Skip to main content
Top
Published in: Cancer and Metastasis Reviews 3-4/2012

01-12-2012 | NON-THEMATIC REVIEW

Cancer stem cells, microRNAs, and therapeutic strategies including natural products

Authors: Darshni Vira, Saroj K. Basak, Mysore S. Veena, Marilene B. Wang, Raj K. Batra, Eri S. Srivatsan

Published in: Cancer and Metastasis Reviews | Issue 3-4/2012

Login to get access

Abstract

Embryonic stem cells divide continuously and differentiate into organs through the expression of specific transcription factors at specific time periods. Differentiated adult stem cells on the other hand remain in quiescent state and divide by receiving cues from the environment (extracellular matrix or niche), as in the case of wound healing from tissue injury or inflammation. Similarly, it is believed that cancer stem cells (CSCs), forming a smaller fraction of the tumor bulk, also remain in a quiescent state. These cells are capable of initiating and propagating neoplastic growth upon receiving environmental cues, such as overexpression of growth factors, cytokines, and chemokines. Candidate CSCs express distinct biomarkers that can be utilized for their identification and isolation. This review focuses on the known and candidate cancer stem cell markers identified in various solid tumors and the promising future of disease management and therapy targeted at these markers. The review also provides details on the differential expression of microRNAs (miRNAs), and the miRNA- and natural product-based therapies that could be applied for the treatment of cancer stem cells.
Literature
1.
go back to reference Croker, A. K., & Allan, A. L. (2008). Cancer stem cells: implications for the progression and treatment of metastatic disease. Journal of Cellular and Molecular Medicine, 12, 374–390.PubMed Croker, A. K., & Allan, A. L. (2008). Cancer stem cells: implications for the progression and treatment of metastatic disease. Journal of Cellular and Molecular Medicine, 12, 374–390.PubMed
2.
go back to reference Felthaus, O., Ettl, T., Gosau, M., Driemel, O., Brockhoff, G., Reck, A., et al. (2011). Cancer stem cell-like cells from a single cell of oral squamous carcinoma cell lines. Biochemical and Biophysical Research Communications, 407, 28–33.PubMed Felthaus, O., Ettl, T., Gosau, M., Driemel, O., Brockhoff, G., Reck, A., et al. (2011). Cancer stem cell-like cells from a single cell of oral squamous carcinoma cell lines. Biochemical and Biophysical Research Communications, 407, 28–33.PubMed
3.
go back to reference Ganguli-Indra, G., Wasylyk, C., Liang, X., Millon, R., Leid, M., Wasylyk, B., et al. (2009). CTIP2 expression in human head and neck squamous cell carcinoma is linked to poorly differentiated tumor status. PLoS One, 4, e5367.PubMed Ganguli-Indra, G., Wasylyk, C., Liang, X., Millon, R., Leid, M., Wasylyk, B., et al. (2009). CTIP2 expression in human head and neck squamous cell carcinoma is linked to poorly differentiated tumor status. PLoS One, 4, e5367.PubMed
4.
go back to reference Dalerba, P., Cho, R. W., & Clarke, M. F. (2007). Cancer stem cells: models and concepts. Annual Review of Medicine, 58, 267–284.PubMed Dalerba, P., Cho, R. W., & Clarke, M. F. (2007). Cancer stem cells: models and concepts. Annual Review of Medicine, 58, 267–284.PubMed
5.
go back to reference Boman, B. M., & Huang, E. (2008). Human colon cancer stem cells: a new paradigm in gastrointestinal oncologyogy. Journal of Clinical Oncologyogy, 26, 2828–2838. Boman, B. M., & Huang, E. (2008). Human colon cancer stem cells: a new paradigm in gastrointestinal oncologyogy. Journal of Clinical Oncologyogy, 26, 2828–2838.
6.
go back to reference Jagani, Z., & Khosravi-Far, R. (2008). Cancer stem cells and impaired apoptosis. Advances in Experimental Medicine and Biology, 615, 331–344.PubMed Jagani, Z., & Khosravi-Far, R. (2008). Cancer stem cells and impaired apoptosis. Advances in Experimental Medicine and Biology, 615, 331–344.PubMed
7.
go back to reference Joshua, B., Kaplan, M. J., Doweck, I., Pai, R., Weissman, R., Prince, M., et al. (2012). Frequency of cells expressing CD 44, a head and neck cancer stem cell marker: correlation with tumor aggressiveness. Head & Neck, 34, 42–49. Joshua, B., Kaplan, M. J., Doweck, I., Pai, R., Weissman, R., Prince, M., et al. (2012). Frequency of cells expressing CD 44, a head and neck cancer stem cell marker: correlation with tumor aggressiveness. Head & Neck, 34, 42–49.
8.
go back to reference Bhaijee, F., Pepper, D. J., Pitman, K. T., & Bell, D. (2012). Cancer stem cells in head and neck squamous cell carcinoma: a review of current knowledge and future applications. Head & Neck, 34, 894–899. Bhaijee, F., Pepper, D. J., Pitman, K. T., & Bell, D. (2012). Cancer stem cells in head and neck squamous cell carcinoma: a review of current knowledge and future applications. Head & Neck, 34, 894–899.
9.
go back to reference Graziano, A., d’ Aquino, R., Tirino, V., Desiderio, V., Rossi, A., & Pirozzi, G. (2008). The stem cell hypothesis in head and neck cancer. Journal of Cellular Biochemistry, 103, 408–412.PubMed Graziano, A., d’ Aquino, R., Tirino, V., Desiderio, V., Rossi, A., & Pirozzi, G. (2008). The stem cell hypothesis in head and neck cancer. Journal of Cellular Biochemistry, 103, 408–412.PubMed
10.
go back to reference Jensen, K. B., Jones, J., & Watt, F. M. (2008). A stem cell gene expression profile of human squamous cell carcinomas. Cancer Letters, 272, 23–31.PubMed Jensen, K. B., Jones, J., & Watt, F. M. (2008). A stem cell gene expression profile of human squamous cell carcinomas. Cancer Letters, 272, 23–31.PubMed
11.
go back to reference Harper, L. J., Piper, K., Common, J., Fortune, F., & Mackenzie, I. C. (2007). Stem cell patterns in cell lines derived from head and neck squamous cell carcinoma. Journal of Oral Pathology and Medicine, 36, 594–603.PubMed Harper, L. J., Piper, K., Common, J., Fortune, F., & Mackenzie, I. C. (2007). Stem cell patterns in cell lines derived from head and neck squamous cell carcinoma. Journal of Oral Pathology and Medicine, 36, 594–603.PubMed
12.
go back to reference Sayed, S. I., Dwivedi, R. C., Katna, R., Garg, A., Pathak, K. A., Nutting, C. M., et al. (2011). Implications of understanding cancer stem cell (CSC) biology in head and neck squamous cell cancer. Oral Oncology, 47, 237–243.PubMed Sayed, S. I., Dwivedi, R. C., Katna, R., Garg, A., Pathak, K. A., Nutting, C. M., et al. (2011). Implications of understanding cancer stem cell (CSC) biology in head and neck squamous cell cancer. Oral Oncology, 47, 237–243.PubMed
13.
go back to reference Shakib, K., Schrattenholz, A., & Soskic, V. (2011). Stem cells in head and neck squamous cell carcinoma. British Journal of Oral and Maxillofacial Surgery, 49, 503–506.PubMed Shakib, K., Schrattenholz, A., & Soskic, V. (2011). Stem cells in head and neck squamous cell carcinoma. British Journal of Oral and Maxillofacial Surgery, 49, 503–506.PubMed
14.
go back to reference Adams, J. M., Kelly, P. N., Dakic, A., Carotta, S., Nutt, S. L., & Strasser, A. (2008). Role of “cancer stem cells” and cell survival in tumor development and maintenance. Cold Spring Harbor Symposia on Quantitative Biology, 73, 451–459.PubMed Adams, J. M., Kelly, P. N., Dakic, A., Carotta, S., Nutt, S. L., & Strasser, A. (2008). Role of “cancer stem cells” and cell survival in tumor development and maintenance. Cold Spring Harbor Symposia on Quantitative Biology, 73, 451–459.PubMed
15.
go back to reference Wicha, M. S., Liu, S., & Dontu, G. (2006). Cancer stem cells: an old idea—a paradigm shift. Cancer Research, 66, 1883–1896.PubMed Wicha, M. S., Liu, S., & Dontu, G. (2006). Cancer stem cells: an old idea—a paradigm shift. Cancer Research, 66, 1883–1896.PubMed
16.
go back to reference Ailles, L., & Prince, M. (2009). Cancer stem cells in head and neck squamous cell carcinoma. Methods in Molecular Biology, 568, 175–193.PubMed Ailles, L., & Prince, M. (2009). Cancer stem cells in head and neck squamous cell carcinoma. Methods in Molecular Biology, 568, 175–193.PubMed
17.
go back to reference Albers, A. E., Chen, C., Köberle, B., Qian, X., Klussmann, J. P., Wollenberg, B., et al. (2012). Stem cells in squamous head and neck cancer. Critical Reviews in Oncology/Hematology, 81, 224–240.PubMed Albers, A. E., Chen, C., Köberle, B., Qian, X., Klussmann, J. P., Wollenberg, B., et al. (2012). Stem cells in squamous head and neck cancer. Critical Reviews in Oncology/Hematology, 81, 224–240.PubMed
18.
go back to reference Chen, Z. G. (2009). The cancer stem cell concept in progression of head and neck cancer. Journal of Oncology, 2009, 894064.PubMed Chen, Z. G. (2009). The cancer stem cell concept in progression of head and neck cancer. Journal of Oncology, 2009, 894064.PubMed
19.
go back to reference Furusawa, J., Zhang, H., Vural, E., Stone, A., Fukuda, S., Oridate, N., et al. (2011). Distinct epigenetic profiling in head and neck squamous cell carcinoma stem cells. Otolaryngology and Head and Neck Surgery, 144, 900–909. Furusawa, J., Zhang, H., Vural, E., Stone, A., Fukuda, S., Oridate, N., et al. (2011). Distinct epigenetic profiling in head and neck squamous cell carcinoma stem cells. Otolaryngology and Head and Neck Surgery, 144, 900–909.
20.
go back to reference Akhtar, K., Bussen, W., & Scott, S. P. (2009). Cancer stem cells - from initiation to elimination, how far have we reached? International Journal of Oncology, 34, 1491–1503.PubMed Akhtar, K., Bussen, W., & Scott, S. P. (2009). Cancer stem cells - from initiation to elimination, how far have we reached? International Journal of Oncology, 34, 1491–1503.PubMed
21.
go back to reference Al-Ejeh, F., Smart, C. E., Morrison, B. J., Chenevix-Trench, G., Lopez, J. A., Lakhani, S. R., et al. (2011). Breast cancer stem cells: treatment resistance and therapeutic opportunities. Carcinogenesis, 32, 650–658.PubMed Al-Ejeh, F., Smart, C. E., Morrison, B. J., Chenevix-Trench, G., Lopez, J. A., Lakhani, S. R., et al. (2011). Breast cancer stem cells: treatment resistance and therapeutic opportunities. Carcinogenesis, 32, 650–658.PubMed
22.
go back to reference Clarke, M. F. (2005). Epigenetic regulation of normal and cancer stem cells. Annals of the New York Academy of Sciences, 1044, 90–93.PubMed Clarke, M. F. (2005). Epigenetic regulation of normal and cancer stem cells. Annals of the New York Academy of Sciences, 1044, 90–93.PubMed
23.
go back to reference McDermott, S. P., & Wicha, M. S. (2010). Targeting breast cancer stem cells. Molecular Oncology, 4, 404–419.PubMed McDermott, S. P., & Wicha, M. S. (2010). Targeting breast cancer stem cells. Molecular Oncology, 4, 404–419.PubMed
24.
go back to reference Bapat, S. A. (2007). Evolution of cancer stem cells. Seminars in Cancer Biology, 17, 204–213.PubMed Bapat, S. A. (2007). Evolution of cancer stem cells. Seminars in Cancer Biology, 17, 204–213.PubMed
25.
go back to reference Bleau, A.-M., Huse, J. T., & Holland, E. C. (2009). The ABCG2 resistance network of glioblastoma. Cell Cycle, 8, 2936–2944.PubMed Bleau, A.-M., Huse, J. T., & Holland, E. C. (2009). The ABCG2 resistance network of glioblastoma. Cell Cycle, 8, 2936–2944.PubMed
26.
go back to reference Garvalov, B. K., & Acker, T. (2011). Cancer stem cells: a new framework for the design of tumor therapies. Journal of Molecular Medicine, 89, 95–107.PubMed Garvalov, B. K., & Acker, T. (2011). Cancer stem cells: a new framework for the design of tumor therapies. Journal of Molecular Medicine, 89, 95–107.PubMed
27.
go back to reference Spillane, J. B., & Henderson, M. A. (2007). Cancer stem cells: a review. ANZ Journal of Surgery, 77, 464–468.PubMed Spillane, J. B., & Henderson, M. A. (2007). Cancer stem cells: a review. ANZ Journal of Surgery, 77, 464–468.PubMed
28.
go back to reference Bonnet, D., & Dick, J. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine, 3, 730–737.PubMed Bonnet, D., & Dick, J. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine, 3, 730–737.PubMed
29.
go back to reference Lapidot, T., Sirard, C., Vormoor, J., Murdoch, B., Hoang, T., Caceres-Cortes, J., et al. (1994). A cell initiating human acute myeloid leukemia after transplantation into SCID mice. Nature, 367, 645–648.PubMed Lapidot, T., Sirard, C., Vormoor, J., Murdoch, B., Hoang, T., Caceres-Cortes, J., et al. (1994). A cell initiating human acute myeloid leukemia after transplantation into SCID mice. Nature, 367, 645–648.PubMed
30.
go back to reference Dick, J. (2005). Acute myeloid leukemia stem cells. Annals of the New York Academy of Sciences, 1044, 1–5.PubMed Dick, J. (2005). Acute myeloid leukemia stem cells. Annals of the New York Academy of Sciences, 1044, 1–5.PubMed
31.
go back to reference Dick, J. (2008). Stem cell concepts renew cancer research. Blood, 112, 4793–4807.PubMed Dick, J. (2008). Stem cell concepts renew cancer research. Blood, 112, 4793–4807.PubMed
32.
go back to reference Houghton, J., Morozov, A., Smirnova, I., & Wang, T. C. (2007). Stem cells and cancer. Seminars in Cancer Biology, 17, 191–203.PubMed Houghton, J., Morozov, A., Smirnova, I., & Wang, T. C. (2007). Stem cells and cancer. Seminars in Cancer Biology, 17, 191–203.PubMed
33.
go back to reference Bonnet, D. (2005). Cancer stem cells: AMLs show the way. Biochemical Society Transactions, 33, 1531–1533.PubMed Bonnet, D. (2005). Cancer stem cells: AMLs show the way. Biochemical Society Transactions, 33, 1531–1533.PubMed
34.
go back to reference Bonnet, D. (2005). Cancer stem cells: lessons from leukemia. Cell Proliferation, 38, 357–361.PubMed Bonnet, D. (2005). Cancer stem cells: lessons from leukemia. Cell Proliferation, 38, 357–361.PubMed
35.
go back to reference Schatton, T., Frank, N. Y., & Frank, M. H. (2009). Identification and targeting of cancer stem cells. Bioessays, 31, 1038–1049.PubMed Schatton, T., Frank, N. Y., & Frank, M. H. (2009). Identification and targeting of cancer stem cells. Bioessays, 31, 1038–1049.PubMed
36.
go back to reference Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100, 3983–3988.PubMed Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100, 3983–3988.PubMed
37.
go back to reference Dontu, G., Al-Hajj, M., Abdallah, W. M., Clarke, M. F., & Wicha, M. S. (2003). Stem cells in normal breast development and breast cancer. Cell Proliferation, 36, 59–72.PubMed Dontu, G., Al-Hajj, M., Abdallah, W. M., Clarke, M. F., & Wicha, M. S. (2003). Stem cells in normal breast development and breast cancer. Cell Proliferation, 36, 59–72.PubMed
38.
go back to reference Basak, S., Veena, M. S., Oh, S., Huang, G., Srivatsan, E. S., Huang, M., et al. (2009). The malignant pleural effusion as a model to investigate intratumoral heterogeneity in lung cancer. PLoS One, 4, e5884.PubMed Basak, S., Veena, M. S., Oh, S., Huang, G., Srivatsan, E. S., Huang, M., et al. (2009). The malignant pleural effusion as a model to investigate intratumoral heterogeneity in lung cancer. PLoS One, 4, e5884.PubMed
39.
go back to reference Ailles, L. E., & Weissman, I. L. (2007). Cancer stem cells in solid tumors. Current Opinion in Biotechnology, 18, 460–466.PubMed Ailles, L. E., & Weissman, I. L. (2007). Cancer stem cells in solid tumors. Current Opinion in Biotechnology, 18, 460–466.PubMed
40.
go back to reference Prince, M. E., Sivanandan, R., Kaczorowski, A., Wolf, G. T., Kaplan, M. J., Dalerba, P., et al. (2007). Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 104, 973–978.PubMed Prince, M. E., Sivanandan, R., Kaczorowski, A., Wolf, G. T., Kaplan, M. J., Dalerba, P., et al. (2007). Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 104, 973–978.PubMed
41.
go back to reference Baumann, M., & Krause, M. (2010). CD 44: a cancer stem cell-related biomarker with predictive potential for radiotherapy. Clinical Cancer Research, 16, 5091–5093.PubMed Baumann, M., & Krause, M. (2010). CD 44: a cancer stem cell-related biomarker with predictive potential for radiotherapy. Clinical Cancer Research, 16, 5091–5093.PubMed
42.
go back to reference Pries, R., Witrkopf, N., Trenkle, T., Nitsch, S. M., & Wollenberg, B. (2008). Potential stem cell marker CD 44 is constitutively expressed in permanent cell lines of head and neck cancer. In Vivo, 22, 89–92.PubMed Pries, R., Witrkopf, N., Trenkle, T., Nitsch, S. M., & Wollenberg, B. (2008). Potential stem cell marker CD 44 is constitutively expressed in permanent cell lines of head and neck cancer. In Vivo, 22, 89–92.PubMed
43.
go back to reference Al-Hajj, M., Becker, M. W., Wicha, M., Weissman, I., & Clarke, M. F. (2004). Therapeutic implications of cancer stem cells. Current Opinion in Genetics & Development, 14, 43–47. Al-Hajj, M., Becker, M. W., Wicha, M., Weissman, I., & Clarke, M. F. (2004). Therapeutic implications of cancer stem cells. Current Opinion in Genetics & Development, 14, 43–47.
44.
go back to reference Chan, K. S., Volkmer, J.-P., & Weissman, I. (2010). Cancer stem cells in bladder cancer: a revisited and evolving concept. Current Opinion in Urology, 20, 393–397.PubMed Chan, K. S., Volkmer, J.-P., & Weissman, I. (2010). Cancer stem cells in bladder cancer: a revisited and evolving concept. Current Opinion in Urology, 20, 393–397.PubMed
45.
go back to reference Chen, S. Y., Huang, Y. C., Liu, S. P., Tsai, F. J. L., Shyu, W. C., & Lin, S. Z. (2011). An overview of concepts for cancer stem cells. Cell Transplantation, 20, 113–120.PubMed Chen, S. Y., Huang, Y. C., Liu, S. P., Tsai, F. J. L., Shyu, W. C., & Lin, S. Z. (2011). An overview of concepts for cancer stem cells. Cell Transplantation, 20, 113–120.PubMed
46.
go back to reference Cho, R. W., & Clarke, M. F. (2008). Recent advances in cancer stem cells. Current Opinion in Genetics & Development, 18, 48–53. Cho, R. W., & Clarke, M. F. (2008). Recent advances in cancer stem cells. Current Opinion in Genetics & Development, 18, 48–53.
47.
go back to reference Diehn, M., Cho, R. W., & Clarke, M. F. (2009). Therapeutic implications of the cancer stem cell hypothesis. Seminars in Radiation Oncology, 19, 78–86.PubMed Diehn, M., Cho, R. W., & Clarke, M. F. (2009). Therapeutic implications of the cancer stem cell hypothesis. Seminars in Radiation Oncology, 19, 78–86.PubMed
48.
go back to reference Hollier, B. G., Evans, K., & Mani, S. A. (2009). The epithelial-to-mesenchymal transition and cancer stem cells: a coalition against cancer therapies. Journal of Mammary Gland Biology and Neoplasia, 14, 29–43.PubMed Hollier, B. G., Evans, K., & Mani, S. A. (2009). The epithelial-to-mesenchymal transition and cancer stem cells: a coalition against cancer therapies. Journal of Mammary Gland Biology and Neoplasia, 14, 29–43.PubMed
49.
go back to reference Almhanna, K., & Philip, P. A. (2011). Defining new paradigms for the treatment of pancreatic cancer. Current Treatment Options in Oncology, 12, 111–125.PubMed Almhanna, K., & Philip, P. A. (2011). Defining new paradigms for the treatment of pancreatic cancer. Current Treatment Options in Oncology, 12, 111–125.PubMed
50.
go back to reference Deonarain, M. P., Kousparou, C. A., & Epenetos, A. A. (2009). Antibodies targeting cancer stem cells: a new paradigm in immunotherapy? MAbs, 1, 12–25.PubMed Deonarain, M. P., Kousparou, C. A., & Epenetos, A. A. (2009). Antibodies targeting cancer stem cells: a new paradigm in immunotherapy? MAbs, 1, 12–25.PubMed
51.
go back to reference Dimov, I., Visnjic, M., & Stefanovic, V. (2010). Urothelial cancer stem cells. The Scientific World Journal, 10, 1400–1415. Dimov, I., Visnjic, M., & Stefanovic, V. (2010). Urothelial cancer stem cells. The Scientific World Journal, 10, 1400–1415.
52.
go back to reference Vries, R. G. J., Huch, M., & Clevers, H. (2010). Stem cells and cancer of the stomach and intestine. Molecular Oncology, 4, 373–384.PubMed Vries, R. G. J., Huch, M., & Clevers, H. (2010). Stem cells and cancer of the stomach and intestine. Molecular Oncology, 4, 373–384.PubMed
53.
go back to reference Gedye, C., Davidson, A. J., Elmes, M. R., Cebon, J., Bolton, D., & David, I. D. (2010). Cancer stem cells in urologic cancers. Urologic Oncology, 28, 585–590.PubMed Gedye, C., Davidson, A. J., Elmes, M. R., Cebon, J., Bolton, D., & David, I. D. (2010). Cancer stem cells in urologic cancers. Urologic Oncology, 28, 585–590.PubMed
54.
go back to reference Okamoto, A., Chikamatsu, K., Sakakura, K., Hatsushika, K., Takahashi, G., & Masuyama, K. (2009). Expansion and characterization of cancer stem-like cells in squamous cell carcinoma of the head and neck. Oral Oncology, 45, 633–639.PubMed Okamoto, A., Chikamatsu, K., Sakakura, K., Hatsushika, K., Takahashi, G., & Masuyama, K. (2009). Expansion and characterization of cancer stem-like cells in squamous cell carcinoma of the head and neck. Oral Oncology, 45, 633–639.PubMed
55.
go back to reference Kokko, L. L., Hurme, S., Maula, S. M., Alanen, K., Grenman, R., Kinnunen, I., et al. (2011). Significance of site-specific prognosis of cancer stem cell marker CD 44 in head and neck squamous-cell carcinoma. Oral Oncology, 47, 510–516.PubMed Kokko, L. L., Hurme, S., Maula, S. M., Alanen, K., Grenman, R., Kinnunen, I., et al. (2011). Significance of site-specific prognosis of cancer stem cell marker CD 44 in head and neck squamous-cell carcinoma. Oral Oncology, 47, 510–516.PubMed
56.
go back to reference Chikamatsu, K., Takahashi, G., Sakakura, K., Ferrone, S., & Masuyama, K. (2011). Immunoregulatory properties of CD 44+ cancer stem-like cells in squamous cell carcinoma of the head and neck. Head & Neck, 33, 208–215. Chikamatsu, K., Takahashi, G., Sakakura, K., Ferrone, S., & Masuyama, K. (2011). Immunoregulatory properties of CD 44+ cancer stem-like cells in squamous cell carcinoma of the head and neck. Head & Neck, 33, 208–215.
57.
go back to reference Iwatsuki, M., Mimori, K., Yokobori, T., Ishi, H., Beppu, T., Nakamori, S., et al. (2010). Epithelial-mesenchymal transition in cancer development and its clinical significance. Cancer Science, 101, 293–299.PubMed Iwatsuki, M., Mimori, K., Yokobori, T., Ishi, H., Beppu, T., Nakamori, S., et al. (2010). Epithelial-mesenchymal transition in cancer development and its clinical significance. Cancer Science, 101, 293–299.PubMed
58.
go back to reference Sarkar, F. H., Li, Y., Wang, Z., & Kong, D. (2009). Pancreatic cancer stem cells and EMT in drug resistance and metastasis. Minerva Chirurgica, 64, 489–500.PubMed Sarkar, F. H., Li, Y., Wang, Z., & Kong, D. (2009). Pancreatic cancer stem cells and EMT in drug resistance and metastasis. Minerva Chirurgica, 64, 489–500.PubMed
59.
go back to reference Singh, A., & Settleman, J. (2010). EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene, 29, 4741–4751.PubMed Singh, A., & Settleman, J. (2010). EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene, 29, 4741–4751.PubMed
60.
go back to reference Davis, S. J., Divi, V., Owen, J. H., Bradford, C. R., Carey, T. E., Papagerakis, S., et al. (2010). Metastatic potential of cancer stem cells in head and neck squamous cell carcinoma. Archives of Otolaryngology-Head & Neck Surgery, 136, 1260–1266. Davis, S. J., Divi, V., Owen, J. H., Bradford, C. R., Carey, T. E., Papagerakis, S., et al. (2010). Metastatic potential of cancer stem cells in head and neck squamous cell carcinoma. Archives of Otolaryngology-Head & Neck Surgery, 136, 1260–1266.
61.
go back to reference Chen, C., Wei, Y., Hummel, M., Hoffmann, T. K., Gross, M., Kaufmann, A. M., et al. (2011). Evidence for epithelial-mesenchymal transition in cancer stem cells of head and neck squamous cell carcinoma. PLoS One, 6, e16466.PubMed Chen, C., Wei, Y., Hummel, M., Hoffmann, T. K., Gross, M., Kaufmann, A. M., et al. (2011). Evidence for epithelial-mesenchymal transition in cancer stem cells of head and neck squamous cell carcinoma. PLoS One, 6, e16466.PubMed
62.
go back to reference Mack, B., & Gires, O. (2008). CD 44s and CD 44v6 expression in head and neck epithelia. PLoS One, 3, e3360.PubMed Mack, B., & Gires, O. (2008). CD 44s and CD 44v6 expression in head and neck epithelia. PLoS One, 3, e3360.PubMed
63.
go back to reference Jijiwa, M., Demir, H., Gupta, S., Leung, C., Joshi, K., Orozco, N., et al. (2011). CD44v6 regulates growth of brain tumor stem cells partially through the AKT-mediated pathway. PLoS One, 6, e24217.PubMed Jijiwa, M., Demir, H., Gupta, S., Leung, C., Joshi, K., Orozco, N., et al. (2011). CD44v6 regulates growth of brain tumor stem cells partially through the AKT-mediated pathway. PLoS One, 6, e24217.PubMed
64.
go back to reference Gaviraghi, M., Tunici, P., Valensin, S., Rossi, M., Giordano, C., Magnoni, L., et al. (2011). Pancreatic cancer sphere are more than just aggregates of stem marker-positive cells. Bioscience Reports, 31, 45–55.PubMed Gaviraghi, M., Tunici, P., Valensin, S., Rossi, M., Giordano, C., Magnoni, L., et al. (2011). Pancreatic cancer sphere are more than just aggregates of stem marker-positive cells. Bioscience Reports, 31, 45–55.PubMed
65.
go back to reference Nilsson, S. K., Johnston, H. M., Whitty, G. A., Williams, B., Webb, R. J., Denhardt, D. T., et al. (2005). Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood, 106, 1232–1239.PubMed Nilsson, S. K., Johnston, H. M., Whitty, G. A., Williams, B., Webb, R. J., Denhardt, D. T., et al. (2005). Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood, 106, 1232–1239.PubMed
66.
go back to reference van den Hoogen, C., van der Horst, G., Cheung, H., Buijs, J. T., Pelger, R. C., & van der Pluijm, G. (2011). The aldehyde dehydrogenase enzyme 7A1 is functionally involved in prostate cancer bone metastasis. Clinical and Experimental Matastasis, 28, 615–625. van den Hoogen, C., van der Horst, G., Cheung, H., Buijs, J. T., Pelger, R. C., & van der Pluijm, G. (2011). The aldehyde dehydrogenase enzyme 7A1 is functionally involved in prostate cancer bone metastasis. Clinical and Experimental Matastasis, 28, 615–625.
67.
go back to reference Prince, M. E. P., & Ailles, L. E. (2008). Cancer stem cells in head and neck squamous cell cancer. Journal of Clinical Oncology, 26, 2871–2875.PubMed Prince, M. E. P., & Ailles, L. E. (2008). Cancer stem cells in head and neck squamous cell cancer. Journal of Clinical Oncology, 26, 2871–2875.PubMed
68.
go back to reference Chen, H., Zhou, L., Dou, T., Wan, G., Tang, H., & Tian, J. (2011). BMI1’S maintenance of the proliferative capacity of laryngeal cancer stem cells. Head & Neck, 33, 1115–1125. Chen, H., Zhou, L., Dou, T., Wan, G., Tang, H., & Tian, J. (2011). BMI1’S maintenance of the proliferative capacity of laryngeal cancer stem cells. Head & Neck, 33, 1115–1125.
69.
go back to reference Zhou, L., Wei, X., Cheng, L., Tian, J., & Jiang, J. J. (2007). CD 133, one of the markers of cancer stem cells in Hep-2 cell line. Laryngoscope, 117, 455–460.PubMed Zhou, L., Wei, X., Cheng, L., Tian, J., & Jiang, J. J. (2007). CD 133, one of the markers of cancer stem cells in Hep-2 cell line. Laryngoscope, 117, 455–460.PubMed
70.
go back to reference Monroe, M. M., Anderson, E. C., Clayburgh, D. R., & Wong, M. H. (2011). Cancer stem cells in head and neck squamous cell carcinoma. Journal of Oncology, 2011, 762780.PubMed Monroe, M. M., Anderson, E. C., Clayburgh, D. R., & Wong, M. H. (2011). Cancer stem cells in head and neck squamous cell carcinoma. Journal of Oncology, 2011, 762780.PubMed
71.
go back to reference Zhang, Q., Shi, S., Yen, Y., Brown, J., Ta, J. Q., & Le, A. D. (2010). A subpopulation of CD 133(+) cancer stem-like cells characterized in human oral squamous cell carcinoma confer resistance to chemotherapy. Cancer Letters, 289, 151–160.PubMed Zhang, Q., Shi, S., Yen, Y., Brown, J., Ta, J. Q., & Le, A. D. (2010). A subpopulation of CD 133(+) cancer stem-like cells characterized in human oral squamous cell carcinoma confer resistance to chemotherapy. Cancer Letters, 289, 151–160.PubMed
72.
go back to reference Ricci-Vitiani, L., Fabrizi, E., Palio, E., & De Maria, R. (2009). Colon cancer stem cells. Journal of Molecular Medicine, 87, 1097–1104.PubMed Ricci-Vitiani, L., Fabrizi, E., Palio, E., & De Maria, R. (2009). Colon cancer stem cells. Journal of Molecular Medicine, 87, 1097–1104.PubMed
73.
go back to reference Hubbard, S. A., & Gargett, C. E. (2010). A cancer stem cell origin for human endometrial carcinoma? Reproduction, 140, 23–32.PubMed Hubbard, S. A., & Gargett, C. E. (2010). A cancer stem cell origin for human endometrial carcinoma? Reproduction, 140, 23–32.PubMed
74.
go back to reference Zhang, J., Luo, N., Luo, Y., Peng, Z., Zhang, T., & Li, S. (2011). MicroRNA-150 inhibits human CD 133-positive liver cancer stem cells through negative regulation of the transcription factor c-Myb. International Journal of Oncology, 40, 747–756.PubMed Zhang, J., Luo, N., Luo, Y., Peng, Z., Zhang, T., & Li, S. (2011). MicroRNA-150 inhibits human CD 133-positive liver cancer stem cells through negative regulation of the transcription factor c-Myb. International Journal of Oncology, 40, 747–756.PubMed
75.
go back to reference Eramo, A., Haas, T. L., & De Maria, R. (2010). Lung cancer stem cells: tools and targets to fight lung cancer. Oncogene, 29, 4625–4635.PubMed Eramo, A., Haas, T. L., & De Maria, R. (2010). Lung cancer stem cells: tools and targets to fight lung cancer. Oncogene, 29, 4625–4635.PubMed
76.
go back to reference O’Brien, C. A., Kreso, A., & Dick, J. (2009). Cancer stem cells in solid tumors: an overview. Seminars in Radiation Oncology, 19, 71–77.PubMed O’Brien, C. A., Kreso, A., & Dick, J. (2009). Cancer stem cells in solid tumors: an overview. Seminars in Radiation Oncology, 19, 71–77.PubMed
77.
go back to reference O’Brien, C. A., Kreso, A., & Jamieson, C. H. M. (2010). Cancer stem cells and self-renewal. Clinical Cancer Research, 16, 3113–3120.PubMed O’Brien, C. A., Kreso, A., & Jamieson, C. H. M. (2010). Cancer stem cells and self-renewal. Clinical Cancer Research, 16, 3113–3120.PubMed
78.
go back to reference Bednar, F., & Simeone, D. M. (2009). Pancreatic cancer stem cells and relevance to cancer treatments. Journal of Cellular Biochemistry, 107, 40–45.PubMed Bednar, F., & Simeone, D. M. (2009). Pancreatic cancer stem cells and relevance to cancer treatments. Journal of Cellular Biochemistry, 107, 40–45.PubMed
79.
go back to reference Dunning, N. L., Laversin, S. A., Miles, A. K., & Rees, R. C. (2011). Immunotherapy of prostate cancer: should we be targeting stem cells and EMT? Cancer Immunology, Immunotherapy, 60, 1181–1193.PubMed Dunning, N. L., Laversin, S. A., Miles, A. K., & Rees, R. C. (2011). Immunotherapy of prostate cancer: should we be targeting stem cells and EMT? Cancer Immunology, Immunotherapy, 60, 1181–1193.PubMed
80.
go back to reference Yang, J.-P., Liu, Y., Zhong, W., Yu, D., Wen, L. J., & Jin, C. S. (2011). Chemo resistance of CD 133+ cancer stem cells in laryngeal carcinoma. Chinese Medical Journal, 124, 1055–1060.PubMed Yang, J.-P., Liu, Y., Zhong, W., Yu, D., Wen, L. J., & Jin, C. S. (2011). Chemo resistance of CD 133+ cancer stem cells in laryngeal carcinoma. Chinese Medical Journal, 124, 1055–1060.PubMed
81.
go back to reference Zhang, H., Li, W., Nan, F., Ren, F., Wang, H., Xu, Y., et al. (2011). MicroRNA expression profile of colon cancer stem-like cells in HT29 adenocarcinoma cell line. Biochemical and Biophysical Research Communications, 404, 273–278.PubMed Zhang, H., Li, W., Nan, F., Ren, F., Wang, H., Xu, Y., et al. (2011). MicroRNA expression profile of colon cancer stem-like cells in HT29 adenocarcinoma cell line. Biochemical and Biophysical Research Communications, 404, 273–278.PubMed
82.
go back to reference Alison, M. R., Islam, S., & Wright, N. A. (2010). Stem cells in cancer: instigators and propagators? Journal of Cell Science, 123, 2357–2368.PubMed Alison, M. R., Islam, S., & Wright, N. A. (2010). Stem cells in cancer: instigators and propagators? Journal of Cell Science, 123, 2357–2368.PubMed
83.
go back to reference Padhye, S. S., Guin, S., Yao, H. P., Zhou, Y. Q., Zhang, R., & Wang, M. H. (2011). Sustained expression of the RON receptor tyrosine kinase by pancreatic cancer stem cells as a potential targeting moiety for antibody-directed chemotherapeutics. Molecular Pharmaceutics, 8, 2310–2319.PubMed Padhye, S. S., Guin, S., Yao, H. P., Zhou, Y. Q., Zhang, R., & Wang, M. H. (2011). Sustained expression of the RON receptor tyrosine kinase by pancreatic cancer stem cells as a potential targeting moiety for antibody-directed chemotherapeutics. Molecular Pharmaceutics, 8, 2310–2319.PubMed
84.
go back to reference Lonardo, E., Hermann, P. C., & Heeschen, C. (2010). Pancreatic cancer stem cells—update and future perspectives. Molecular Oncology, 4, 431–442.PubMed Lonardo, E., Hermann, P. C., & Heeschen, C. (2010). Pancreatic cancer stem cells—update and future perspectives. Molecular Oncology, 4, 431–442.PubMed
85.
go back to reference Lee, C. J., Dosch, J., & Simeone, D. M. (2008). Pancreatic cancer stem cells. Journal of Clinical Oncology, 26, 2806–2812.PubMed Lee, C. J., Dosch, J., & Simeone, D. M. (2008). Pancreatic cancer stem cells. Journal of Clinical Oncology, 26, 2806–2812.PubMed
86.
go back to reference Soltanian, S., & Matin, M. M. (2011). Cancer stem cells and cancer therapy. Tumour Biology, 32, 425–440.PubMed Soltanian, S., & Matin, M. M. (2011). Cancer stem cells and cancer therapy. Tumour Biology, 32, 425–440.PubMed
87.
go back to reference Miyoshi, N., Ishii, H., Sekimoto, M., Haraguchi, N., Doki, Y., & Mori, M. (2010). Properties and identification of cancer stem cells: a changing insight into intractable cancer. Surgery Today, 40, 608–613.PubMed Miyoshi, N., Ishii, H., Sekimoto, M., Haraguchi, N., Doki, Y., & Mori, M. (2010). Properties and identification of cancer stem cells: a changing insight into intractable cancer. Surgery Today, 40, 608–613.PubMed
88.
go back to reference Zhou, J., & Zhang, Y. (2008). Cancer stem cells: Models, mechanisms and implications for improved treatment. Cell Cycle, 7, 1360–1370.PubMed Zhou, J., & Zhang, Y. (2008). Cancer stem cells: Models, mechanisms and implications for improved treatment. Cell Cycle, 7, 1360–1370.PubMed
89.
go back to reference Richard, V., & Pillai, M. R. (2010). The stem cell code in oral epithelial tumorigenesis: “the cancer stem cell shift hypothesis. Biochimica et Biophysica Acta, 1806, 146–162.PubMed Richard, V., & Pillai, M. R. (2010). The stem cell code in oral epithelial tumorigenesis: “the cancer stem cell shift hypothesis. Biochimica et Biophysica Acta, 1806, 146–162.PubMed
90.
go back to reference Mishra, L., Banker, T., Murray, J., Byers, S., Thenappan, A., He, A. R., et al. (2009). Liver stem cells and hepatocellular carcinoma. Hepatology, 49, 318–329.PubMed Mishra, L., Banker, T., Murray, J., Byers, S., Thenappan, A., He, A. R., et al. (2009). Liver stem cells and hepatocellular carcinoma. Hepatology, 49, 318–329.PubMed
91.
go back to reference Yao, Z., & Mishra, L. (2009). Cancer stem cells and hepatocellular carcinoma. Cancer Biology & Therapy, 8, 1691–1698. Yao, Z., & Mishra, L. (2009). Cancer stem cells and hepatocellular carcinoma. Cancer Biology & Therapy, 8, 1691–1698.
92.
go back to reference Yi, S. Y., & Nan, K. J. (2008). Tumor-initiating stem cells in liver cancer. Cancer Biology & Therapy, 7, 325–330. Yi, S. Y., & Nan, K. J. (2008). Tumor-initiating stem cells in liver cancer. Cancer Biology & Therapy, 7, 325–330.
93.
go back to reference Oishi, N., & Wang, X. W. (2011). Novel therapeutic strategies for targeting liver cancer stem cells. International Journal of Biological Sciences, 7, 517–535.PubMed Oishi, N., & Wang, X. W. (2011). Novel therapeutic strategies for targeting liver cancer stem cells. International Journal of Biological Sciences, 7, 517–535.PubMed
94.
go back to reference Sell, S., & Leffert, H. L. (2008). Liver cancer stem cells. Journal of Clinical Oncology, 26, 2800–2805.PubMed Sell, S., & Leffert, H. L. (2008). Liver cancer stem cells. Journal of Clinical Oncology, 26, 2800–2805.PubMed
95.
go back to reference Sales, K. M., Winslet, M. C., & Seifalian, A. M. (2007). Stem cells and cancer: an overview. Stem Cell Review and Reports, 3, 249–255. Sales, K. M., Winslet, M. C., & Seifalian, A. M. (2007). Stem cells and cancer: an overview. Stem Cell Review and Reports, 3, 249–255.
96.
go back to reference Clevers, H. (2011). The cancer stem cell: premises, promises and challenges. Nature Medicine, 17, 313–319.PubMed Clevers, H. (2011). The cancer stem cell: premises, promises and challenges. Nature Medicine, 17, 313–319.PubMed
97.
go back to reference Bussolati, B., Bruno, S., Grange, C., Ferrando, U., & Camussi, G. (2008). Identification of a tumor-initiating stem cell population in human renal carcinomas. The FASEB Journal, 22, 3696–3705. Bussolati, B., Bruno, S., Grange, C., Ferrando, U., & Camussi, G. (2008). Identification of a tumor-initiating stem cell population in human renal carcinomas. The FASEB Journal, 22, 3696–3705.
98.
go back to reference Alison, M. R., Lim, S. M. L., & Nicholson, L. J. (2011). Cancer stem cells: problems for therapy? The Journal of Pathology, 223, 147–161.PubMed Alison, M. R., Lim, S. M. L., & Nicholson, L. J. (2011). Cancer stem cells: problems for therapy? The Journal of Pathology, 223, 147–161.PubMed
99.
go back to reference Lee, T. K. W., Castilho, A., Ma, S., & Ng, I. O. L. (2009). Liver cancer stem cells: implications for a new therapeutic target. Liver International, 29, 955–965.PubMed Lee, T. K. W., Castilho, A., Ma, S., & Ng, I. O. L. (2009). Liver cancer stem cells: implications for a new therapeutic target. Liver International, 29, 955–965.PubMed
100.
go back to reference Chen, Y. C., Chen, Y. W., Hsu, H. S., Tseng, L. M., Huang, P. I., Lu, K. H., et al. (2009). Aldehyde dehydrogenase 1 is a putative marker for cancer stem cells in head and neck squamous cancer. Biochemical and Biophysical Research Communications, 385, 307–313.PubMed Chen, Y. C., Chen, Y. W., Hsu, H. S., Tseng, L. M., Huang, P. I., Lu, K. H., et al. (2009). Aldehyde dehydrogenase 1 is a putative marker for cancer stem cells in head and neck squamous cancer. Biochemical and Biophysical Research Communications, 385, 307–313.PubMed
101.
go back to reference Chen, Y. C., Chang, C. J., Hsu, H. S., Chen, Y. W., Tai, L. K., Tsengm, L. M., et al. (2010). Inhibition of tumorigenicity and enhancement of radiochemosensitivity in head and neck squamous cell cancer-derived ALDH1-positive cells by knockdown of Bmi-1. Oral Oncology, 46, 158–165.PubMed Chen, Y. C., Chang, C. J., Hsu, H. S., Chen, Y. W., Tai, L. K., Tsengm, L. M., et al. (2010). Inhibition of tumorigenicity and enhancement of radiochemosensitivity in head and neck squamous cell cancer-derived ALDH1-positive cells by knockdown of Bmi-1. Oral Oncology, 46, 158–165.PubMed
102.
go back to reference Alison, M. R., Guppy, N. J., Lim, S. M. L., & Nicholson, L. J. (2010). Finding cancer stem cells: are aldehyde dehydrogenases fit for purpose? The Journal of Pathology, 222, 335–344.PubMed Alison, M. R., Guppy, N. J., Lim, S. M. L., & Nicholson, L. J. (2010). Finding cancer stem cells: are aldehyde dehydrogenases fit for purpose? The Journal of Pathology, 222, 335–344.PubMed
103.
go back to reference Visus, C., Ito, D., Amoscato, A., Maciejewska-Franczak, M., Abdelsalem, A., Dhir, R., et al. (2007). Identification of human aldehyde dehydrogenase 1 family member A1 as a novel CD8+ T-cell-defined tumor antigen in squamous cell carcinoma of the head and neck. Cancer Research, 67, 10538–10545.PubMed Visus, C., Ito, D., Amoscato, A., Maciejewska-Franczak, M., Abdelsalem, A., Dhir, R., et al. (2007). Identification of human aldehyde dehydrogenase 1 family member A1 as a novel CD8+ T-cell-defined tumor antigen in squamous cell carcinoma of the head and neck. Cancer Research, 67, 10538–10545.PubMed
104.
go back to reference Huang, E. H., Hynes, M. J., Zhang, T., Ginestier, C., Dontu, G., Appelman, H., et al. (2009). Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Research, 69, 3382–3389.PubMed Huang, E. H., Hynes, M. J., Zhang, T., Ginestier, C., Dontu, G., Appelman, H., et al. (2009). Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Research, 69, 3382–3389.PubMed
105.
go back to reference Douville, J., Beaulieu, R., & Balicki, D. (2009). ALDH1 as a functional marker of cancer stem and progenitor cells. Stem Cells and Development, 18, 17–25.PubMed Douville, J., Beaulieu, R., & Balicki, D. (2009). ALDH1 as a functional marker of cancer stem and progenitor cells. Stem Cells and Development, 18, 17–25.PubMed
106.
go back to reference Keysar, S. B., & Jimeno, A. (2010). More than markers: biological significance of cancer stem cell-defining molecules. Molecular Cancer Therapeutics, 9, 2450–2457.PubMed Keysar, S. B., & Jimeno, A. (2010). More than markers: biological significance of cancer stem cell-defining molecules. Molecular Cancer Therapeutics, 9, 2450–2457.PubMed
107.
go back to reference Lawson, J. C., Blatch, G. L., & Edkins, A. L. (2009). Cancer stem cells in breast cancer and metastasis. Breast Cancer Research and Treatment, 118, 241–254.PubMed Lawson, J. C., Blatch, G. L., & Edkins, A. L. (2009). Cancer stem cells in breast cancer and metastasis. Breast Cancer Research and Treatment, 118, 241–254.PubMed
108.
go back to reference Ma, I., & Allan, A. L. (2011). The role of human aldehyde dehydrogenase in normal and cancer stem cells. Stem Cell Reviews, 7, 292–306.PubMed Ma, I., & Allan, A. L. (2011). The role of human aldehyde dehydrogenase in normal and cancer stem cells. Stem Cell Reviews, 7, 292–306.PubMed
109.
go back to reference Ohi, Y., Umekita, Y., Yoshioka, T., Souda, M., Rai, Y., Sagara, Y., et al. (2011). Aldehyde dehydrogenase 1 expression predicts poor prognosis in triple-negative breast cancer. Histopathology, 59, 776–780.PubMed Ohi, Y., Umekita, Y., Yoshioka, T., Souda, M., Rai, Y., Sagara, Y., et al. (2011). Aldehyde dehydrogenase 1 expression predicts poor prognosis in triple-negative breast cancer. Histopathology, 59, 776–780.PubMed
110.
go back to reference Subramaniam, D., Ramalingam, S., Houchen, C. W., & Anant, S. (2010). Cancer stem cells: a novel paradigm for cancer prevention and treatment. Mini Reviews in Medicinal Chemistry, 10, 359–371.PubMed Subramaniam, D., Ramalingam, S., Houchen, C. W., & Anant, S. (2010). Cancer stem cells: a novel paradigm for cancer prevention and treatment. Mini Reviews in Medicinal Chemistry, 10, 359–371.PubMed
111.
go back to reference Sullivan, J. P., Minna, J., & Shay, J. W. (2010). Evidence for self-renewing lung cancer stem cells and their implications in tumor initiation, progression, and targeted therapy. Cancer Metastasis Reviews, 29, 61–72.PubMed Sullivan, J. P., Minna, J., & Shay, J. W. (2010). Evidence for self-renewing lung cancer stem cells and their implications in tumor initiation, progression, and targeted therapy. Cancer Metastasis Reviews, 29, 61–72.PubMed
112.
go back to reference Clay, M. R., Tabor, M., Owen, J., Carey, T. E., Bradford, C. R., Wolf, G. T., et al. (2010). Single-marker identification of head and neck squamous cell carcinoma cancer stem cells with aldehyde dehydrogenase. Head & Neck, 32, 1195–1201. Clay, M. R., Tabor, M., Owen, J., Carey, T. E., Bradford, C. R., Wolf, G. T., et al. (2010). Single-marker identification of head and neck squamous cell carcinoma cancer stem cells with aldehyde dehydrogenase. Head & Neck, 32, 1195–1201.
113.
go back to reference Krishnamurthy, S., Dong, Z., Vodopyanov, D., Imai, A., Helman, J., Prince, M. E., et al. (2010). Endothelial cell-initiated signaling promotes the survival and self-renewal of cancer stem cells. Cancer Research, 70, 9969–9978.PubMed Krishnamurthy, S., Dong, Z., Vodopyanov, D., Imai, A., Helman, J., Prince, M. E., et al. (2010). Endothelial cell-initiated signaling promotes the survival and self-renewal of cancer stem cells. Cancer Research, 70, 9969–9978.PubMed
114.
go back to reference Gupta, V., & Bamezai, R. N. K. (2010). Human pyruvate kinase M2: a multifunctional protein. Protein Science, 19, 2031–2044.PubMed Gupta, V., & Bamezai, R. N. K. (2010). Human pyruvate kinase M2: a multifunctional protein. Protein Science, 19, 2031–2044.PubMed
115.
go back to reference Anastasiou, D., Poulogiannis, G., Asara, J. M., Boxer, M. B., Jiang, J. K., Shen, M., et al. (2011). Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science, 334, 1278–1283.PubMed Anastasiou, D., Poulogiannis, G., Asara, J. M., Boxer, M. B., Jiang, J. K., Shen, M., et al. (2011). Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science, 334, 1278–1283.PubMed
116.
go back to reference Mazurek, S. (2011). Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells. The International Journal of Biochemistry & Cell Biology, 43, 969–980. Mazurek, S. (2011). Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells. The International Journal of Biochemistry & Cell Biology, 43, 969–980.
117.
go back to reference Hathurusinghe, H. R., Goonetilleke, K. S., & Siriwardena, A. K. (2007). Current status of tumor M2 pyruvate kinase (tumor M2-PK) as a biomarker of gastrointestinal malignancy. Annals of Surgical Oncology, 14, 2714–2720.PubMed Hathurusinghe, H. R., Goonetilleke, K. S., & Siriwardena, A. K. (2007). Current status of tumor M2 pyruvate kinase (tumor M2-PK) as a biomarker of gastrointestinal malignancy. Annals of Surgical Oncology, 14, 2714–2720.PubMed
118.
go back to reference Rayess, H., Wang, M. B., & Srivatsan, E. S. (2012). Cellular senescence and tumor suppressor gene p16. International Journal of Cancer, 130, 1715–1725. Rayess, H., Wang, M. B., & Srivatsan, E. S. (2012). Cellular senescence and tumor suppressor gene p16. International Journal of Cancer, 130, 1715–1725.
119.
go back to reference Yu, C. C., Lo, W. L., Chen, Y. W., Huang, P. I., Hsu, H. S., Tseng, L. M., et al. (2011). Bmi-1 regulates snail expression and promotes metastasis ability in head and neck squamous cancer-derived ALDH1 positive cells. Journal of Oncology. doi:10.1155/2011/609259 Yu, C. C., Lo, W. L., Chen, Y. W., Huang, P. I., Hsu, H. S., Tseng, L. M., et al. (2011). Bmi-1 regulates snail expression and promotes metastasis ability in head and neck squamous cancer-derived ALDH1 positive cells. Journal of Oncology. doi:10.​1155/​2011/​609259
120.
go back to reference Hermann, P. C., Bhaskar, S., Cioffi, M., & Heeschen, C. (2010). Cancer stem cells in solid tumors. Seminars in Cancer Biology, 20, 77–84.PubMed Hermann, P. C., Bhaskar, S., Cioffi, M., & Heeschen, C. (2010). Cancer stem cells in solid tumors. Seminars in Cancer Biology, 20, 77–84.PubMed
121.
go back to reference Ouyang, G., Wang, Z., Fang, X., Liu, J., & Yang, C. J. (2010). Molecular signaling of the epithelial to mesenchymal transition in generating and maintaining cancer stem cells. Cellular and Molecular Life Sciences, 67, 2605–2618.PubMed Ouyang, G., Wang, Z., Fang, X., Liu, J., & Yang, C. J. (2010). Molecular signaling of the epithelial to mesenchymal transition in generating and maintaining cancer stem cells. Cellular and Molecular Life Sciences, 67, 2605–2618.PubMed
122.
go back to reference Reiman, J. M., Knutson, K. L., & Radisky, D. C. (2010). Immune promotion of epithelial–mesenchymal transition and generation of breast cancer stem cells. Cancer Research, 70, 3005–3008.PubMed Reiman, J. M., Knutson, K. L., & Radisky, D. C. (2010). Immune promotion of epithelial–mesenchymal transition and generation of breast cancer stem cells. Cancer Research, 70, 3005–3008.PubMed
123.
go back to reference Thiery, J. P., & Sleeman, J. P. (2006). Complex networks orchestrate epithelial mesenchymal transitions. Nature Reviews Molecular Cell Biology, 7, 131–142.PubMed Thiery, J. P., & Sleeman, J. P. (2006). Complex networks orchestrate epithelial mesenchymal transitions. Nature Reviews Molecular Cell Biology, 7, 131–142.PubMed
124.
go back to reference Cakouros, D., Raices, R. M., Gronthos, S., & Glackin, C. A. (2010). Twist-ing cell fate: mechanistic insights into the role of twist in lineage specification/differentiation and tumorigenesis. Journal of Cellular Biochemistry, 110, 1288–1298.PubMed Cakouros, D., Raices, R. M., Gronthos, S., & Glackin, C. A. (2010). Twist-ing cell fate: mechanistic insights into the role of twist in lineage specification/differentiation and tumorigenesis. Journal of Cellular Biochemistry, 110, 1288–1298.PubMed
125.
go back to reference Yang, M. H., Hsu, D. S. S., Wang, H. W., Wang, H. J., Lan, H. Y., Yang, W. H., et al. (2010). Bmi1 is essential in Twist1-induced epithelial-mesenchymal transition. Nature Cell Biology, 12, 982–992.PubMed Yang, M. H., Hsu, D. S. S., Wang, H. W., Wang, H. J., Lan, H. Y., Yang, W. H., et al. (2010). Bmi1 is essential in Twist1-induced epithelial-mesenchymal transition. Nature Cell Biology, 12, 982–992.PubMed
126.
go back to reference Cheng, L., Bao, S., & Rich, J. N. (2010). Potential therapeutic implications of cancer stem cells in glioblastoma. Biochemistry & Pharmacology, 80, 654–665. Cheng, L., Bao, S., & Rich, J. N. (2010). Potential therapeutic implications of cancer stem cells in glioblastoma. Biochemistry & Pharmacology, 80, 654–665.
127.
go back to reference Sun, S., & Wang, Z. (2011). Head neck squamous cell carcinoma c-Met(+) cells display cancer stem cell properties and are responsible for cisplatin-resistance and metastasis. International Journal of Cancer, 129, 2337–2348. Sun, S., & Wang, Z. (2011). Head neck squamous cell carcinoma c-Met(+) cells display cancer stem cell properties and are responsible for cisplatin-resistance and metastasis. International Journal of Cancer, 129, 2337–2348.
128.
go back to reference Goodell, M. A., Brose, K., Paradis, G., Conner, A. S., & Mulligan, R. C. (1996). Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. The Journal of Experimental Medicine, 183, 1797–1806.PubMed Goodell, M. A., Brose, K., Paradis, G., Conner, A. S., & Mulligan, R. C. (1996). Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. The Journal of Experimental Medicine, 183, 1797–1806.PubMed
129.
go back to reference Wu, C., Wei, Q., Utomo, V., Nadesan, P., Whetstone, H., Kandel, R., et al. (2007). Side population cells isolated from mesenchymal neoplasms have tumor initiating potential. Cancer Research, 67, 8216–8222.PubMed Wu, C., Wei, Q., Utomo, V., Nadesan, P., Whetstone, H., Kandel, R., et al. (2007). Side population cells isolated from mesenchymal neoplasms have tumor initiating potential. Cancer Research, 67, 8216–8222.PubMed
130.
go back to reference Song, J., Chang, I., Chen, Z., Kang, M., & Wang, C. Y. (2010). Characterization of side populations in HNSCC: highly invasive, chemo resistant and abnormal Wnt signaling. PLoS One, 5, e11456.PubMed Song, J., Chang, I., Chen, Z., Kang, M., & Wang, C. Y. (2010). Characterization of side populations in HNSCC: highly invasive, chemo resistant and abnormal Wnt signaling. PLoS One, 5, e11456.PubMed
131.
go back to reference Sun, G., Fujii, M., Sonoda, A., Tokumaru, Y., Matsunaga, T., & Habu, N. (2010). Identification of stem-like cells in head and neck cancer cell lines. Anticancer Research, 30, 2005–2010.PubMed Sun, G., Fujii, M., Sonoda, A., Tokumaru, Y., Matsunaga, T., & Habu, N. (2010). Identification of stem-like cells in head and neck cancer cell lines. Anticancer Research, 30, 2005–2010.PubMed
132.
go back to reference Tabor, M. H., Clay, M. R., Owen, J. H., Bradford, C. R., Carey, T. E., Wolf, G. T., et al. (2011). Head and neck cancer stem cells: the side population. Laryngoscope, 121, 527–533.PubMed Tabor, M. H., Clay, M. R., Owen, J. H., Bradford, C. R., Carey, T. E., Wolf, G. T., et al. (2011). Head and neck cancer stem cells: the side population. Laryngoscope, 121, 527–533.PubMed
133.
go back to reference Ozvegy-Laczka, C., Cserepes, J., Elkind, N. B., & Sarkadi, B. (2005). Tyrosine kinase inhibitor resistance in cancer: role of ABC multidrug transporters. Drug Resistance Updates, 8, 15–26.PubMed Ozvegy-Laczka, C., Cserepes, J., Elkind, N. B., & Sarkadi, B. (2005). Tyrosine kinase inhibitor resistance in cancer: role of ABC multidrug transporters. Drug Resistance Updates, 8, 15–26.PubMed
134.
go back to reference Zhang, P., Zhang, Y., Mao, L., Zhang, Z., & Chen, W. (2009). Side population in oral squamous cell carcinoma possesses tumor stem cell phenotypes. Cancer Letters, 277, 227–234.PubMed Zhang, P., Zhang, Y., Mao, L., Zhang, Z., & Chen, W. (2009). Side population in oral squamous cell carcinoma possesses tumor stem cell phenotypes. Cancer Letters, 277, 227–234.PubMed
135.
go back to reference Reya, T., Morrison, S. J., Clarke, M. F., & Weissman, I. L. (2001). Stem cells, cancer, and cancer stem cells. Nature, 414, 105–111.PubMed Reya, T., Morrison, S. J., Clarke, M. F., & Weissman, I. L. (2001). Stem cells, cancer, and cancer stem cells. Nature, 414, 105–111.PubMed
136.
go back to reference Bapat, S. A. (2010). Human ovarian cancer stem cells. Reproduction, 140, 33–41.PubMed Bapat, S. A. (2010). Human ovarian cancer stem cells. Reproduction, 140, 33–41.PubMed
137.
go back to reference Kim, C. F., Jackson, E. L., Woolfenden, A. E., Lawrence, S., Babar, I., Vogel, S., et al. (2005). Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell, 121, 823–835.PubMed Kim, C. F., Jackson, E. L., Woolfenden, A. E., Lawrence, S., Babar, I., Vogel, S., et al. (2005). Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell, 121, 823–835.PubMed
138.
go back to reference Ding, X-wei, Wu, J-hua, & Jiang, C-ping. (2010). ABCG2: a potential marker of stem cells and novel target in stem cell and cancer therapy. Life Sciences, 86, 631–637.PubMed Ding, X-wei, Wu, J-hua, & Jiang, C-ping. (2010). ABCG2: a potential marker of stem cells and novel target in stem cell and cancer therapy. Life Sciences, 86, 631–637.PubMed
139.
go back to reference Fong, M. Y., & Kakar, S. S. (2010). The role of cancer stem cells and the side population in epithelial ovarian cancer. Histology and Histopathology, 25, 113–120.PubMed Fong, M. Y., & Kakar, S. S. (2010). The role of cancer stem cells and the side population in epithelial ovarian cancer. Histology and Histopathology, 25, 113–120.PubMed
140.
go back to reference Kratz, J. R., Yagui-Beltrán, A., & Jablons, D. M. (2010). Cancer stem cells in lung tumorigenesis. The Annals of Thoracic Surgery, 89, S2090–S2095.PubMed Kratz, J. R., Yagui-Beltrán, A., & Jablons, D. M. (2010). Cancer stem cells in lung tumorigenesis. The Annals of Thoracic Surgery, 89, S2090–S2095.PubMed
141.
go back to reference Kyo, S., Maida, Y., & Inoue, M. (2011). Stem cells in endometrium and endometrial cancer: accumulating evidence and unresolved questions. Cancer Letters, 308, 123–133.PubMed Kyo, S., Maida, Y., & Inoue, M. (2011). Stem cells in endometrium and endometrial cancer: accumulating evidence and unresolved questions. Cancer Letters, 308, 123–133.PubMed
142.
go back to reference Moserle, L., Ghisi, M., Amadori, A., & Indraccolo, S. (2010). Side population and cancer stem cells: therapeutic implications. Cancer Letters, 288, 1–9.PubMed Moserle, L., Ghisi, M., Amadori, A., & Indraccolo, S. (2010). Side population and cancer stem cells: therapeutic implications. Cancer Letters, 288, 1–9.PubMed
143.
go back to reference Lavon, I., Zrihan, D., Granit, A., Einstein, O., Fainstein, N., Cohen, M. A., et al. (2010). Gliomas display a microRNA expression profile reminiscent of neural precursor cells. Neuro-Oncology, 12, 422–433.PubMed Lavon, I., Zrihan, D., Granit, A., Einstein, O., Fainstein, N., Cohen, M. A., et al. (2010). Gliomas display a microRNA expression profile reminiscent of neural precursor cells. Neuro-Oncology, 12, 422–433.PubMed
144.
go back to reference Yu, X. F., Zou, J., Bao, Z. J., & Dong, J. (2011). miR-93 suppresses proliferation and colony formation of human colon cancer stem cells. World Journal of Gastroenterology, 42, 4711–4717. Yu, X. F., Zou, J., Bao, Z. J., & Dong, J. (2011). miR-93 suppresses proliferation and colony formation of human colon cancer stem cells. World Journal of Gastroenterology, 42, 4711–4717.
145.
go back to reference Shi, L., Zhang, J., Pan, T., Zhou, J., Gong, W., Liu, N., et al. (2010). MiR-125b is critical for the suppression of human U251 glioma stem cell proliferation. Brain Research, 1312, 120–126.PubMed Shi, L., Zhang, J., Pan, T., Zhou, J., Gong, W., Liu, N., et al. (2010). MiR-125b is critical for the suppression of human U251 glioma stem cell proliferation. Brain Research, 1312, 120–126.PubMed
146.
go back to reference Schraivogel, D., Weinmann, L., Beier, D., Tabatabai, G., Eichner, A., Zhu, J. Y., et al. (2011). CAMTA1 is a novel tumour suppressor regulated by miR-9/9* in glioblastoma stem cells. EMBO Journal, 30, 4309–4322.PubMed Schraivogel, D., Weinmann, L., Beier, D., Tabatabai, G., Eichner, A., Zhu, J. Y., et al. (2011). CAMTA1 is a novel tumour suppressor regulated by miR-9/9* in glioblastoma stem cells. EMBO Journal, 30, 4309–4322.PubMed
147.
go back to reference Gal, H., Pandi, G., Kanner, A. A., Ram, Z., Lithwick-Yanai, G., Amariglio, N., et al. (2008). MIR-451 and Imatinib mesylate inhibit tumor growth of Glioblastoma stem cells. Biochemical and Biophysical Research Communications, 376, 86–90.PubMed Gal, H., Pandi, G., Kanner, A. A., Ram, Z., Lithwick-Yanai, G., Amariglio, N., et al. (2008). MIR-451 and Imatinib mesylate inhibit tumor growth of Glioblastoma stem cells. Biochemical and Biophysical Research Communications, 376, 86–90.PubMed
148.
go back to reference Ji, J., & Wang, X. W. (2012). Identification of cancer stem cell-related microRNAs in hepatocellular carcinoma. Methods in Molecular Biology, 826, 163–175.PubMed Ji, J., & Wang, X. W. (2012). Identification of cancer stem cell-related microRNAs in hepatocellular carcinoma. Methods in Molecular Biology, 826, 163–175.PubMed
149.
go back to reference Jung, C. J., Iyengar, S., Blahnik, K. R., Ajuha, T. P., Jiang, J. X., Farnham, P. J., et al. (2011). Epigenetic modulation of miR-122 facilitates human embryonic stem cell self-renewal and hepatocellular carcinoma proliferation. PLoS One, 6, 27740. Jung, C. J., Iyengar, S., Blahnik, K. R., Ajuha, T. P., Jiang, J. X., Farnham, P. J., et al. (2011). Epigenetic modulation of miR-122 facilitates human embryonic stem cell self-renewal and hepatocellular carcinoma proliferation. PLoS One, 6, 27740.
150.
go back to reference Meng, F., Glaser, S. S., Francis, H., Demorrow, S., Han, Y., Passarini, J. D., et al. (2012). Functional analysis of microRNAs in human hepatocellular cancer stem cells. Journal of Cellular and Molecular Medicine, 16, 160–173.PubMed Meng, F., Glaser, S. S., Francis, H., Demorrow, S., Han, Y., Passarini, J. D., et al. (2012). Functional analysis of microRNAs in human hepatocellular cancer stem cells. Journal of Cellular and Molecular Medicine, 16, 160–173.PubMed
151.
go back to reference Ma, S., Tang, K. H., Chan, Y. P., Lee, T. K., Kwan, P. S., Castilho, A., et al. (2010). miR-130b Promotes CD 133(+) liver tumor-initiating cell growth and self-renewal via tumor protein 53-induced nuclear protein 1. Cell Stem Cell, 7, 694–707.PubMed Ma, S., Tang, K. H., Chan, Y. P., Lee, T. K., Kwan, P. S., Castilho, A., et al. (2010). miR-130b Promotes CD 133(+) liver tumor-initiating cell growth and self-renewal via tumor protein 53-induced nuclear protein 1. Cell Stem Cell, 7, 694–707.PubMed
152.
go back to reference Jung, D. E., Wen, J., Oh, T., & Song, S. Y. (2011). Differentially expressed microRNAs in pancreatic cancer stem cells. Pancreas, 40, 1180–1187.PubMed Jung, D. E., Wen, J., Oh, T., & Song, S. Y. (2011). Differentially expressed microRNAs in pancreatic cancer stem cells. Pancreas, 40, 1180–1187.PubMed
153.
go back to reference Ji, Q., Hao, X., Zhang, M., Tang, W., Yang, M., Li, L., et al. (2009). MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS One, 4, e6816.PubMed Ji, Q., Hao, X., Zhang, M., Tang, W., Yang, M., Li, L., et al. (2009). MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS One, 4, e6816.PubMed
154.
go back to reference Yu, F., Jiao, Y., Zhu, Y., Wang, Y., Zhu, J., Cui, X., et al. (2012). MicroRNA 34c gene down-regulation via DNA methylation promotes self-renewal and epithelial–mesenchymal transition in breast tumor-initiating cells. Journal of Biological Chemistry, 287, 465–473.PubMed Yu, F., Jiao, Y., Zhu, Y., Wang, Y., Zhu, J., Cui, X., et al. (2012). MicroRNA 34c gene down-regulation via DNA methylation promotes self-renewal and epithelial–mesenchymal transition in breast tumor-initiating cells. Journal of Biological Chemistry, 287, 465–473.PubMed
155.
go back to reference Zhu, Y., Yu, F., Jiao, Y., Feng, J., Tang, W., Yao, H., et al. (2011). Reduced miR-128 in breast tumor-initiating cells induces chemotherapeutic resistance via Bmi-1 and ABCC5. Clinical Cancer Research, 17, 7105–7115.PubMed Zhu, Y., Yu, F., Jiao, Y., Feng, J., Tang, W., Yao, H., et al. (2011). Reduced miR-128 in breast tumor-initiating cells induces chemotherapeutic resistance via Bmi-1 and ABCC5. Clinical Cancer Research, 17, 7105–7115.PubMed
156.
go back to reference Yu, F., Yao, H., Zhu, P., Zhang, X., Pan, Q., Gong, C., et al. (2007). let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell, 131, 1109–1123.PubMed Yu, F., Yao, H., Zhu, P., Zhang, X., Pan, Q., Gong, C., et al. (2007). let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell, 131, 1109–1123.PubMed
157.
go back to reference Zhang, X., Wan, G., Mlotshwa, S., Vance, V., Berger, F. G., Chen, H., et al. (2010). Oncogenic Wip1 phosphatase is inhibited by miR-16 in the DNA damage signaling pathway. Cancer Research, 70, 7176–7186.PubMed Zhang, X., Wan, G., Mlotshwa, S., Vance, V., Berger, F. G., Chen, H., et al. (2010). Oncogenic Wip1 phosphatase is inhibited by miR-16 in the DNA damage signaling pathway. Cancer Research, 70, 7176–7186.PubMed
158.
go back to reference Shimono, Y., Zabala, M., Cho, R. W., Lobo, N., Dalerba, P., Qian, D., et al. (2009). Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell, 138, 592–603.PubMed Shimono, Y., Zabala, M., Cho, R. W., Lobo, N., Dalerba, P., Qian, D., et al. (2009). Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell, 138, 592–603.PubMed
159.
go back to reference Leung, M., Rosen, D., Fields, S., Cesano, A., & Budman, D. R. (2011). Poly(ADP-ribose) polymerase-1 inhibition: preclinical and clinical development of synthetic lethality. Molecular Medicine, 17, 854–862.PubMed Leung, M., Rosen, D., Fields, S., Cesano, A., & Budman, D. R. (2011). Poly(ADP-ribose) polymerase-1 inhibition: preclinical and clinical development of synthetic lethality. Molecular Medicine, 17, 854–862.PubMed
160.
go back to reference Mukhopadhyay, A., Curtin, N., Plummer, R., & Edmondson, R. J. (2011). PARP inhibitors and epithelial ovarian cancer: an approach to targeted chemotherapy and personalized medicine. British Journal of Obstetrics and Gynaecology, 118, 429–432.PubMed Mukhopadhyay, A., Curtin, N., Plummer, R., & Edmondson, R. J. (2011). PARP inhibitors and epithelial ovarian cancer: an approach to targeted chemotherapy and personalized medicine. British Journal of Obstetrics and Gynaecology, 118, 429–432.PubMed
161.
go back to reference Alexander, B. M., Wang, X. Z., Niemierko, A., Weaver, D. T., Mak, R. H., Roof, K. S., et al. (2012). DNA repair biomarkers predict response to neoadjuvant chemoradiotherapy in esophageal cancer. International Journal of Radiation Oncology and Biological Physics, 83, 164–171. Alexander, B. M., Wang, X. Z., Niemierko, A., Weaver, D. T., Mak, R. H., Roof, K. S., et al. (2012). DNA repair biomarkers predict response to neoadjuvant chemoradiotherapy in esophageal cancer. International Journal of Radiation Oncology and Biological Physics, 83, 164–171.
162.
go back to reference Kemp, Z., & Jones, A. (2011). A shift in the treatment of hormone receptor and human epidermal growth factor receptor 2-positive metastatic breast cancer. Advances in Therapy, 28, 603–614.PubMed Kemp, Z., & Jones, A. (2011). A shift in the treatment of hormone receptor and human epidermal growth factor receptor 2-positive metastatic breast cancer. Advances in Therapy, 28, 603–614.PubMed
163.
go back to reference Javle, M., & Curtin, N. J. (2011). The role of PARP in DNA repair and its therapeutic exploitation. British Journal of Cancer, 105, 1114–1122.PubMed Javle, M., & Curtin, N. J. (2011). The role of PARP in DNA repair and its therapeutic exploitation. British Journal of Cancer, 105, 1114–1122.PubMed
164.
go back to reference Weil, M. K., & Chen, A. P. (2011). PARP inhibitor treatment in ovarian and breast cancer. Current Problems in Cancer, 35, 7–50.PubMed Weil, M. K., & Chen, A. P. (2011). PARP inhibitor treatment in ovarian and breast cancer. Current Problems in Cancer, 35, 7–50.PubMed
165.
go back to reference O’Shaughnessy, J., Osborne, C., Pippen, J. E., Yoffe, M., Patt, D., Rocha, C., et al. (2011). Iniparib plus chemotherapy in metastatic triple-negative breast cancer. The New England Journal of Medicine, 364, 205–214.PubMed O’Shaughnessy, J., Osborne, C., Pippen, J. E., Yoffe, M., Patt, D., Rocha, C., et al. (2011). Iniparib plus chemotherapy in metastatic triple-negative breast cancer. The New England Journal of Medicine, 364, 205–214.PubMed
166.
go back to reference Barreto-Andrade, J. C., Efimova, E. V., Mauceri, H. J., Beckett, M. A., Sutton, H. G., Darga, T. E., et al. (2011). Response of human prostate cancer cells and tumors to combining PARP inhibition with ionizing radiation. Molecular Cancer Therapeutics, 10, 1185–1193.PubMed Barreto-Andrade, J. C., Efimova, E. V., Mauceri, H. J., Beckett, M. A., Sutton, H. G., Darga, T. E., et al. (2011). Response of human prostate cancer cells and tumors to combining PARP inhibition with ionizing radiation. Molecular Cancer Therapeutics, 10, 1185–1193.PubMed
167.
go back to reference Kaye, S. B., Lubinski, J., Matulonis, U., Ang, J. E., Gourley, C., Karlan, B. Y., et al. (2012). Phase II, Open-label, randomized, multicenter study comparing the efficacy and safety of olaparib, a poly(ADP-ribose) polymerase inhibitor, and pegylated liposomal doxorubicin in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer. Journal of Clinical Oncology, 30, 372–379.PubMed Kaye, S. B., Lubinski, J., Matulonis, U., Ang, J. E., Gourley, C., Karlan, B. Y., et al. (2012). Phase II, Open-label, randomized, multicenter study comparing the efficacy and safety of olaparib, a poly(ADP-ribose) polymerase inhibitor, and pegylated liposomal doxorubicin in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer. Journal of Clinical Oncology, 30, 372–379.PubMed
168.
go back to reference Benjamin, D., Colombi, M., Moroni, C., & Hall, M. N. (2011). Rapamycin passes the torch: a new generation of mTOR inhibitors. Nature Reviews. Drug Discovery, 10, 868–880.PubMed Benjamin, D., Colombi, M., Moroni, C., & Hall, M. N. (2011). Rapamycin passes the torch: a new generation of mTOR inhibitors. Nature Reviews. Drug Discovery, 10, 868–880.PubMed
169.
go back to reference Carew, J. S., Kelly, K. R., & Nawrocki, S. T. (2011). Mechanisms of mTOR inhibitor resistance in cancer therapy. Targeted Oncology, 6, 17–27.PubMed Carew, J. S., Kelly, K. R., & Nawrocki, S. T. (2011). Mechanisms of mTOR inhibitor resistance in cancer therapy. Targeted Oncology, 6, 17–27.PubMed
170.
go back to reference Russell, R. C., Fang, C., & Guan, K. L. (2011). An emerging role for TOR signaling in mammalian tissue and stem cell physiology. Development, 138, 3343–3356.PubMed Russell, R. C., Fang, C., & Guan, K. L. (2011). An emerging role for TOR signaling in mammalian tissue and stem cell physiology. Development, 138, 3343–3356.PubMed
171.
go back to reference Fang, L., Barekati, Z., Zhang, B., Liu, Z., & Zhong, X. (2011). Targeted therapy in breast cancer: what’s new? Swiss Medical Weekly, 141, w13231.PubMed Fang, L., Barekati, Z., Zhang, B., Liu, Z., & Zhong, X. (2011). Targeted therapy in breast cancer: what’s new? Swiss Medical Weekly, 141, w13231.PubMed
172.
go back to reference Kudo, M. (2011). Molecular targeted therapy for hepatocellular carcinoma: bench to bedside. Digestive Diseases, 29, 273–277.PubMed Kudo, M. (2011). Molecular targeted therapy for hepatocellular carcinoma: bench to bedside. Digestive Diseases, 29, 273–277.PubMed
173.
go back to reference Liao, Y. M., Kim, C., & Yen, Y. (2011). Mammalian target of rapamycin and head and neck squamous cell carcinoma. Head & Neck Oncology, 3, 22. Liao, Y. M., Kim, C., & Yen, Y. (2011). Mammalian target of rapamycin and head and neck squamous cell carcinoma. Head & Neck Oncology, 3, 22.
174.
go back to reference Pal, S. K., & Figlin, R. A. (2011). Future directions of mammalian target of rapamycin (mTOR) inhibitor therapy in renal cell carcinoma. Targeted Oncology, 6, 5–16.PubMed Pal, S. K., & Figlin, R. A. (2011). Future directions of mammalian target of rapamycin (mTOR) inhibitor therapy in renal cell carcinoma. Targeted Oncology, 6, 5–16.PubMed
175.
go back to reference Yao, J. C., Shah, M. H., Ito, T., Bohas, C. L., Wolin, E. M., Van Cutsem, E., et al. (2011). Everolimus for advanced pancreatic neuroendocrine tumors. The New England Journal of Medicine, 364, 514–523.PubMed Yao, J. C., Shah, M. H., Ito, T., Bohas, C. L., Wolin, E. M., Van Cutsem, E., et al. (2011). Everolimus for advanced pancreatic neuroendocrine tumors. The New England Journal of Medicine, 364, 514–523.PubMed
176.
go back to reference Duran, I., Kortmansky, J., Singh, D., Hirte, H., Kocha, W., Goss, G., et al. (2006). A phase II clinical and pharmacodynamic study of temsirolimus in advanced neuroendocrine carcinomas. British Journal of Cancer, 95, 1148–1154.PubMed Duran, I., Kortmansky, J., Singh, D., Hirte, H., Kocha, W., Goss, G., et al. (2006). A phase II clinical and pharmacodynamic study of temsirolimus in advanced neuroendocrine carcinomas. British Journal of Cancer, 95, 1148–1154.PubMed
177.
go back to reference Voss, M. H., Molina, A. M., & Motzer, R. J. (2011). mTOR inhibitors in advanced renal cell carcinoma. Hematology/Oncology Clinics of North America, 25, 835–852.PubMed Voss, M. H., Molina, A. M., & Motzer, R. J. (2011). mTOR inhibitors in advanced renal cell carcinoma. Hematology/Oncology Clinics of North America, 25, 835–852.PubMed
178.
go back to reference Leonard, G. D., Fojo, T., & Bates, S. E. (2003). The role of ABC transporters in clinical practice. The Oncologist, 8, 411–424.PubMed Leonard, G. D., Fojo, T., & Bates, S. E. (2003). The role of ABC transporters in clinical practice. The Oncologist, 8, 411–424.PubMed
179.
go back to reference Binello, E., & Germano, I. M. (2011). Targeting glioma stem cells: a novel framework for brain tumors. Cancer Science, 102, 1958–1966.PubMed Binello, E., & Germano, I. M. (2011). Targeting glioma stem cells: a novel framework for brain tumors. Cancer Science, 102, 1958–1966.PubMed
180.
go back to reference Ahmed-Belkacem, A., Pozza, A., Macalou, S., Perez-Victoria, J. M., Boumendjel, A., & Di Pietro, A. (2006). Inhibitors of cancer cell multidrug resistance mediated by breast cancer resistance protein (BCRP/ABCG2). Anti-Cancer Drugs, 17, 239–243.PubMed Ahmed-Belkacem, A., Pozza, A., Macalou, S., Perez-Victoria, J. M., Boumendjel, A., & Di Pietro, A. (2006). Inhibitors of cancer cell multidrug resistance mediated by breast cancer resistance protein (BCRP/ABCG2). Anti-Cancer Drugs, 17, 239–243.PubMed
181.
go back to reference Fracasso, P. M., Brady, M. F., Moore, D. H., Walker, J. L., Rose, P. G., Letvak, L., et al. (2001). Phase II study of paclitaxel and valspodar (PSC 833) in refractory ovarian carcinoma: a gynecologic oncology group study. Journal of Clinical Oncology, 19, 2975–2982.PubMed Fracasso, P. M., Brady, M. F., Moore, D. H., Walker, J. L., Rose, P. G., Letvak, L., et al. (2001). Phase II study of paclitaxel and valspodar (PSC 833) in refractory ovarian carcinoma: a gynecologic oncology group study. Journal of Clinical Oncology, 19, 2975–2982.PubMed
182.
go back to reference Seiden, M. V., Swenerton, K. D., Matulonis, U., Campos, S., Rose, P., Batist, G., et al. (2002). A phase II study of the MDR inhibitor biricodar (INCEL, VX-710) and paclitaxel in women with advanced ovarian cancer refractory to paclitaxel therapy. Gynecologic Oncology, 86, 302–310.PubMed Seiden, M. V., Swenerton, K. D., Matulonis, U., Campos, S., Rose, P., Batist, G., et al. (2002). A phase II study of the MDR inhibitor biricodar (INCEL, VX-710) and paclitaxel in women with advanced ovarian cancer refractory to paclitaxel therapy. Gynecologic Oncology, 86, 302–310.PubMed
183.
go back to reference Fang, J., Seki, T., & Maeda, H. (2009). Therapeutic strategies by modulating oxygen stress in cancer and inflammation. Advanced Drug Delivery Reviews, 61, 290–302.PubMed Fang, J., Seki, T., & Maeda, H. (2009). Therapeutic strategies by modulating oxygen stress in cancer and inflammation. Advanced Drug Delivery Reviews, 61, 290–302.PubMed
184.
go back to reference Wang, Z., Wang, M., Kar, S., & Carr, B. I. (2009). Involvement of ATM-mediated Chk1/2 and JNK kinase signaling activation in HKH40A-induced cell growth inhibition. Journal of Cellular Physiology, 221, 213–220.PubMed Wang, Z., Wang, M., Kar, S., & Carr, B. I. (2009). Involvement of ATM-mediated Chk1/2 and JNK kinase signaling activation in HKH40A-induced cell growth inhibition. Journal of Cellular Physiology, 221, 213–220.PubMed
185.
go back to reference Kosakowska-Cholody, T., Cholody, W. M., Hariprakasha, H. K., Monks, A., Kar, S., Wang, M., et al. (2009). Growth inhibition of hepatocellular carcinoma cells in vitro and in vivo by the 8-methoxy analog of WMC79. Cancer Chemotherpy and Pharmacology, 63, 769–778. Kosakowska-Cholody, T., Cholody, W. M., Hariprakasha, H. K., Monks, A., Kar, S., Wang, M., et al. (2009). Growth inhibition of hepatocellular carcinoma cells in vitro and in vivo by the 8-methoxy analog of WMC79. Cancer Chemotherpy and Pharmacology, 63, 769–778.
186.
go back to reference Nelson, E. A., Sharma, S. V., Settleman, J., & Frank, D. A. (2011). A chemical biology approach to developing STAT inhibitors: molecular strategies for accelerating clinical translation. Oncotarget, 2, 518–524. Nelson, E. A., Sharma, S. V., Settleman, J., & Frank, D. A. (2011). A chemical biology approach to developing STAT inhibitors: molecular strategies for accelerating clinical translation. Oncotarget, 2, 518–524.
187.
go back to reference Takakura, A., Nelson, E. A., Haque, N., Humphreys, B. D., Zandi-Nejad, K., Frank, D. A., et al. (2011). Pyrimethamine inhibits adult polycystic kidney disease by modulating STAT signaling pathways. Human Molecular Genetics, 20, 4143–4154.PubMed Takakura, A., Nelson, E. A., Haque, N., Humphreys, B. D., Zandi-Nejad, K., Frank, D. A., et al. (2011). Pyrimethamine inhibits adult polycystic kidney disease by modulating STAT signaling pathways. Human Molecular Genetics, 20, 4143–4154.PubMed
188.
go back to reference Yamaki, H., Nakajima, M., Shimotohno, K. W., & Tanaka, N. (2011). Molecular basis for the actions of Hsp90 inhibitors and cancer therapy. Journal of Antibiotics, 64, 635–644.PubMed Yamaki, H., Nakajima, M., Shimotohno, K. W., & Tanaka, N. (2011). Molecular basis for the actions of Hsp90 inhibitors and cancer therapy. Journal of Antibiotics, 64, 635–644.PubMed
189.
go back to reference Modi, S., Stopeck, A., Linden, H., Solit, D., Chandarlapaty, S., Rosen, N., et al. (2011). Hsp90 inhibition is effective in breast cancer: a phase II trial of tanespimycin (17-AAG) plus trastuzumab in patients with HER2-positive metastatic breast cancer progressing on trastuzumab. Clinical Cancer Research, 17, 5132–5139.PubMed Modi, S., Stopeck, A., Linden, H., Solit, D., Chandarlapaty, S., Rosen, N., et al. (2011). Hsp90 inhibition is effective in breast cancer: a phase II trial of tanespimycin (17-AAG) plus trastuzumab in patients with HER2-positive metastatic breast cancer progressing on trastuzumab. Clinical Cancer Research, 17, 5132–5139.PubMed
190.
go back to reference Rajan, A., Kelly, R. J., Trepel, J. B., Kim, Y. S., Alarcon, S. V., Kummar, S., et al. (2011). A phase I study of PF-04929113 (SNX-5422), an orally bioavailable heat shock protein 90 inhibitor, in patients with refractory solid tumor malignancies and lymphomas. Clinical Cancer Research, 17, 6831–6839.PubMed Rajan, A., Kelly, R. J., Trepel, J. B., Kim, Y. S., Alarcon, S. V., Kummar, S., et al. (2011). A phase I study of PF-04929113 (SNX-5422), an orally bioavailable heat shock protein 90 inhibitor, in patients with refractory solid tumor malignancies and lymphomas. Clinical Cancer Research, 17, 6831–6839.PubMed
191.
go back to reference Basak, S., Pookot, D., Noonan, E. J., & Dahiya, R. (2008). Genistein down-regulates androgen receptor by modulating HDAC6-Hsp90 chaperone function. Molecular Cancer Therapeutics, 7, 3195–4202.PubMed Basak, S., Pookot, D., Noonan, E. J., & Dahiya, R. (2008). Genistein down-regulates androgen receptor by modulating HDAC6-Hsp90 chaperone function. Molecular Cancer Therapeutics, 7, 3195–4202.PubMed
192.
go back to reference Stühmer, T., Zöllinger, A., Siegmund, D., Chatterjee, M., Grella, E., Knop, S., et al. (2008). Signalling profile and antitumour activity of the novel Hsp90 inhibitor NVP-AUY922 in multiple myeloma. Leukemia, 22, 1604–1612.PubMed Stühmer, T., Zöllinger, A., Siegmund, D., Chatterjee, M., Grella, E., Knop, S., et al. (2008). Signalling profile and antitumour activity of the novel Hsp90 inhibitor NVP-AUY922 in multiple myeloma. Leukemia, 22, 1604–1612.PubMed
193.
go back to reference Terasaki, M., Sugita, Y., Arakawa, F., Okada, Y., Ohshima, K., & Shigemori, M. (2011). CXCL12/CXCR4 signaling in malignant brain tumors: a potential pharmacological therapeutic target. Brain Tumor Pathology, 28, 89–97.PubMed Terasaki, M., Sugita, Y., Arakawa, F., Okada, Y., Ohshima, K., & Shigemori, M. (2011). CXCL12/CXCR4 signaling in malignant brain tumors: a potential pharmacological therapeutic target. Brain Tumor Pathology, 28, 89–97.PubMed
194.
go back to reference Duda, D. G., Kozin, S. V., Kirkpatrick, N. D., Xu, L., Fukumura, D., & Jain, R. K. (2011). CXCL12 (SDF1alpha)-CXCR4/CXCR7 pathway inhibition: an emerging sensitizer for anticancer therapies? Clinical Cancer Research, 17, 2074–2080.PubMed Duda, D. G., Kozin, S. V., Kirkpatrick, N. D., Xu, L., Fukumura, D., & Jain, R. K. (2011). CXCL12 (SDF1alpha)-CXCR4/CXCR7 pathway inhibition: an emerging sensitizer for anticancer therapies? Clinical Cancer Research, 17, 2074–2080.PubMed
195.
go back to reference Singh, B., Cook, K. R., Martin, C., Huang, E. H., Mosalpuria, K., Krishnamurthy, S., et al. (2010). Evaluation of a CXCR4 antagonist in a xenograft mouse model of inflammatory breast cancer. Clinical & Experimental Metastasis, 27, 233–240. Singh, B., Cook, K. R., Martin, C., Huang, E. H., Mosalpuria, K., Krishnamurthy, S., et al. (2010). Evaluation of a CXCR4 antagonist in a xenograft mouse model of inflammatory breast cancer. Clinical & Experimental Metastasis, 27, 233–240.
196.
go back to reference Ray, P., Lewin, S. A., Mihalko, L. A., Schmidt, B. T., Luker, K. E., & Luker, G. D. (2011). Noninvasive imaging reveals inhibition of ovarian cancer by targeting CXCL12-CXCR4. Neoplasia, 13, 1152–1161.PubMed Ray, P., Lewin, S. A., Mihalko, L. A., Schmidt, B. T., Luker, K. E., & Luker, G. D. (2011). Noninvasive imaging reveals inhibition of ovarian cancer by targeting CXCL12-CXCR4. Neoplasia, 13, 1152–1161.PubMed
197.
go back to reference Dunn, K. L., Espino, P. S., Drobic, B., He, S., & Davie, J. R. (2005). The Ras-MAPK signal transduction pathway, cancer and chromatin remodeling. Biochemistry and Cell Biology, 83, 1–14.PubMed Dunn, K. L., Espino, P. S., Drobic, B., He, S., & Davie, J. R. (2005). The Ras-MAPK signal transduction pathway, cancer and chromatin remodeling. Biochemistry and Cell Biology, 83, 1–14.PubMed
198.
go back to reference Tanaka, S., & Arii, S. (2011). Molecular targeted therapy for hepatocellular carcinoma in the current and potential next strategies. Journal of Gastroenterology, 46, 289–296.PubMed Tanaka, S., & Arii, S. (2011). Molecular targeted therapy for hepatocellular carcinoma in the current and potential next strategies. Journal of Gastroenterology, 46, 289–296.PubMed
199.
go back to reference Bhoori, S., Toffanin, S., Sposito, C., Germini, A., Pellegrinelli, A., Lampis, A., et al. (2010). Personalized molecular targeted therapy in advanced, recurrent hepatocellular carcinoma after liver transplantation: a proof of principle. Journal of Hepatology, 52, 771–775.PubMed Bhoori, S., Toffanin, S., Sposito, C., Germini, A., Pellegrinelli, A., Lampis, A., et al. (2010). Personalized molecular targeted therapy in advanced, recurrent hepatocellular carcinoma after liver transplantation: a proof of principle. Journal of Hepatology, 52, 771–775.PubMed
200.
go back to reference Wilhelm, S. M., Dumas, J., Adnane, L., Lynch, M., Carter, C. A., Schütz, G., et al. (2011). Regorafenib (BAY 73-4506): a new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity. International Journal of Cancer, 129, 245–255. Wilhelm, S. M., Dumas, J., Adnane, L., Lynch, M., Carter, C. A., Schütz, G., et al. (2011). Regorafenib (BAY 73-4506): a new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity. International Journal of Cancer, 129, 245–255.
201.
go back to reference Lewis, C. M., Glisson, B. S., Feng, L., Wan, F., Tang, X., Wistuba, I. I., et al. (2012). A phase II study of gefitinib for aggressive cutaneous squamous cell carcinoma of the head and neck. Clinical Cancer Research, 18, 1435–1446.PubMed Lewis, C. M., Glisson, B. S., Feng, L., Wan, F., Tang, X., Wistuba, I. I., et al. (2012). A phase II study of gefitinib for aggressive cutaneous squamous cell carcinoma of the head and neck. Clinical Cancer Research, 18, 1435–1446.PubMed
202.
go back to reference Rosell, R., Carcereny, E., Gervais, R., Vergnenegre, A., Massuti, B., Felip, E., et al. (2012). Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncology, 13, 239–246.PubMed Rosell, R., Carcereny, E., Gervais, R., Vergnenegre, A., Massuti, B., Felip, E., et al. (2012). Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncology, 13, 239–246.PubMed
203.
go back to reference Schønnemann, K. R., Yilmaz, M., Bjerregaard, J. K., Nielsen, K. M., & Pfeiffer, P. (2012). Phase II study of biweekly cetuximab in combination with irinotecan as second-line treatment in patients with platinum-resistant gastro-oesophageal cancer. European Journal of Cancer, 48, 510–517.PubMed Schønnemann, K. R., Yilmaz, M., Bjerregaard, J. K., Nielsen, K. M., & Pfeiffer, P. (2012). Phase II study of biweekly cetuximab in combination with irinotecan as second-line treatment in patients with platinum-resistant gastro-oesophageal cancer. European Journal of Cancer, 48, 510–517.PubMed
204.
go back to reference Ha, H. T., Griffith, K. A., Zalupski, M. M., Schuetze, S. M., Thomas, D. G., Lucas, D. R., et al. (2012). Phase II trial of cetuximab in patients with metastatic or locally advanced soft tissue or bone sarcoma. American Journal Clinical Oncology, (in press). Ha, H. T., Griffith, K. A., Zalupski, M. M., Schuetze, S. M., Thomas, D. G., Lucas, D. R., et al. (2012). Phase II trial of cetuximab in patients with metastatic or locally advanced soft tissue or bone sarcoma. American Journal Clinical Oncology, (in press).
205.
go back to reference Sarkar, F. H., Li, Y., Wang, Z., Kong, D., & Ali, S. (2010). Implication of microRNAs in drug resistance for designing novel cancer therapy. Drug Resistance Updates, 3, 57–66. Sarkar, F. H., Li, Y., Wang, Z., Kong, D., & Ali, S. (2010). Implication of microRNAs in drug resistance for designing novel cancer therapy. Drug Resistance Updates, 3, 57–66.
206.
go back to reference Yang, Y. P., Chien, Y., Chiou, G. Y., Cherng, J. Y., Wang, M. L., Lo, W. L., et al. (2012). Inhibition of cancer stem cell-like properties and reduced chemo-radio resistance of glioblastoma using microRNA145 with cationic polyurethane-short branch PEI. Biomaterials, 33, 1462–1476.PubMed Yang, Y. P., Chien, Y., Chiou, G. Y., Cherng, J. Y., Wang, M. L., Lo, W. L., et al. (2012). Inhibition of cancer stem cell-like properties and reduced chemo-radio resistance of glioblastoma using microRNA145 with cationic polyurethane-short branch PEI. Biomaterials, 33, 1462–1476.PubMed
207.
go back to reference Dubrovska, A., Elliott, J., Salamone, R. J., Kim, S., Aimone, L. J., Walker, J. R., et al. (2010). Combination therapy targeting both tumor-initiating and differentiated cell populations in prostate carcinoma. Clinical Cancer Research, 16, 5692–5702.PubMed Dubrovska, A., Elliott, J., Salamone, R. J., Kim, S., Aimone, L. J., Walker, J. R., et al. (2010). Combination therapy targeting both tumor-initiating and differentiated cell populations in prostate carcinoma. Clinical Cancer Research, 16, 5692–5702.PubMed
208.
go back to reference Clarke, J. D., Dashwood, R. H., & Ho, E. (2008). Multi-targeted prevention of cancer by sulforaphane. Cancer Letters, 269, 291–304.PubMed Clarke, J. D., Dashwood, R. H., & Ho, E. (2008). Multi-targeted prevention of cancer by sulforaphane. Cancer Letters, 269, 291–304.PubMed
209.
go back to reference Wilken, R., Veena, M. S., Wang, M. B., & Srivatsan, E. S. (2011). Curcumin: a review of anti-cancer properties and therapeutic activity in head & neck squamous cell carcinoma. Molecular Cancer, 10, 12.PubMed Wilken, R., Veena, M. S., Wang, M. B., & Srivatsan, E. S. (2011). Curcumin: a review of anti-cancer properties and therapeutic activity in head & neck squamous cell carcinoma. Molecular Cancer, 10, 12.PubMed
210.
go back to reference Cheng, A. L., Hsu, C. H., Lin, J. K., Hsu, M. M., Ho, Y. F., Shen, T. S., et al. (2001). Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Research, 21, 2895–2900.PubMed Cheng, A. L., Hsu, C. H., Lin, J. K., Hsu, M. M., Ho, Y. F., Shen, T. S., et al. (2001). Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Research, 21, 2895–2900.PubMed
211.
go back to reference Wang, L., Shen, Y., Song, R., Sun, Y., Xu, J., & Xu, Q. (2009). An anticancer effect of curcumin mediated by down-regulating phosphatase of regenerating liver-3 expression on highly metastatic melanoma cells. Molecular Pharmacology, 76, 1238–1245.PubMed Wang, L., Shen, Y., Song, R., Sun, Y., Xu, J., & Xu, Q. (2009). An anticancer effect of curcumin mediated by down-regulating phosphatase of regenerating liver-3 expression on highly metastatic melanoma cells. Molecular Pharmacology, 76, 1238–1245.PubMed
212.
go back to reference Wu, A. W., Basak, S. K., Lai, C., Veena, M. S., Wang, M. B., & Srivatsan, E. S. CD 44 High head and neck cancer cells demonstrate increased cell growth and chemotherapeutic resistance. In: AACR 101st Annual Meeting 2010, Washington, DC, 17–21 Apr 2010. Wu, A. W., Basak, S. K., Lai, C., Veena, M. S., Wang, M. B., & Srivatsan, E. S. CD 44 High head and neck cancer cells demonstrate increased cell growth and chemotherapeutic resistance. In: AACR 101st Annual Meeting 2010, Washington, DC, 17–21 Apr 2010.
213.
go back to reference Kakarala, M., Brenner, D. E., Korkaya, H., Cheng, C., Tazi, K., Ginestier, C., et al. (2010). Targeting breast stem cells with the cancer preventive compounds curcumin and piperine. Breast Cancer Research and Treatment, 122, 777–785.PubMed Kakarala, M., Brenner, D. E., Korkaya, H., Cheng, C., Tazi, K., Ginestier, C., et al. (2010). Targeting breast stem cells with the cancer preventive compounds curcumin and piperine. Breast Cancer Research and Treatment, 122, 777–785.PubMed
214.
go back to reference Lim, K. J., Bisht, S., Bar, E. E., Maitra, A., & Eberhart, C. G. (2011). A polymeric nanoparticle formulation of curcumin inhibits growth, clonogenicity and stem-like fraction in malignant brain tumors. Cancer Biology and Therapeutics, 11, 464–473. Lim, K. J., Bisht, S., Bar, E. E., Maitra, A., & Eberhart, C. G. (2011). A polymeric nanoparticle formulation of curcumin inhibits growth, clonogenicity and stem-like fraction in malignant brain tumors. Cancer Biology and Therapeutics, 11, 464–473.
215.
go back to reference Kanwar, S. S., Yu, Y., Nautiyal, J., Patel, B. B., Padhye, S., Sarkar, F. H., et al. (2011). Difluorinated-curcumin (CDF): a novel curcumin analog is a potent inhibitor of colon cancer stem-like cells. Pharmacological Research, 28, 827–838. Kanwar, S. S., Yu, Y., Nautiyal, J., Patel, B. B., Padhye, S., Sarkar, F. H., et al. (2011). Difluorinated-curcumin (CDF): a novel curcumin analog is a potent inhibitor of colon cancer stem-like cells. Pharmacological Research, 28, 827–838.
216.
go back to reference Bao, B., Ali, S., Banerjee, S., Wang, Z., Logna, F., Azmi, A. S., et al. (2012). Curcumin analogue CDF inhibits pancreatic tumor growth by switching on suppressor microRNAs and attenuating EZH2 expression. Cancer Research, 72, 335–345.PubMed Bao, B., Ali, S., Banerjee, S., Wang, Z., Logna, F., Azmi, A. S., et al. (2012). Curcumin analogue CDF inhibits pancreatic tumor growth by switching on suppressor microRNAs and attenuating EZH2 expression. Cancer Research, 72, 335–345.PubMed
217.
go back to reference Lin, L., Liu, Y., Li, H., Li, P. K., Fuchs, J., Shibata, H., et al. (2011). Targeting colon cancer stem cells using a new curcumin analogue, GO-Y030. British Journal of Cancer, 105, 212–220.PubMed Lin, L., Liu, Y., Li, H., Li, P. K., Fuchs, J., Shibata, H., et al. (2011). Targeting colon cancer stem cells using a new curcumin analogue, GO-Y030. British Journal of Cancer, 105, 212–220.PubMed
218.
go back to reference Kao, C. L., Huang, P. I., Tsai, P. H., Tsai, M. L., Lo, J. F., Lee, Y. Y., et al. (2009). Resveratrol-induced apoptosis and increased radiosensitivity in CD 133-positive cells derived from atypical teratoid/rhabdoid tumor. International Journal of Radiation Oncology, Biology, and Physics, 74, 219–228. Kao, C. L., Huang, P. I., Tsai, P. H., Tsai, M. L., Lo, J. F., Lee, Y. Y., et al. (2009). Resveratrol-induced apoptosis and increased radiosensitivity in CD 133-positive cells derived from atypical teratoid/rhabdoid tumor. International Journal of Radiation Oncology, Biology, and Physics, 74, 219–228.
219.
go back to reference Lu, K. H., Chen, Y. W., Tsai, P. H., Tsai, M. L., Lee, Y. Y., Chiang, C. Y., et al. (2009). Evaluation of radiotherapy effect in resveratrol-treated medulloblastoma cancer stem-like cells. Child’s Nervous System, 25, 543–550.PubMed Lu, K. H., Chen, Y. W., Tsai, P. H., Tsai, M. L., Lee, Y. Y., Chiang, C. Y., et al. (2009). Evaluation of radiotherapy effect in resveratrol-treated medulloblastoma cancer stem-like cells. Child’s Nervous System, 25, 543–550.PubMed
220.
go back to reference Lee, D. H., Iwanski, G. B., & Thoennissen, N. H. (2010). Cucurbitacin: ancient compound shedding new light on cancer treatment. Scientific World Journal, 10, 413–418.PubMed Lee, D. H., Iwanski, G. B., & Thoennissen, N. H. (2010). Cucurbitacin: ancient compound shedding new light on cancer treatment. Scientific World Journal, 10, 413–418.PubMed
221.
go back to reference Blaskovich, M. A., Sun, J. L., Cantor, A., Turkson, J., Jove, R., & Sebt, S. M. (2003). Discovery of JSI-124 (cucurbitacin I), a selective Janus kinase/signal transducer and activator of transcription 3 signaling pathways inhibitor with potent antitumor activity against human and murine cancer cells in mice. Cancer Research, 63, 1270–1279.PubMed Blaskovich, M. A., Sun, J. L., Cantor, A., Turkson, J., Jove, R., & Sebt, S. M. (2003). Discovery of JSI-124 (cucurbitacin I), a selective Janus kinase/signal transducer and activator of transcription 3 signaling pathways inhibitor with potent antitumor activity against human and murine cancer cells in mice. Cancer Research, 63, 1270–1279.PubMed
222.
go back to reference Chen, Y. W., Chen, K. H., Huang, P. I., Chen, Y. C., Chiou, G. Y., Lo, W. L., et al. (2010). Cucurbitacin I suppressed stem-like property and enhanced radiation-induced apoptosis in head and neck squamous carcinoma–derived CD 44(+)ALDH1(+) cells. Molecular Cancer Therapeutics, 11, 2879–2892. Chen, Y. W., Chen, K. H., Huang, P. I., Chen, Y. C., Chiou, G. Y., Lo, W. L., et al. (2010). Cucurbitacin I suppressed stem-like property and enhanced radiation-induced apoptosis in head and neck squamous carcinoma–derived CD 44(+)ALDH1(+) cells. Molecular Cancer Therapeutics, 11, 2879–2892.
223.
go back to reference Chang, C. J., Chiang, C. H., Song, W. S., Tsai, S. K., Woung, L. C., Chang, C. H., et al. (2012). Inhibition of phosphorylated STAT3 by cucurbitacin I enhances chemoradiosensitivity in medulloblastoma-derived cancer stem cells. Childs Nervous System, 28, 363–373. Chang, C. J., Chiang, C. H., Song, W. S., Tsai, S. K., Woung, L. C., Chang, C. H., et al. (2012). Inhibition of phosphorylated STAT3 by cucurbitacin I enhances chemoradiosensitivity in medulloblastoma-derived cancer stem cells. Childs Nervous System, 28, 363–373.
224.
go back to reference Hsu, H. S., Huang, P. I., Chang, Y. L., Tzao, C., Chen, Y. W., Shih, H. C., et al. (2011). Cucurbitacin I inhibits tumorigenic ability and enhances radiochemosensitivity in nonsmall cell lung cancer-derived CD 133-positive cells. Cancer, 117, 2970–2985.PubMed Hsu, H. S., Huang, P. I., Chang, Y. L., Tzao, C., Chen, Y. W., Shih, H. C., et al. (2011). Cucurbitacin I inhibits tumorigenic ability and enhances radiochemosensitivity in nonsmall cell lung cancer-derived CD 133-positive cells. Cancer, 117, 2970–2985.PubMed
225.
go back to reference Gunn, E. J., Williams, J. T., Huynh, D. T., Iannotti, M. J., Han, C., Barrios, F. J., et al. (2011). The natural products parthenolide and andrographolide exhibit anti-cancer stem cell activity in multiple myeloma. Leukemia & Lymphoma, 52, 1085–1097. Gunn, E. J., Williams, J. T., Huynh, D. T., Iannotti, M. J., Han, C., Barrios, F. J., et al. (2011). The natural products parthenolide and andrographolide exhibit anti-cancer stem cell activity in multiple myeloma. Leukemia & Lymphoma, 52, 1085–1097.
226.
go back to reference Huff, C. A., Matsui, W. H., Smith, B. D., & Jones, R. J. (2006). Strategies to eliminate cancer stem cells: clinical implications. European Journal of Cancer, 42, 1293–1297.PubMed Huff, C. A., Matsui, W. H., Smith, B. D., & Jones, R. J. (2006). Strategies to eliminate cancer stem cells: clinical implications. European Journal of Cancer, 42, 1293–1297.PubMed
227.
go back to reference Xu, Q., Liu, G., Yuan, X., Xu, M., Wang, H., Ji, J., et al. (2009). Antigen-specific T-cell response from dendritic cell vaccination using cancer stem-like cell-associated antigens. Stem Cells, 27, 1734–1740.PubMed Xu, Q., Liu, G., Yuan, X., Xu, M., Wang, H., Ji, J., et al. (2009). Antigen-specific T-cell response from dendritic cell vaccination using cancer stem-like cell-associated antigens. Stem Cells, 27, 1734–1740.PubMed
228.
go back to reference Short, J. J., & Curiel, D. T. (2009). Oncologyytic adenoviruses targeted to cancer stem cells. Molecular Cancer Therapeutics, 8, 2096–2102.PubMed Short, J. J., & Curiel, D. T. (2009). Oncologyytic adenoviruses targeted to cancer stem cells. Molecular Cancer Therapeutics, 8, 2096–2102.PubMed
229.
go back to reference Jin, L., Hope, K. J., Zhai, Q., Smadja-Joffe, F., & Dick, J. E. (2006). Targeting of CD 44 eradicates human acute myeloid leukemic stem cells. Nature Medicine, 12, 1167–1174.PubMed Jin, L., Hope, K. J., Zhai, Q., Smadja-Joffe, F., & Dick, J. E. (2006). Targeting of CD 44 eradicates human acute myeloid leukemic stem cells. Nature Medicine, 12, 1167–1174.PubMed
230.
go back to reference Kong, D., Banerjee, S., Ahmad, A., Li, Y., Wang, Z., Sethi, S., et al. (2010). Epithelial to mesenchymal transition is mechanistically linked with stem cell signature in prostate cancer cells. PLoS One, 5, e12445.PubMed Kong, D., Banerjee, S., Ahmad, A., Li, Y., Wang, Z., Sethi, S., et al. (2010). Epithelial to mesenchymal transition is mechanistically linked with stem cell signature in prostate cancer cells. PLoS One, 5, e12445.PubMed
231.
go back to reference Liu, C., Kelnar, K., Liu, B., Chen, X., Calhoun-Davis, T., Li, H., et al. (2011). The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nature Medicine, 17, 211–215.PubMed Liu, C., Kelnar, K., Liu, B., Chen, X., Calhoun-Davis, T., Li, H., et al. (2011). The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nature Medicine, 17, 211–215.PubMed
232.
go back to reference Uziel, T., Karginov, F. V., Xie, S., Parker, J., Wang, Y. D., Gajjar, A., et al. (2009). The miR-17 92 cluster collaborates with the Sonic Hedgehog pathway in medulloblastoma. Proceedings of the National Academy of Sciences of the United States of America, 106, 2812–2817.PubMed Uziel, T., Karginov, F. V., Xie, S., Parker, J., Wang, Y. D., Gajjar, A., et al. (2009). The miR-17 92 cluster collaborates with the Sonic Hedgehog pathway in medulloblastoma. Proceedings of the National Academy of Sciences of the United States of America, 106, 2812–2817.PubMed
233.
go back to reference Yu, C. C., Chen, Y. W., Chiou, G. Y., Tsai, L. L., Huang, P. I., Chang, C. Y., et al. (2011). MicroRNA let-7a represses chemo resistance and tumourigenicity in head and neck cancer via stem-like properties ablation. Oral Oncology, 47, 202–210.PubMed Yu, C. C., Chen, Y. W., Chiou, G. Y., Tsai, L. L., Huang, P. I., Chang, C. Y., et al. (2011). MicroRNA let-7a represses chemo resistance and tumourigenicity in head and neck cancer via stem-like properties ablation. Oral Oncology, 47, 202–210.PubMed
234.
go back to reference Lo, W. L., Yu, C. C., Chiou, G. Y., Chen, Y. W., Huang, P. I., Chien, C. S., et al. (2011). MicroRNA-200c attenuates tumour growth and metastasis of presumptive head and neck squamous cell carcinoma stem cells. The Journal of Pathology, 223, 482–495.PubMed Lo, W. L., Yu, C. C., Chiou, G. Y., Chen, Y. W., Huang, P. I., Chien, C. S., et al. (2011). MicroRNA-200c attenuates tumour growth and metastasis of presumptive head and neck squamous cell carcinoma stem cells. The Journal of Pathology, 223, 482–495.PubMed
Metadata
Title
Cancer stem cells, microRNAs, and therapeutic strategies including natural products
Authors
Darshni Vira
Saroj K. Basak
Mysore S. Veena
Marilene B. Wang
Raj K. Batra
Eri S. Srivatsan
Publication date
01-12-2012
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 3-4/2012
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-012-9382-8

Other articles of this Issue 3-4/2012

Cancer and Metastasis Reviews 3-4/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine