eberlein, M., Heusinger-Ribeiro, J., & Goppelt-Struebe, M. (2001). Rho-dependent inhibition of the induction of connective tissue growth factor (CTGF) by HMG CoA reductase inhibitors (statins). British Journal of Pharmacology, 133(7), 1172–1180. doi:10.1038/sj.bjp.0704173.PubMed Eberlein, M., Heusinger-Ribeiro, J., & Goppelt-Struebe, M. (2001). Rho-dependent inhibition of the induction of connective tissue growth factor (CTGF) by HMG CoA reductase inhibitors (statins). British Journal of Pharmacology, 133(7), 1172–1180. doi:10.​1038/​sj.​bjp.​0704173.PubMed
65.
go back to reference Murata, T., Arii, S., Nakamura, T., Mori, A., Kaido, T., Furuyama, H., et al. (2001). Inhibitory effect of Y-27632, a ROCK inhibitor, on progression of rat liver fibrosis in association with inactivation of hepatic stellate cells. Journal of Hepatology, 35(4), 474–481.PubMed Murata, T., Arii, S., Nakamura, T., Mori, A., Kaido, T., Furuyama, H., et al. (2001). Inhibitory effect of Y-27632, a ROCK inhibitor, on progression of rat liver fibrosis in association with inactivation of hepatic stellate cells. Journal of Hepatology, 35(4), 474–481.PubMed
66.
go back to reference Shimizu, Y., Dobashi, K., Iizuka, K., Horie, T., Suzuki, K., Tukagoshi, H., et al. (2001). Contribution of small GTPase Rho and its target protein rock in a murine model of lung fibrosis. American Journal of Respiratory and Critical Care Medicine, 163(1), 210–217.PubMed Shimizu, Y., Dobashi, K., Iizuka, K., Horie, T., Suzuki, K., Tukagoshi, H., et al. (2001). Contribution of small GTPase Rho and its target protein rock in a murine model of lung fibrosis. American Journal of Respiratory and Critical Care Medicine, 163(1), 210–217.PubMed
67.
go back to reference Fajardo, L. F. (1998). The endothelial cell is a unique target of radiation: an overview. In D. B. Rubin (Ed.), In the radiation biology of the vascular endothelium (pp. 1–13). Boca Raton: CRC Press. Fajardo, L. F. (1998). The endothelial cell is a unique target of radiation: an overview. In D. B. Rubin (Ed.), In the radiation biology of the vascular endothelium (pp. 1–13). Boca Raton: CRC Press.
68.
go back to reference Rubin, P., & Casarett, G. (1968). Clinical radiation pathology. Philadelphia: Saunders. Rubin, P., & Casarett, G. (1968). Clinical radiation pathology. Philadelphia: Saunders.
69.
go back to reference Hallahan, D., Clark, E. T., Kuchibhotla, J., Gewertz, B. L., & Collins, T. (1995). E-selectin gene induction by ionizing radiation is independent of cytokine induction. Biochemical and Biophysical Research Communications, 217(3), 784–795. doi:10.1006/bbrc.1995.2841.PubMed Hallahan, D., Clark, E. T., Kuchibhotla, J., Gewertz, B. L., & Collins, T. (1995). E-selectin gene induction by ionizing radiation is independent of cytokine induction. Biochemical and Biophysical Research Communications, 217(3), 784–795. doi:10.​1006/​bbrc.​1995.​2841.PubMed
70.
go back to reference Rubin, D. B., Drab, E. A., Ts’ao, C. H., Gardner, D., & Ward, W. F. (1985). Prostacyclin synthesis in irradiated endothelial cells cultured from bovine aorta. Journal of Applied Physiology, 58(2), 592–597.PubMed Rubin, D. B., Drab, E. A., Ts’ao, C. H., Gardner, D., & Ward, W. F. (1985). Prostacyclin synthesis in irradiated endothelial cells cultured from bovine aorta. Journal of Applied Physiology, 58(2), 592–597.PubMed
71.
go back to reference Verheij, M., Dewit, L. G., & van Mourik, J. A. (1995). The effect of ionizing radiation on endothelial tissue factor activity and its cellular localization. Thrombosis and Haemostasis, 73(5), 894–895.PubMed Verheij, M., Dewit, L. G., & van Mourik, J. A. (1995). The effect of ionizing radiation on endothelial tissue factor activity and its cellular localization. Thrombosis and Haemostasis, 73(5), 894–895.PubMed
72.
go back to reference Ward, W. F., Kim, Y. T., Molteni, A., & Solliday, N. H. (1988). Radiation-induced pulmonary endothelial dysfunction in rats: modification by an inhibitor of angiotensin converting enzyme. International Journal of Radiation Oncology, Biology, Physics, 15(1), 135–140.PubMed Ward, W. F., Kim, Y. T., Molteni, A., & Solliday, N. H. (1988). Radiation-induced pulmonary endothelial dysfunction in rats: modification by an inhibitor of angiotensin converting enzyme. International Journal of Radiation Oncology, Biology, Physics, 15(1), 135–140.PubMed
73.
go back to reference Zhou, Q., Zhao, Y., Li, P., Bai, X., & Ruan, C. (1992). Thrombomodulin as a marker of radiation-induced endothelial cell injury. Radiation Research, 131(3), 285–289.PubMed Zhou, Q., Zhao, Y., Li, P., Bai, X., & Ruan, C. (1992). Thrombomodulin as a marker of radiation-induced endothelial cell injury. Radiation Research, 131(3), 285–289.PubMed
74.
go back to reference Denham, J. W., & Hauer-Jensen, M. (2002). The radiotherapeutic injury—a complex ‘wound’. Radiotherapy and Oncology, 63(2), 129–145.PubMed Denham, J. W., & Hauer-Jensen, M. (2002). The radiotherapeutic injury—a complex ‘wound’. Radiotherapy and Oncology, 63(2), 129–145.PubMed
75.
go back to reference Molla, M., Gironella, M., Miquel, R., Tovar, V., Engel, P., Biete, A., et al. (2003). Relative roles of ICAM-1 and VCAM-1 in the pathogenesis of experimental radiation-induced intestinal inflammation. International Journal of Radiation Oncology, Biology, Physics, 57(1), 264–273.PubMed Molla, M., Gironella, M., Miquel, R., Tovar, V., Engel, P., Biete, A., et al. (2003). Relative roles of ICAM-1 and VCAM-1 in the pathogenesis of experimental radiation-induced intestinal inflammation. International Journal of Radiation Oncology, Biology, Physics, 57(1), 264–273.PubMed
76.
go back to reference Molla, M., & Panes, J. (2007). Radiation-induced intestinal inflammation. World Journal of Gastroenterology, 13(22), 3043–3046.PubMed Molla, M., & Panes, J. (2007). Radiation-induced intestinal inflammation. World Journal of Gastroenterology, 13(22), 3043–3046.PubMed
77.
go back to reference Zheng, H., Wang, J., & Hauer-Jensen, M. (2000). Role of mast cells in early and delayed radiation injury in rat intestine. Radiation Research, 153(5 Pt 1), 533–539.PubMed Zheng, H., Wang, J., & Hauer-Jensen, M. (2000). Role of mast cells in early and delayed radiation injury in rat intestine. Radiation Research, 153(5 Pt 1), 533–539.PubMed
78.
go back to reference Anscher, M. S., Thrasher, B., Zgonjanin, L., Rabbani, Z. N., Corbley, M. J., Fu, K., et al. (2008). Small molecular inhibitor of transforming growth factor-beta protects against development of radiation-induced lung injury. International Journal of Radiation Oncology, Biology, Physics, 71(3), 829–837. doi:10.1016/j.ijrobp.2008.02.046.PubMed Anscher, M. S., Thrasher, B., Zgonjanin, L., Rabbani, Z. N., Corbley, M. J., Fu, K., et al. (2008). Small molecular inhibitor of transforming growth factor-beta protects against development of radiation-induced lung injury. International Journal of Radiation Oncology, Biology, Physics, 71(3), 829–837. doi:10.​1016/​j.​ijrobp.​2008.​02.​046.PubMed
79.
go back to reference Andarawewa, K. L., Paupert, J., Pal, A., & Barcellos-Hoff, M. H. (2007). New rationales for using TGFbeta inhibitors in radiotherapy. International Journal of Radiation Biology, 83(11–12), 803–811. doi:10.1080/09553000701711063.PubMed Andarawewa, K. L., Paupert, J., Pal, A., & Barcellos-Hoff, M. H. (2007). New rationales for using TGFbeta inhibitors in radiotherapy. International Journal of Radiation Biology, 83(11–12), 803–811. doi:10.​1080/​0955300070171106​3.PubMed
80.
go back to reference Denton, C. P., Merkel, P. A., Furst, D. E., Khanna, D., Emery, P., Hsu, V. M., et al. (2007). Recombinant human anti-transforming growth factor beta1 antibody therapy in systemic sclerosis: a multicenter, randomized, placebo-controlled phase I/II trial of CAT-192. Arthritis and Rheumatism, 56(1), 323–333. doi:10.1002/art.22289.PubMed Denton, C. P., Merkel, P. A., Furst, D. E., Khanna, D., Emery, P., Hsu, V. M., et al. (2007). Recombinant human anti-transforming growth factor beta1 antibody therapy in systemic sclerosis: a multicenter, randomized, placebo-controlled phase I/II trial of CAT-192. Arthritis and Rheumatism, 56(1), 323–333. doi:10.​1002/​art.​22289.PubMed
81.
go back to reference Haydont, V., Gilliot, O., Rivera, S., Bourgier, C., Francois, A., Aigueperse, J., et al. (2007). Successful mitigation of delayed intestinal radiation injury using pravastatin is not associated with acute injury improvement or tumor protection. International Journal of Radiation Oncology, Biology, Physics, 68(5), 1471–1482. doi:10.1016/j.ijrobp.2007.03.044.PubMed Haydont, V., Gilliot, O., Rivera, S., Bourgier, C., Francois, A., Aigueperse, J., et al. (2007). Successful mitigation of delayed intestinal radiation injury using pravastatin is not associated with acute injury improvement or tumor protection. International Journal of Radiation Oncology, Biology, Physics, 68(5), 1471–1482. doi:10.​1016/​j.​ijrobp.​2007.​03.​044.PubMed
82.
go back to reference Haydont, V., Bourgier, C., Pocard, M., Lusinchi, A., Aigueperse, J., Mathe, D., et al. (2007). Pravastatin Inhibits the Rho/CCN2/extracellular matrix cascade in human fibrosis explants and improves radiation-induced intestinal fibrosis in rats. Clinical Cancer Research, 13(18 Pt 1), 5331–5340. doi:10.1158/1078-0432.CCR-07-0625.PubMed Haydont, V., Bourgier, C., Pocard, M., Lusinchi, A., Aigueperse, J., Mathe, D., et al. (2007). Pravastatin Inhibits the Rho/CCN2/extracellular matrix cascade in human fibrosis explants and improves radiation-induced intestinal fibrosis in rats. Clinical Cancer Research, 13(18 Pt 1), 5331–5340. doi:10.​1158/​1078-0432.​CCR-07-0625.PubMed
83.
go back to reference Buchdunger, E., Zimmermann, J., Mett, H., Meyer, T., Muller, M., Druker, B. J., et al. (1996). Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative. Cancer Research, 56(1), 100–104.PubMed Buchdunger, E., Zimmermann, J., Mett, H., Meyer, T., Muller, M., Druker, B. J., et al. (1996). Inhibition of the Abl protein-tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative. Cancer Research, 56(1), 100–104.PubMed
84.
go back to reference Carroll, M., Ohno-Jones, S., Tamura, S., Buchdunger, E., Zimmermann, J., Lydon, N. B., et al. (1997). CGP 57148, a tyrosine kinase inhibitor, inhibits the growth of cells expressing BCR-ABL, TEL-ABL, and TEL-PDGFR fusion proteins. Blood, 90(12), 4947–4952.PubMed Carroll, M., Ohno-Jones, S., Tamura, S., Buchdunger, E., Zimmermann, J., Lydon, N. B., et al. (1997). CGP 57148, a tyrosine kinase inhibitor, inhibits the growth of cells expressing BCR-ABL, TEL-ABL, and TEL-PDGFR fusion proteins. Blood, 90(12), 4947–4952.PubMed
85.
go back to reference Druker, B. J., Tamura, S., Buchdunger, E., Ohno, S., Segal, G. M., Fanning, S., et al. (1996). Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nature Medicine, 2(5), 561–566.PubMed Druker, B. J., Tamura, S., Buchdunger, E., Ohno, S., Segal, G. M., Fanning, S., et al. (1996). Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nature Medicine, 2(5), 561–566.PubMed
86.
go back to reference Heinrich, M. C., Griffith, D. J., Druker, B. J., Wait, C. L., Ott, K. A., & Zigler, A. J. (2000). Inhibition of c-kit receptor tyrosine kinase activity by STI 571, a selective tyrosine kinase inhibitor. Blood, 96(3), 925–932.PubMed Heinrich, M. C., Griffith, D. J., Druker, B. J., Wait, C. L., Ott, K. A., & Zigler, A. J. (2000). Inhibition of c-kit receptor tyrosine kinase activity by STI 571, a selective tyrosine kinase inhibitor. Blood, 96(3), 925–932.PubMed
87.
go back to reference Krystal, G. W., Honsawek, S., Litz, J., & Buchdunger, E. (2000). The selective tyrosine kinase inhibitor STI571 inhibits small cell lung cancer growth. Clinical Cancer Research, 6(8), 3319–3326.PubMed Krystal, G. W., Honsawek, S., Litz, J., & Buchdunger, E. (2000). The selective tyrosine kinase inhibitor STI571 inhibits small cell lung cancer growth. Clinical Cancer Research, 6(8), 3319–3326.PubMed
88.
go back to reference Wang, W. L., Healy, M. E., Sattler, M., Verma, S., Lin, J., Maulik, G., et al. (2000). Growth inhibition and modulation of kinase pathways of small cell lung cancer cell lines by the novel tyrosine kinase inhibitor STI 571. Oncogene, 19(31), 3521–3528. doi:10.1038/sj.onc.1203698.PubMed Wang, W. L., Healy, M. E., Sattler, M., Verma, S., Lin, J., Maulik, G., et al. (2000). Growth inhibition and modulation of kinase pathways of small cell lung cancer cell lines by the novel tyrosine kinase inhibitor STI 571. Oncogene, 19(31), 3521–3528. doi:10.​1038/​sj.​onc.​1203698.PubMed
90.
go back to reference Abdollahi, A., Li, M., Ping, G., Plathow, C., Domhan, S., Kiessling, F., et al. (2005). Inhibition of platelet-derived growth factor signaling attenuates pulmonary fibrosis. The Journal of Experimental Medicine, 201(6), 925–935. doi:10.1084/jem.20041393.PubMed Abdollahi, A., Li, M., Ping, G., Plathow, C., Domhan, S., Kiessling, F., et al. (2005). Inhibition of platelet-derived growth factor signaling attenuates pulmonary fibrosis. The Journal of Experimental Medicine, 201(6), 925–935. doi:10.​1084/​jem.​20041393.PubMed
91.
go back to reference Li, M., Abdollahi, A., Grone, H. J., Lipson, K. E., Belka, C., & Huber, P. E. (2009). Late treatment with imatinib mesylate ameliorates radiation-induced lung fibrosis in a mouse model. Radiation Oncology, 4, 66. doi:10.1186/1748-717X-4-66.PubMed Li, M., Abdollahi, A., Grone, H. J., Lipson, K. E., Belka, C., & Huber, P. E. (2009). Late treatment with imatinib mesylate ameliorates radiation-induced lung fibrosis in a mouse model. Radiation Oncology, 4, 66. doi:10.​1186/​1748-717X-4-66.PubMed
92.
go back to reference Li, M., Ping, G., Plathow, C., Trinh, T., Lipson, K. E., Hauser, K., et al. (2006). Small molecule receptor tyrosine kinase inhibitor of platelet-derived growth factor signaling (SU9518) modifies radiation response in fibroblasts and endothelial cells. BMC Cancer, 6, 79. doi:10.1186/1471-2407-6-79.PubMed Li, M., Ping, G., Plathow, C., Trinh, T., Lipson, K. E., Hauser, K., et al. (2006). Small molecule receptor tyrosine kinase inhibitor of platelet-derived growth factor signaling (SU9518) modifies radiation response in fibroblasts and endothelial cells. BMC Cancer, 6, 79. doi:10.​1186/​1471-2407-6-79.PubMed
93.
go back to reference Wang, J., Zheng, H., Ou, X., Albertson, C. M., Fink, L. M., Herbert, J. M., et al. (2004). Hirudin ameliorates intestinal radiation toxicity in the rat: support for thrombin inhibition as strategy to minimize side-effects after radiation therapy and as countermeasure against radiation exposure. Journal of Thrombosis and Haemostasis, 2(11), 2027–2035. doi:10.1111/j.1538-7836.2004.00960.x.PubMed Wang, J., Zheng, H., Ou, X., Albertson, C. M., Fink, L. M., Herbert, J. M., et al. (2004). Hirudin ameliorates intestinal radiation toxicity in the rat: support for thrombin inhibition as strategy to minimize side-effects after radiation therapy and as countermeasure against radiation exposure. Journal of Thrombosis and Haemostasis, 2(11), 2027–2035. doi:10.​1111/​j.​1538-7836.​2004.​00960.​x.PubMed
94.
go back to reference Robbins, M. E., & Diz, D. I. (2006). Pathogenic role of the rennin–angiotensin system in modulating radiation-induced late effects. International Journal of Radiation Oncology, Biology, Physics, 64(1), 6–12. doi:10.1016/j.ijrobp.2005.08.033.PubMed Robbins, M. E., & Diz, D. I. (2006). Pathogenic role of the rennin–angiotensin system in modulating radiation-induced late effects. International Journal of Radiation Oncology, Biology, Physics, 64(1), 6–12. doi:10.​1016/​j.​ijrobp.​2005.​08.​033.PubMed
95.
go back to reference Pilling, D., Buckley, C. D., Salmon, M., & Gomer, R. H. (2003). Inhibition of fibrocyte differentiation by serum amyloid P. Journal of Immunology, 171(10), 5537–5546. Pilling, D., Buckley, C. D., Salmon, M., & Gomer, R. H. (2003). Inhibition of fibrocyte differentiation by serum amyloid P. Journal of Immunology, 171(10), 5537–5546.
96.
go back to reference Moeller, A., Ask, K., Warburton, D., Gauldie, J., & Kolb, M. (2008). The bleomycin animal model: a useful tool to investigate treatment options for idiopathic pulmonary fibrosis? The International Journal of Biochemistry & Cell Biology, 40(3), 362–382. doi:10.1016/j.biocel.2007.08.011. Moeller, A., Ask, K., Warburton, D., Gauldie, J., & Kolb, M. (2008). The bleomycin animal model: a useful tool to investigate treatment options for idiopathic pulmonary fibrosis? The International Journal of Biochemistry & Cell Biology, 40(3), 362–382. doi:10.​1016/​j.​biocel.​2007.​08.​011.
97.
go back to reference Chaudhary, N. I., Schnapp, A., & Park, J. E. (2006). Pharmacologic differentiation of inflammation and fibrosis in the rat bleomycin model. American Journal of Respiratory and Critical Care Medicine, 173(7), 769–776. doi:10.1164/rccm.200505-717OC.PubMed Chaudhary, N. I., Schnapp, A., & Park, J. E. (2006). Pharmacologic differentiation of inflammation and fibrosis in the rat bleomycin model. American Journal of Respiratory and Critical Care Medicine, 173(7), 769–776. doi:10.​1164/​rccm.​200505-717OC.PubMed
98.
go back to reference Pilling, D., Roife, D., Wang, M., Ronkainen, S. D., Crawford, J. R., Travis, E. L., et al. (2007). Reduction of bleomycin-induced pulmonary fibrosis by serum amyloid P. Journal of Immunology, 179(6), 4035–4044. Pilling, D., Roife, D., Wang, M., Ronkainen, S. D., Crawford, J. R., Travis, E. L., et al. (2007). Reduction of bleomycin-induced pulmonary fibrosis by serum amyloid P. Journal of Immunology, 179(6), 4035–4044.
99.
go back to reference Murray, L. A., Rosada, R., Moreira, A. P., Joshi, A., Kramer, M. S., Hesson, D. P., et al. Serum amyloid P therapeutically attenuates murine bleomycin-induced pulmonary fibrosis via its effects on macrophages. PLoS One, 5(3), e9683. doi:10.1371/journal.pone.0009683. Murray, L. A., Rosada, R., Moreira, A. P., Joshi, A., Kramer, M. S., Hesson, D. P., et al. Serum amyloid P therapeutically attenuates murine bleomycin-induced pulmonary fibrosis via its effects on macrophages. PLoS One, 5(3), e9683. doi:10.​1371/​journal.​pone.​0009683.
100.
go back to reference Armstrong, G. D., Mulvey, G. L., Marcato, P., Griener, T. P., Kahan, M. C., Tennent, G. A., et al. (2006). Human serum amyloid P component protects against Escherichia coli O157:H7 Shiga toxin 2 in vivo: therapeutic implications for hemolytic-uremic syndrome. Journal of Infectious Diseases, 193(8), 1120–1124. doi:10.1086/501472.PubMed Armstrong, G. D., Mulvey, G. L., Marcato, P., Griener, T. P., Kahan, M. C., Tennent, G. A., et al. (2006). Human serum amyloid P component protects against Escherichia coli O157:H7 Shiga toxin 2 in vivo: therapeutic implications for hemolytic-uremic syndrome. Journal of Infectious Diseases, 193(8), 1120–1124. doi:10.​1086/​501472.PubMed
101.
go back to reference Hawkins, P. N., Tennent, G. A., Woo, P., & Pepys, M. B. (1991). Studies in vivo and in vitro of serum amyloid P component in normals and in a patient with AA amyloidosis. Clinical and Experimental Immunology, 84(2), 308–316.PubMed Hawkins, P. N., Tennent, G. A., Woo, P., & Pepys, M. B. (1991). Studies in vivo and in vitro of serum amyloid P component in normals and in a patient with AA amyloidosis. Clinical and Experimental Immunology, 84(2), 308–316.PubMed
102.
104.
105.
go back to reference Leali, D., Alessi, P., Coltrini, D., Rusnati, M., Zetta, L., & Presta, M. (2009). Fibroblast growth factor-2 antagonist and antiangiogenic activity of long-pentraxin 3-derived synthetic peptides. Current Pharmaceutical Design, 15(30), 3577–3589.PubMed Leali, D., Alessi, P., Coltrini, D., Rusnati, M., Zetta, L., & Presta, M. (2009). Fibroblast growth factor-2 antagonist and antiangiogenic activity of long-pentraxin 3-derived synthetic peptides. Current Pharmaceutical Design, 15(30), 3577–3589.PubMed
106.
107.
go back to reference Goetzl, E. J., & An, S. (1998). Diversity of cellular receptors and functions for the lysophospholipid growth factors lysophosphatidic acid and sphingosine 1-phosphate. The FASEB Journal, 12(15), 1589–1598. Goetzl, E. J., & An, S. (1998). Diversity of cellular receptors and functions for the lysophospholipid growth factors lysophosphatidic acid and sphingosine 1-phosphate. The FASEB Journal, 12(15), 1589–1598.
108.
go back to reference Pradere, J. P., Klein, J., Gres, S., Guigne, C., Neau, E., Valet, P., et al. (2007). LPA1 receptor activation promotes renal interstitial fibrosis. Journal of the American Society of Nephrology, 18(12), 3110–3118. doi:10.1681/ASN.2007020196.PubMed Pradere, J. P., Klein, J., Gres, S., Guigne, C., Neau, E., Valet, P., et al. (2007). LPA1 receptor activation promotes renal interstitial fibrosis. Journal of the American Society of Nephrology, 18(12), 3110–3118. doi:10.​1681/​ASN.​2007020196.PubMed
109.
go back to reference Benoit, J., Meddahi, A., Ayoub, N., Barritault, D., & Sezeur, A. (1998). New healing agent for colonic anastomosis. International Journal of Colorectal Disease, 13(2), 78–81.PubMed Benoit, J., Meddahi, A., Ayoub, N., Barritault, D., & Sezeur, A. (1998). New healing agent for colonic anastomosis. International Journal of Colorectal Disease, 13(2), 78–81.PubMed
110.
go back to reference Escartin, Q., Lallam-Laroye, C., Baroukh, B., Morvan, F. O., Caruelle, J. P., Godeau, G., et al. (2003). A new approach to treat tissue destruction in periodontitis with chemically modified dextran polymers. The FASEB Journal, 17(6), 644–651. doi:10.1096/fj.02-0708com. Escartin, Q., Lallam-Laroye, C., Baroukh, B., Morvan, F. O., Caruelle, J. P., Godeau, G., et al. (2003). A new approach to treat tissue destruction in periodontitis with chemically modified dextran polymers. The FASEB Journal, 17(6), 644–651. doi:10.​1096/​fj.​02-0708com.
111.
go back to reference Morvan, F. O., Baroukh, B., Ledoux, D., Caruelle, J. P., Barritault, D., Godeau, G., et al. (2004). An engineered biopolymer prevents mucositis induced by 5-fluorouracil in hamsters. American Journal of Pathology, 164(2), 739–746.PubMed Morvan, F. O., Baroukh, B., Ledoux, D., Caruelle, J. P., Barritault, D., Godeau, G., et al. (2004). An engineered biopolymer prevents mucositis induced by 5-fluorouracil in hamsters. American Journal of Pathology, 164(2), 739–746.PubMed
112.
go back to reference Mangoni, M., Yue, X., Morin, C., Violot, D., Frascogna, V., Tao, Y., et al. (2009). Differential effect triggered by a heparan mimetic of the RGTA family preventing oral mucositis without tumor protection. International Journal of Radiation Oncology, Biology, Physics, 74(4), 1242–1250. doi:10.1016/j.ijrobp.2009.03.006.PubMed Mangoni, M., Yue, X., Morin, C., Violot, D., Frascogna, V., Tao, Y., et al. (2009). Differential effect triggered by a heparan mimetic of the RGTA family preventing oral mucositis without tumor protection. International Journal of Radiation Oncology, Biology, Physics, 74(4), 1242–1250. doi:10.​1016/​j.​ijrobp.​2009.​03.​006.PubMed
113.
go back to reference Jiang, J., McDonald, P. R., Dixon, T. M., Franicola, D., Zhang, X., Nie, S., et al. (2009). Synthetic protection short interfering RNA screen reveals glyburide as a novel radioprotector. Radiation Research, 172(4), 414–422. doi:10.1667/RR1674.1.PubMed Jiang, J., McDonald, P. R., Dixon, T. M., Franicola, D., Zhang, X., Nie, S., et al. (2009). Synthetic protection short interfering RNA screen reveals glyburide as a novel radioprotector. Radiation Research, 172(4), 414–422. doi:10.​1667/​RR1674.​1.PubMed
114.
go back to reference Ryan, J. L., Krishnan, S., Movsas, B., Coleman, C. N., Vikram, B., & Yoo, S. S. (2011). Decreasing the adverse effects of cancer therapy: an NCI Workshop on the preclinical development of radiation injury mitigators/protectors. Radiation Research, 176(5), 688–691. doi:10.1667/RR2704.1.PubMed Ryan, J. L., Krishnan, S., Movsas, B., Coleman, C. N., Vikram, B., & Yoo, S. S. (2011). Decreasing the adverse effects of cancer therapy: an NCI Workshop on the preclinical development of radiation injury mitigators/protectors. Radiation Research, 176(5), 688–691. doi:10.​1667/​RR2704.​1.PubMed
115.
go back to reference Jeraj, R., Cao, Y., Ten Haken, R. K., Hahn, C., & Marks, L. (2010). Imaging for assessment of radiation-induced normal tissue effects. International Journal of Radiation Oncology, Biology, Physics, 76(3 Suppl), S140–S144. doi:10.1016/j.ijrobp.2009.08.077.PubMed Jeraj, R., Cao, Y., Ten Haken, R. K., Hahn, C., & Marks, L. (2010). Imaging for assessment of radiation-induced normal tissue effects. International Journal of Radiation Oncology, Biology, Physics, 76(3 Suppl), S140–S144. doi:10.​1016/​j.​ijrobp.​2009.​08.​077.PubMed
116.
go back to reference Atwood, T., Payne, V. S., Zhao, W., Brown, W. R., Wheeler, K. T., Zhu, J. M., et al. (2007). Quantitative magnetic resonance spectroscopy reveals a potential relationship between radiation-induced changes in rat brain metabolites and cognitive impairment. Radiation Research, 168(5), 574–581. doi:10.1667/RR0735.1.PubMed Atwood, T., Payne, V. S., Zhao, W., Brown, W. R., Wheeler, K. T., Zhu, J. M., et al. (2007). Quantitative magnetic resonance spectroscopy reveals a potential relationship between radiation-induced changes in rat brain metabolites and cognitive impairment. Radiation Research, 168(5), 574–581. doi:10.​1667/​RR0735.​1.PubMed
117.
go back to reference Shi, L., Adams, M. M., Long, A., Carter, C. C., Bennett, C., Sonntag, W. E., et al. (2006). Spatial learning and memory deficits after whole-brain irradiation are associated with changes in NMDA receptor subunits in the hippocampus. Radiation Research, 166(6), 892–899. doi:10.1667/RR0588.1.PubMed Shi, L., Adams, M. M., Long, A., Carter, C. C., Bennett, C., Sonntag, W. E., et al. (2006). Spatial learning and memory deficits after whole-brain irradiation are associated with changes in NMDA receptor subunits in the hippocampus. Radiation Research, 166(6), 892–899. doi:10.​1667/​RR0588.​1.PubMed
119.
go back to reference Basch, E., Bennett, A., & Pietanza, M. C. (2011). Use of patient-reported outcomes to improve the predictive accuracy of clinician-reported adverse events. Journal of the National Cancer Institute, 103(24), 1808–1810. doi:10.1093/jnci/djr493.PubMed Basch, E., Bennett, A., & Pietanza, M. C. (2011). Use of patient-reported outcomes to improve the predictive accuracy of clinician-reported adverse events. Journal of the National Cancer Institute, 103(24), 1808–1810. doi:10.​1093/​jnci/​djr493.PubMed
Metadata
Title
Pharmacological strategies to spare normal tissues from radiation damage: useless or overlooked therapeutics?
Authors
Céline Bourgier
Antonin Levy
Marie-Catherine Vozenin
Eric Deutsch
Publication date
01-12-2012
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 3-4/2012
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-012-9381-9

Other articles of this Issue 3-4/2012

Cancer and Metastasis Reviews 3-4/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine