Skip to main content
Top
Published in: Cancer and Metastasis Reviews 3-4/2012

01-12-2012

MicroRNA control of epithelial–mesenchymal transition and metastasis

Authors: Jinsong Zhang, Li Ma

Published in: Cancer and Metastasis Reviews | Issue 3-4/2012

Login to get access

Abstract

The great majority of cancer deaths are due to metastasis, which remains a poorly understood pathological process. The formation of a metastasis reflects a succession of complex steps leading to the macroscopic outgrowth of disseminated tumor cells at the secondary site. In the past 5 years, certain microRNAs (miRNAs) have been shown to regulate either a single step or multiple steps of metastasis, doing so by downregulating the expression of their target genes. In this review, we discuss recent studies on the functions and molecular mechanisms of miRNAs in regulating epithelial–mesenchymal transition (EMT) and cancer metastasis.
Literature
1.
go back to reference Fidler, I. J. (2003). The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nature Reviews. Cancer, 3(6), 453–458.PubMed Fidler, I. J. (2003). The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nature Reviews. Cancer, 3(6), 453–458.PubMed
2.
go back to reference Cai, Y., Yu, X., Hu, S., & Yu, J. (2009). A brief review on the mechanisms of miRNA regulation. Genomics, Proteomics & Bioinformatics, 7(4), 147–154. Cai, Y., Yu, X., Hu, S., & Yu, J. (2009). A brief review on the mechanisms of miRNA regulation. Genomics, Proteomics & Bioinformatics, 7(4), 147–154.
3.
go back to reference Lewis, B. P., Burge, C. B., & Bartel, D. P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120(1), 15–20.PubMed Lewis, B. P., Burge, C. B., & Bartel, D. P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120(1), 15–20.PubMed
4.
go back to reference Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2), 281–297.PubMed Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2), 281–297.PubMed
5.
go back to reference Salmena, L., Poliseno, L., Tay, Y., Kats, L., & Pandolfi, P. P. (2011). A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell, 146(3), 353–358.PubMed Salmena, L., Poliseno, L., Tay, Y., Kats, L., & Pandolfi, P. P. (2011). A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell, 146(3), 353–358.PubMed
6.
go back to reference Poliseno, L., Salmena, L., Zhang, J., Carver, B., Haveman, W. J., & Pandolfi, P. P. (2010). A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature, 465(7301), 1033–1038.PubMed Poliseno, L., Salmena, L., Zhang, J., Carver, B., Haveman, W. J., & Pandolfi, P. P. (2010). A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature, 465(7301), 1033–1038.PubMed
7.
go back to reference Karreth, F. A., Tay, Y., Perna, D., Ala, U., Tan, S. M., Rust, A. G., et al. (2011). In vivo identification of tumor-suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma. Cell, 147(2), 382–395.PubMed Karreth, F. A., Tay, Y., Perna, D., Ala, U., Tan, S. M., Rust, A. G., et al. (2011). In vivo identification of tumor-suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma. Cell, 147(2), 382–395.PubMed
8.
go back to reference Tay, Y., Kats, L., Salmena, L., Weiss, D., Tan, S. M., Ala, U., et al. (2011). Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell, 147(2), 344–357.PubMed Tay, Y., Kats, L., Salmena, L., Weiss, D., Tan, S. M., Ala, U., et al. (2011). Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell, 147(2), 344–357.PubMed
9.
go back to reference Calin, G. A., & Croce, C. M. (2006). MicroRNA signatures in human cancers. Nature Reviews. Cancer, 6(11), 857–866.PubMed Calin, G. A., & Croce, C. M. (2006). MicroRNA signatures in human cancers. Nature Reviews. Cancer, 6(11), 857–866.PubMed
10.
go back to reference Esquela-Kerscher, A., & Slack, F. J. (2006). Oncomirs—microRNAs with a role in cancer. Nature Reviews. Cancer, 6(4), 259–269.PubMed Esquela-Kerscher, A., & Slack, F. J. (2006). Oncomirs—microRNAs with a role in cancer. Nature Reviews. Cancer, 6(4), 259–269.PubMed
11.
go back to reference Hurst, D. R., Edmonds, M. D., & Welch, D. R. (2009). Metastamir: the field of metastasis-regulatory microRNA is spreading. Cancer Research, 69(19), 7495–7498.PubMed Hurst, D. R., Edmonds, M. D., & Welch, D. R. (2009). Metastamir: the field of metastasis-regulatory microRNA is spreading. Cancer Research, 69(19), 7495–7498.PubMed
12.
go back to reference Kalluri, R., & Weinberg, R. A. (2009). The basics of epithelial–mesenchymal transition. The Journal of Clinical Investigation, 119(6), 1420–1428.PubMed Kalluri, R., & Weinberg, R. A. (2009). The basics of epithelial–mesenchymal transition. The Journal of Clinical Investigation, 119(6), 1420–1428.PubMed
13.
go back to reference Thiery, J. P. (2002). Epithelial–mesenchymal transitions in tumour progression. Nature Reviews. Cancer, 2(6), 442–454.PubMed Thiery, J. P. (2002). Epithelial–mesenchymal transitions in tumour progression. Nature Reviews. Cancer, 2(6), 442–454.PubMed
14.
go back to reference Yang, J., & Weinberg, R. A. (2008). Epithelial–mesenchymal transition: at the crossroads of development and tumor metastasis. Developmental Cell, 14(6), 818–829.PubMed Yang, J., & Weinberg, R. A. (2008). Epithelial–mesenchymal transition: at the crossroads of development and tumor metastasis. Developmental Cell, 14(6), 818–829.PubMed
15.
go back to reference Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., et al. (2008). The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell, 133(4), 704–715.PubMed Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., et al. (2008). The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell, 133(4), 704–715.PubMed
16.
go back to reference Gupta, P. B., Chaffer, C. L., & Weinberg, R. A. (2009). Cancer stem cells: mirage or reality? Nature Medicine, 15(9), 1010–1012.PubMed Gupta, P. B., Chaffer, C. L., & Weinberg, R. A. (2009). Cancer stem cells: mirage or reality? Nature Medicine, 15(9), 1010–1012.PubMed
17.
go back to reference Cano, A., Perez-Moreno, M. A., Rodrigo, I., Locascio, A., Blanco, M. J., del Barrio, M. G., et al. (2000). The transcription factor snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nature Cell Biology, 2(2), 76–83.PubMed Cano, A., Perez-Moreno, M. A., Rodrigo, I., Locascio, A., Blanco, M. J., del Barrio, M. G., et al. (2000). The transcription factor snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nature Cell Biology, 2(2), 76–83.PubMed
18.
go back to reference Hajra, K. M., Chen, D. Y., & Fearon, E. R. (2002). The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Research, 62(6), 1613–1618.PubMed Hajra, K. M., Chen, D. Y., & Fearon, E. R. (2002). The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Research, 62(6), 1613–1618.PubMed
19.
go back to reference Yang, J., Mani, S. A., Donaher, J. L., Ramaswamy, S., Itzykson, R. A., Come, C., et al. (2004). Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell, 117(7), 927–939.PubMed Yang, J., Mani, S. A., Donaher, J. L., Ramaswamy, S., Itzykson, R. A., Come, C., et al. (2004). Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell, 117(7), 927–939.PubMed
20.
go back to reference Eger, A., Aigner, K., Sonderegger, S., Dampier, B., Oehler, S., Schreiber, M., et al. (2005). DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene, 24(14), 2375–2385.PubMed Eger, A., Aigner, K., Sonderegger, S., Dampier, B., Oehler, S., Schreiber, M., et al. (2005). DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene, 24(14), 2375–2385.PubMed
21.
go back to reference Comijn, J., Berx, G., Vermassen, P., Verschueren, K., van Grunsven, L., Bruyneel, E., et al. (2001). The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Molecular Cell, 7(6), 1267–1278.PubMed Comijn, J., Berx, G., Vermassen, P., Verschueren, K., van Grunsven, L., Bruyneel, E., et al. (2001). The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Molecular Cell, 7(6), 1267–1278.PubMed
22.
go back to reference Gregory, P. A., Bert, A. G., Paterson, E. L., Barry, S. C., Tsykin, A., Farshid, G., et al. (2008). The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nature Cell Biology, 10(5), 593–601.PubMed Gregory, P. A., Bert, A. G., Paterson, E. L., Barry, S. C., Tsykin, A., Farshid, G., et al. (2008). The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nature Cell Biology, 10(5), 593–601.PubMed
23.
go back to reference Park, S. M., Gaur, A. B., Lengyel, E., & Peter, M. E. (2008). The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes & Development, 22(7), 894–907. Park, S. M., Gaur, A. B., Lengyel, E., & Peter, M. E. (2008). The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes & Development, 22(7), 894–907.
24.
go back to reference Shimono, Y., Zabala, M., Cho, R. W., Lobo, N., Dalerba, P., Qian, D., et al. (2009). Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell, 138(3), 592–603.PubMed Shimono, Y., Zabala, M., Cho, R. W., Lobo, N., Dalerba, P., Qian, D., et al. (2009). Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell, 138(3), 592–603.PubMed
25.
go back to reference Gregory, P. A., Bracken, C. P., Smith, E., Bert, A. G., Wright, J. A., Roslan, S., et al. (2011). An autocrine TGF-beta/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial–mesenchymal transition. Molecular Biology of the Cell, 22(10), 1686–1698.PubMed Gregory, P. A., Bracken, C. P., Smith, E., Bert, A. G., Wright, J. A., Roslan, S., et al. (2011). An autocrine TGF-beta/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial–mesenchymal transition. Molecular Biology of the Cell, 22(10), 1686–1698.PubMed
26.
go back to reference Burk, U., Schubert, J., Wellner, U., Schmalhofer, O., Vincan, E., Spaderna, S., et al. (2008). A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Reports, 9(6), 582–589.PubMed Burk, U., Schubert, J., Wellner, U., Schmalhofer, O., Vincan, E., Spaderna, S., et al. (2008). A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Reports, 9(6), 582–589.PubMed
27.
go back to reference Dykxhoorn, D. M., Wu, Y., Xie, H., Yu, F., Lal, A., Petrocca, F., et al. (2009). miR-200 enhances mouse breast cancer cell colonization to form distant metastases. PLoS One, 4(9), e7181.PubMed Dykxhoorn, D. M., Wu, Y., Xie, H., Yu, F., Lal, A., Petrocca, F., et al. (2009). miR-200 enhances mouse breast cancer cell colonization to form distant metastases. PLoS One, 4(9), e7181.PubMed
28.
go back to reference Korpal, M., Ell, B. J., Buffa, F. M., Ibrahim, T., Blanco, M. A., Celia-Terrassa, T., et al. (2011). Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization. Nature Medicine, 17(9), 1101–1108.PubMed Korpal, M., Ell, B. J., Buffa, F. M., Ibrahim, T., Blanco, M. A., Celia-Terrassa, T., et al. (2011). Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization. Nature Medicine, 17(9), 1101–1108.PubMed
29.
go back to reference Ma, L., Young, J., Prabhala, H., Pan, E., Mestdagh, P., Muth, D., et al. (2010). miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nature Cell Biology, 12(3), 247–256.PubMed Ma, L., Young, J., Prabhala, H., Pan, E., Mestdagh, P., Muth, D., et al. (2010). miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nature Cell Biology, 12(3), 247–256.PubMed
30.
go back to reference Martello, G., Rosato, A., Ferrari, F., Manfrin, A., Cordenonsi, M., Dupont, S., et al. (2010). A MicroRNA targeting dicer for metastasis control. Cell, 141(7), 1195–1207.PubMed Martello, G., Rosato, A., Ferrari, F., Manfrin, A., Cordenonsi, M., Dupont, S., et al. (2010). A MicroRNA targeting dicer for metastasis control. Cell, 141(7), 1195–1207.PubMed
31.
go back to reference Di Leva, G., Gasparini, P., Piovan, C., Ngankeu, A., Garofalo, M., Taccioli, C., et al. (2010). MicroRNA cluster 221–222 and estrogen receptor alpha interactions in breast cancer. Journal of the National Cancer Institute, 102(10), 706–721.PubMed Di Leva, G., Gasparini, P., Piovan, C., Ngankeu, A., Garofalo, M., Taccioli, C., et al. (2010). MicroRNA cluster 221–222 and estrogen receptor alpha interactions in breast cancer. Journal of the National Cancer Institute, 102(10), 706–721.PubMed
32.
go back to reference Cochrane, D. R., Cittelly, D. M., Howe, E. N., Spoelstra, N. S., McKinsey, E. L., LaPara, K., et al. (2011). MicroRNAs link estrogen receptor alpha status and Dicer levels in breast cancer. Hormones and Cancer, 1(6), 306–319. Cochrane, D. R., Cittelly, D. M., Howe, E. N., Spoelstra, N. S., McKinsey, E. L., LaPara, K., et al. (2011). MicroRNAs link estrogen receptor alpha status and Dicer levels in breast cancer. Hormones and Cancer, 1(6), 306–319.
33.
go back to reference Stinson, S., Lackner, M. R., Adai, A. T., Yu, N., Kim, H. J., O’Brien, C., et al. (2011). miR-221/222 targeting of trichorhinophalangeal 1 (TRPS1) promotes epithelial-to-mesenchymal transition in breast cancer. Science Signaling, 4(186), pt5.PubMed Stinson, S., Lackner, M. R., Adai, A. T., Yu, N., Kim, H. J., O’Brien, C., et al. (2011). miR-221/222 targeting of trichorhinophalangeal 1 (TRPS1) promotes epithelial-to-mesenchymal transition in breast cancer. Science Signaling, 4(186), pt5.PubMed
34.
go back to reference Kong, W., Yang, H., He, L., Zhao, J. J., Coppola, D., Dalton, W. S., et al. (2008). MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Molecular and Cellular Biology, 28(22), 6773–6784.PubMed Kong, W., Yang, H., He, L., Zhao, J. J., Coppola, D., Dalton, W. S., et al. (2008). MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Molecular and Cellular Biology, 28(22), 6773–6784.PubMed
35.
go back to reference Kumarswamy, R., Mudduluru, G., Ceppi, P., Muppala, S., Kozlowski, M., Niklinski, J., et al. (2012). MicroRNA-30a inhibits epithelial-to-mesenchymal transition by targeting Snai1 and is downregulated in non-small cell lung cancer. International Journal of Cancer, 130(9), 2044–2053. Kumarswamy, R., Mudduluru, G., Ceppi, P., Muppala, S., Kozlowski, M., Niklinski, J., et al. (2012). MicroRNA-30a inhibits epithelial-to-mesenchymal transition by targeting Snai1 and is downregulated in non-small cell lung cancer. International Journal of Cancer, 130(9), 2044–2053.
36.
go back to reference Wang, F. E., Zhang, C., Maminishkis, A., Dong, L., Zhi, C., Li, R., et al. (2010). MicroRNA-204/211 alters epithelial physiology. The FASEB Journal, 24(5), 1552–1571. Wang, F. E., Zhang, C., Maminishkis, A., Dong, L., Zhi, C., Li, R., et al. (2010). MicroRNA-204/211 alters epithelial physiology. The FASEB Journal, 24(5), 1552–1571.
37.
go back to reference Ma, L., Teruya-Feldstein, J., & Weinberg, R. A. (2007). Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature, 449(7163), 682–688.PubMed Ma, L., Teruya-Feldstein, J., & Weinberg, R. A. (2007). Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature, 449(7163), 682–688.PubMed
38.
go back to reference Carrio, M., Arderiu, G., Myers, C., & Boudreau, N. J. (2005). Homeobox D10 induces phenotypic reversion of breast tumor cells in a three-dimensional culture model. Cancer Research, 65(16), 7177–7185.PubMed Carrio, M., Arderiu, G., Myers, C., & Boudreau, N. J. (2005). Homeobox D10 induces phenotypic reversion of breast tumor cells in a three-dimensional culture model. Cancer Research, 65(16), 7177–7185.PubMed
39.
go back to reference Gupta, R. A., Shah, N., Wang, K. C., Kim, J., Horlings, H. M., Wong, D. J., et al. (2010). Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature, 464(7291), 1071–1076.PubMed Gupta, R. A., Shah, N., Wang, K. C., Kim, J., Horlings, H. M., Wong, D. J., et al. (2010). Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature, 464(7291), 1071–1076.PubMed
40.
go back to reference Sasayama, T., Nishihara, M., Kondoh, T., Hosoda, K., & Kohmura, E. (2009). MicroRNA-10b is overexpressed in malignant glioma and associated with tumor invasive factors, uPAR and RhoC. International Journal of Cancer, 125(6), 1407–1413. Sasayama, T., Nishihara, M., Kondoh, T., Hosoda, K., & Kohmura, E. (2009). MicroRNA-10b is overexpressed in malignant glioma and associated with tumor invasive factors, uPAR and RhoC. International Journal of Cancer, 125(6), 1407–1413.
41.
go back to reference Sun, L., Yan, W., Wang, Y., Sun, G., Luo, H., Zhang, J., et al. (2011). MicroRNA-10b induces glioma cell invasion by modulating MMP-14 and uPAR expression via HOXD10. Brain Research, 1389, 9–18.PubMed Sun, L., Yan, W., Wang, Y., Sun, G., Luo, H., Zhang, J., et al. (2011). MicroRNA-10b induces glioma cell invasion by modulating MMP-14 and uPAR expression via HOXD10. Brain Research, 1389, 9–18.PubMed
42.
go back to reference Tian, Y., Luo, A., Cai, Y., Su, Q., Ding, F., Chen, H., et al. (2010). MicroRNA-10b promotes migration and invasion through KLF4 in human esophageal cancer cell lines. Journal of Biological Chemistry, 285(11), 7986–7994.PubMed Tian, Y., Luo, A., Cai, Y., Su, Q., Ding, F., Chen, H., et al. (2010). MicroRNA-10b promotes migration and invasion through KLF4 in human esophageal cancer cell lines. Journal of Biological Chemistry, 285(11), 7986–7994.PubMed
43.
go back to reference Gabriely, G., Yi, M., Narayan, R. S., Niers, J. M., Wurdinger, T., Imitola, J., et al. (2011). Human glioma growth is controlled by microRNA-10b. Cancer Research, 71(10), 3563–3572.PubMed Gabriely, G., Yi, M., Narayan, R. S., Niers, J. M., Wurdinger, T., Imitola, J., et al. (2011). Human glioma growth is controlled by microRNA-10b. Cancer Research, 71(10), 3563–3572.PubMed
44.
go back to reference Pan, X., Wang, Z. X., & Wang, R. (2011). MicroRNA-21: a novel therapeutic target in human cancer. Cancer Biology & Therapy, 10(12), 1224–1232. Pan, X., Wang, Z. X., & Wang, R. (2011). MicroRNA-21: a novel therapeutic target in human cancer. Cancer Biology & Therapy, 10(12), 1224–1232.
45.
go back to reference Medina, P. P., Nolde, M., & Slack, F. J. (2010). OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature, 467(7311), 86–90.PubMed Medina, P. P., Nolde, M., & Slack, F. J. (2010). OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature, 467(7311), 86–90.PubMed
46.
go back to reference Wu, W. Y., Xue, X. Y., Chen, Z. J., Han, S. L., Huang, Y. P., Zhang, L. F., et al. (2011). Potentially predictive microRNAs of gastric cancer with metastasis to lymph node. World Journal of Gastroenterology, 17(31), 3645–3651.PubMed Wu, W. Y., Xue, X. Y., Chen, Z. J., Han, S. L., Huang, Y. P., Zhang, L. F., et al. (2011). Potentially predictive microRNAs of gastric cancer with metastasis to lymph node. World Journal of Gastroenterology, 17(31), 3645–3651.PubMed
47.
go back to reference Asangani, I. A., Rasheed, S. A., Nikolova, D. A., Leupold, J. H., Colburn, N. H., Post, S., et al. (2008). MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene, 27(15), 2128–2136.PubMed Asangani, I. A., Rasheed, S. A., Nikolova, D. A., Leupold, J. H., Colburn, N. H., Post, S., et al. (2008). MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene, 27(15), 2128–2136.PubMed
48.
go back to reference Yan, L. X., Huang, X. F., Shao, Q., Huang, M. Y., Deng, L., Wu, Q. L., et al. (2008). MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA, 14(11), 2348–2360.PubMed Yan, L. X., Huang, X. F., Shao, Q., Huang, M. Y., Deng, L., Wu, Q. L., et al. (2008). MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA, 14(11), 2348–2360.PubMed
49.
go back to reference Zhu, S., Wu, H., Wu, F., Nie, D., Sheng, S., & Mo, Y. Y. (2008). MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Research, 18(3), 350–359.PubMed Zhu, S., Wu, H., Wu, F., Nie, D., Sheng, S., & Mo, Y. Y. (2008). MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Research, 18(3), 350–359.PubMed
50.
go back to reference Huang, T. H., Wu, F., Loeb, G. B., Hsu, R., Heidersbach, A., Brincat, A., et al. (2009). Up-regulation of miR-21 by HER2/neu signaling promotes cell invasion. Journal of Biological Chemistry, 284(27), 18515–18524.PubMed Huang, T. H., Wu, F., Loeb, G. B., Hsu, R., Heidersbach, A., Brincat, A., et al. (2009). Up-regulation of miR-21 by HER2/neu signaling promotes cell invasion. Journal of Biological Chemistry, 284(27), 18515–18524.PubMed
51.
go back to reference Li, T., Li, D., Sha, J., Sun, P., & Huang, Y. (2009). MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells. Biochemical and Biophysical Research Communications, 383(3), 280–285.PubMed Li, T., Li, D., Sha, J., Sun, P., & Huang, Y. (2009). MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells. Biochemical and Biophysical Research Communications, 383(3), 280–285.PubMed
52.
go back to reference Wang, P., Zou, F., Zhang, X., Li, H., Dulak, A., Tomko, R. J., Jr., et al. (2009). microRNA-21 negatively regulates Cdc25A and cell cycle progression in colon cancer cells. Cancer Research, 69(20), 8157–8165.PubMed Wang, P., Zou, F., Zhang, X., Li, H., Dulak, A., Tomko, R. J., Jr., et al. (2009). microRNA-21 negatively regulates Cdc25A and cell cycle progression in colon cancer cells. Cancer Research, 69(20), 8157–8165.PubMed
53.
go back to reference Connolly, E. C., Van Doorslaer, K., Rogler, L. E., & Rogler, C. E. (2010). Overexpression of miR-21 promotes an in vitro metastatic phenotype by targeting the tumor suppressor RHOB. Molecular Cancer Research, 8(5), 691–700.PubMed Connolly, E. C., Van Doorslaer, K., Rogler, L. E., & Rogler, C. E. (2010). Overexpression of miR-21 promotes an in vitro metastatic phenotype by targeting the tumor suppressor RHOB. Molecular Cancer Research, 8(5), 691–700.PubMed
54.
go back to reference Cottonham, C. L., Kaneko, S., & Xu, L. (2010). miR-21 and miR-31 converge on TIAM1 to regulate migration and invasion of colon carcinoma cells. Journal of Biological Chemistry, 285(46), 35293–35302.PubMed Cottonham, C. L., Kaneko, S., & Xu, L. (2010). miR-21 and miR-31 converge on TIAM1 to regulate migration and invasion of colon carcinoma cells. Journal of Biological Chemistry, 285(46), 35293–35302.PubMed
55.
go back to reference Lou, Y., Yang, X., Wang, F., Cui, Z., & Huang, Y. (2010). MicroRNA-21 promotes the cell proliferation, invasion and migration abilities in ovarian epithelial carcinomas through inhibiting the expression of PTEN protein. International Journal of Molecular Medicine, 26(6), 819–827.PubMed Lou, Y., Yang, X., Wang, F., Cui, Z., & Huang, Y. (2010). MicroRNA-21 promotes the cell proliferation, invasion and migration abilities in ovarian epithelial carcinomas through inhibiting the expression of PTEN protein. International Journal of Molecular Medicine, 26(6), 819–827.PubMed
56.
go back to reference Voorhoeve, P. M., le Sage, C., Schrier, M., Gillis, A. J., Stoop, H., Nagel, R., et al. (2006). A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell, 124(6), 1169–1181.PubMed Voorhoeve, P. M., le Sage, C., Schrier, M., Gillis, A. J., Stoop, H., Nagel, R., et al. (2006). A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell, 124(6), 1169–1181.PubMed
57.
go back to reference Huang, Q., Gumireddy, K., Schrier, M., le Sage, C., Nagel, R., Nair, S., et al. (2008). The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nature Cell Biology, 10(2), 202–210.PubMed Huang, Q., Gumireddy, K., Schrier, M., le Sage, C., Nagel, R., Nair, S., et al. (2008). The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nature Cell Biology, 10(2), 202–210.PubMed
58.
go back to reference Preis, M., Gardner, T. B., Gordon, S. R., Pipas, J. M., Mackenzie, T. A., Klein, E. E., et al. (2011). MicroRNA-10b expression correlates with response to neoadjuvant therapy and survival in pancreatic ductal adenocarcinoma. Clinical Cancer Research, 17(17), 5812–5821.PubMed Preis, M., Gardner, T. B., Gordon, S. R., Pipas, J. M., Mackenzie, T. A., Klein, E. E., et al. (2011). MicroRNA-10b expression correlates with response to neoadjuvant therapy and survival in pancreatic ductal adenocarcinoma. Clinical Cancer Research, 17(17), 5812–5821.PubMed
59.
go back to reference Nakata, K., Ohuchida, K., Mizumoto, K., Kayashima, T., Ikenaga, N., Sakai, H., et al. (2011). MicroRNA-10b is overexpressed in pancreatic cancer, promotes its invasiveness, and correlates with a poor prognosis. Surgery, 150(5), 916–922.PubMed Nakata, K., Ohuchida, K., Mizumoto, K., Kayashima, T., Ikenaga, N., Sakai, H., et al. (2011). MicroRNA-10b is overexpressed in pancreatic cancer, promotes its invasiveness, and correlates with a poor prognosis. Surgery, 150(5), 916–922.PubMed
60.
go back to reference Valastyan, S., Reinhardt, F., Benaich, N., Calogrias, D., Szasz, A. M., Wang, Z. C., et al. (2009). A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell, 137(6), 1032–1046.PubMed Valastyan, S., Reinhardt, F., Benaich, N., Calogrias, D., Szasz, A. M., Wang, Z. C., et al. (2009). A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell, 137(6), 1032–1046.PubMed
61.
go back to reference Tavazoie, S. F., Alarcon, C., Oskarsson, T., Padua, D., Wang, Q., Bos, P. D., et al. (2008). Endogenous human microRNAs that suppress breast cancer metastasis. Nature, 451(7175), 147–152.PubMed Tavazoie, S. F., Alarcon, C., Oskarsson, T., Padua, D., Wang, Q., Bos, P. D., et al. (2008). Endogenous human microRNAs that suppress breast cancer metastasis. Nature, 451(7175), 147–152.PubMed
62.
go back to reference Song, G., Zhang, Y., & Wang, L. (2009). MicroRNA-206 targets notch3, activates apoptosis, and inhibits tumor cell migration and focus formation. Journal of Biological Chemistry, 284(46), 31921–31927.PubMed Song, G., Zhang, Y., & Wang, L. (2009). MicroRNA-206 targets notch3, activates apoptosis, and inhibits tumor cell migration and focus formation. Journal of Biological Chemistry, 284(46), 31921–31927.PubMed
63.
go back to reference Liu, B., Peng, X. C., Zheng, X. L., Wang, J., & Qin, Y. W. (2009). MiR-126 restoration down-regulate VEGF and inhibit the growth of lung cancer cell lines in vitro and in vivo. Lung Cancer, 66(2), 169–175.PubMed Liu, B., Peng, X. C., Zheng, X. L., Wang, J., & Qin, Y. W. (2009). MiR-126 restoration down-regulate VEGF and inhibit the growth of lung cancer cell lines in vitro and in vivo. Lung Cancer, 66(2), 169–175.PubMed
64.
go back to reference Crawford, M., Brawner, E., Batte, K., Yu, L., Hunter, M. G., Otterson, G. A., et al. (2008). MicroRNA-126 inhibits invasion in non-small cell lung carcinoma cell lines. Biochemical and Biophysical Research Communications, 373(4), 607–612.PubMed Crawford, M., Brawner, E., Batte, K., Yu, L., Hunter, M. G., Otterson, G. A., et al. (2008). MicroRNA-126 inhibits invasion in non-small cell lung carcinoma cell lines. Biochemical and Biophysical Research Communications, 373(4), 607–612.PubMed
65.
go back to reference Png, K. J., Halberg, N., Yoshida, M., & Tavazoie, S. F. (2011). A microRNA regulon that mediates endothelial recruitment and metastasis by cancer cells. Nature, 481(7380), 190–194.PubMed Png, K. J., Halberg, N., Yoshida, M., & Tavazoie, S. F. (2011). A microRNA regulon that mediates endothelial recruitment and metastasis by cancer cells. Nature, 481(7380), 190–194.PubMed
66.
go back to reference Valastyan, S., Chang, A., Benaich, N., Reinhardt, F., & Weinberg, R. A. (2010). Concurrent suppression of integrin alpha5, radixin, and RhoA phenocopies the effects of miR-31 on metastasis. Cancer Research, 70(12), 5147–5154.PubMed Valastyan, S., Chang, A., Benaich, N., Reinhardt, F., & Weinberg, R. A. (2010). Concurrent suppression of integrin alpha5, radixin, and RhoA phenocopies the effects of miR-31 on metastasis. Cancer Research, 70(12), 5147–5154.PubMed
67.
go back to reference Valastyan, S., Chang, A., Benaich, N., Reinhardt, F., & Weinberg, R. A. (2011). Activation of miR-31 function in already-established metastases elicits metastatic regression. Genes & Development, 25(6), 646–659. Valastyan, S., Chang, A., Benaich, N., Reinhardt, F., & Weinberg, R. A. (2011). Activation of miR-31 function in already-established metastases elicits metastatic regression. Genes & Development, 25(6), 646–659.
68.
go back to reference Valastyan, S., Benaich, N., Chang, A., Reinhardt, F., & Weinberg, R. A. (2009). Concomitant suppression of three target genes can explain the impact of a microRNA on metastasis. Genes & Development, 23(22), 2592–2597. Valastyan, S., Benaich, N., Chang, A., Reinhardt, F., & Weinberg, R. A. (2009). Concomitant suppression of three target genes can explain the impact of a microRNA on metastasis. Genes & Development, 23(22), 2592–2597.
69.
go back to reference Bussing, I., Slack, F. J., & Grosshans, H. (2008). let-7 microRNAs in development, stem cells and cancer. Trends in Molecular Medicine, 14(9), 400–409.PubMed Bussing, I., Slack, F. J., & Grosshans, H. (2008). let-7 microRNAs in development, stem cells and cancer. Trends in Molecular Medicine, 14(9), 400–409.PubMed
70.
go back to reference Boyerinas, B., Park, S. M., Hau, A., Murmann, A. E., & Peter, M. E. (2010). The role of let-7 in cell differentiation and cancer. Endocrine-Related Cancer, 17(1), F19–F36.PubMed Boyerinas, B., Park, S. M., Hau, A., Murmann, A. E., & Peter, M. E. (2010). The role of let-7 in cell differentiation and cancer. Endocrine-Related Cancer, 17(1), F19–F36.PubMed
71.
go back to reference Mayr, C., Hemann, M. T., & Bartel, D. P. (2007). Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science, 315(5818), 1576–1579.PubMed Mayr, C., Hemann, M. T., & Bartel, D. P. (2007). Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science, 315(5818), 1576–1579.PubMed
72.
go back to reference Johnson, S. M., Grosshans, H., Shingara, J., Byrom, M., Jarvis, R., Cheng, A., et al. (2005). RAS is regulated by the let-7 microRNA family. Cell, 120(5), 635–647.PubMed Johnson, S. M., Grosshans, H., Shingara, J., Byrom, M., Jarvis, R., Cheng, A., et al. (2005). RAS is regulated by the let-7 microRNA family. Cell, 120(5), 635–647.PubMed
73.
go back to reference Yu, F., Yao, H., Zhu, P., Zhang, X., Pan, Q., Gong, C., et al. (2007). let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell, 131(6), 1109–1123.PubMed Yu, F., Yao, H., Zhu, P., Zhang, X., Pan, Q., Gong, C., et al. (2007). let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell, 131(6), 1109–1123.PubMed
74.
go back to reference Liu, H., Patel, M. R., Prescher, J. A., Patsialou, A., Qian, D., Lin, J., et al. (2010). Cancer stem cells from human breast tumors are involved in spontaneous metastases in orthotopic mouse models. Proceedings of the National Academy of Sciences of the United States of America, 107(42), 18115–18120.PubMed Liu, H., Patel, M. R., Prescher, J. A., Patsialou, A., Qian, D., Lin, J., et al. (2010). Cancer stem cells from human breast tumors are involved in spontaneous metastases in orthotopic mouse models. Proceedings of the National Academy of Sciences of the United States of America, 107(42), 18115–18120.PubMed
75.
go back to reference Malanchi, I., Santamaria-Martinez, A., Susanto, E., Peng, H., Lehr, H. A., Delaloye, J. F., et al. (2011). Interactions between cancer stem cells and their niche govern metastatic colonization. Nature, 481(7379), 85–89.PubMed Malanchi, I., Santamaria-Martinez, A., Susanto, E., Peng, H., Lehr, H. A., Delaloye, J. F., et al. (2011). Interactions between cancer stem cells and their niche govern metastatic colonization. Nature, 481(7379), 85–89.PubMed
76.
go back to reference Lu, J., Getz, G., Miska, E. A., Alvarez-Saavedra, E., Lamb, J., Peck, D., et al. (2005). MicroRNA expression profiles classify human cancers. Nature, 435(7043), 834–838.PubMed Lu, J., Getz, G., Miska, E. A., Alvarez-Saavedra, E., Lamb, J., Peck, D., et al. (2005). MicroRNA expression profiles classify human cancers. Nature, 435(7043), 834–838.PubMed
77.
go back to reference Mitchell, P. S., Parkin, R. K., Kroh, E. M., Fritz, B. R., Wyman, S. K., Pogosova-Agadjanyan, E. L., et al. (2008). Circulating microRNAs as stable blood-based markers for cancer detection. Proceedings of the National Academy of Sciences of the United States of America, 105(30), 10513–10518.PubMed Mitchell, P. S., Parkin, R. K., Kroh, E. M., Fritz, B. R., Wyman, S. K., Pogosova-Agadjanyan, E. L., et al. (2008). Circulating microRNAs as stable blood-based markers for cancer detection. Proceedings of the National Academy of Sciences of the United States of America, 105(30), 10513–10518.PubMed
78.
go back to reference Chen, X., Ba, Y., Ma, L., Cai, X., Yin, Y., Wang, K., et al. (2008). Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Research, 18(10), 997–1006.PubMed Chen, X., Ba, Y., Ma, L., Cai, X., Yin, Y., Wang, K., et al. (2008). Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Research, 18(10), 997–1006.PubMed
79.
go back to reference Ng, E. K., Chong, W. W., Jin, H., Lam, E. K., Shin, V. Y., Yu, J., et al. (2009). Differential expression of microRNAs in plasma of patients with colorectal cancer: a potential marker for colorectal cancer screening. Gut, 58(10), 1375–1381.PubMed Ng, E. K., Chong, W. W., Jin, H., Lam, E. K., Shin, V. Y., Yu, J., et al. (2009). Differential expression of microRNAs in plasma of patients with colorectal cancer: a potential marker for colorectal cancer screening. Gut, 58(10), 1375–1381.PubMed
80.
go back to reference Huang, Z., Huang, D., Ni, S., Peng, Z., Sheng, W., & Du, X. (2009). Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. International Journal of Cancer, 127(1), 118–126. Huang, Z., Huang, D., Ni, S., Peng, Z., Sheng, W., & Du, X. (2009). Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. International Journal of Cancer, 127(1), 118–126.
81.
go back to reference Camps, C., Buffa, F. M., Colella, S., Moore, J., Sotiriou, C., Sheldon, H., et al. (2008). hsa-miR-210 Is induced by hypoxia and is an independent prognostic factor in breast cancer. Clinical Cancer Research, 14(5), 1340–1348.PubMed Camps, C., Buffa, F. M., Colella, S., Moore, J., Sotiriou, C., Sheldon, H., et al. (2008). hsa-miR-210 Is induced by hypoxia and is an independent prognostic factor in breast cancer. Clinical Cancer Research, 14(5), 1340–1348.PubMed
82.
go back to reference Volinia, S., Galasso, M., Sana, M. E., Wise, T. F., Palatini, J., Huebner, K., et al. (2012). Breast cancer signatures for invasiveness and prognosis defined by deep sequencing of microRNA. Proceedings of the National Academy of Sciences of the United States of America, 109(8), 3024–3029.PubMed Volinia, S., Galasso, M., Sana, M. E., Wise, T. F., Palatini, J., Huebner, K., et al. (2012). Breast cancer signatures for invasiveness and prognosis defined by deep sequencing of microRNA. Proceedings of the National Academy of Sciences of the United States of America, 109(8), 3024–3029.PubMed
83.
go back to reference Li, J., Huang, H., Sun, L., Yang, M., Pan, C., Chen, W., et al. (2009). MiR-21 indicates poor prognosis in tongue squamous cell carcinomas as an apoptosis inhibitor. Clinical Cancer Research, 15(12), 3998–4008.PubMed Li, J., Huang, H., Sun, L., Yang, M., Pan, C., Chen, W., et al. (2009). MiR-21 indicates poor prognosis in tongue squamous cell carcinomas as an apoptosis inhibitor. Clinical Cancer Research, 15(12), 3998–4008.PubMed
84.
go back to reference Zhi, F., Chen, X., Wang, S., Xia, X., Shi, Y., Guan, W., et al. (2010). The use of hsa-miR-21, hsa-miR-181b and hsa-miR-106a as prognostic indicators of astrocytoma. European Journal of Cancer, 46(9), 1640–1649.PubMed Zhi, F., Chen, X., Wang, S., Xia, X., Shi, Y., Guan, W., et al. (2010). The use of hsa-miR-21, hsa-miR-181b and hsa-miR-106a as prognostic indicators of astrocytoma. European Journal of Cancer, 46(9), 1640–1649.PubMed
85.
go back to reference Jiang, J., Zheng, X., Xu, X., Zhou, Q., Yan, H., Zhang, X., et al. (2011). Prognostic significance of miR-181b and miR-21 in gastric cancer patients treated with S-1/Oxaliplatin or Doxifluridine/Oxaliplatin. PLoS One, 6(8), e23271.PubMed Jiang, J., Zheng, X., Xu, X., Zhou, Q., Yan, H., Zhang, X., et al. (2011). Prognostic significance of miR-181b and miR-21 in gastric cancer patients treated with S-1/Oxaliplatin or Doxifluridine/Oxaliplatin. PLoS One, 6(8), e23271.PubMed
86.
go back to reference Pramanik, D., Campbell, N. R., Karikari, C., Chivukula, R., Kent, O. A., Mendell, J. T., et al. (2011). Restitution of tumor suppressor microRNAs using a systemic nanovector inhibits pancreatic cancer growth in mice. Molecular Cancer Therapeutics, 10(8), 1470–1480.PubMed Pramanik, D., Campbell, N. R., Karikari, C., Chivukula, R., Kent, O. A., Mendell, J. T., et al. (2011). Restitution of tumor suppressor microRNAs using a systemic nanovector inhibits pancreatic cancer growth in mice. Molecular Cancer Therapeutics, 10(8), 1470–1480.PubMed
87.
go back to reference Ma, L., Reinhardt, F., Pan, E., Soutschek, J., Bhat, B., Marcusson, E. G., et al. (2010). Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nature Biotechnology, 28(4), 341–347.PubMed Ma, L., Reinhardt, F., Pan, E., Soutschek, J., Bhat, B., Marcusson, E. G., et al. (2010). Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nature Biotechnology, 28(4), 341–347.PubMed
88.
go back to reference Makeyev, E. V., & Maniatis, T. (2008). Multilevel regulation of gene expression by microRNAs. Science, 319(5871), 1789–1790.PubMed Makeyev, E. V., & Maniatis, T. (2008). Multilevel regulation of gene expression by microRNAs. Science, 319(5871), 1789–1790.PubMed
89.
go back to reference Mei, M., Ren, Y., Zhou, X., Yuan, X. B., Han, L., Wang, G. X., et al. (2010). Downregulation of miR-21 enhances chemotherapeutic effect of taxol in breast carcinoma cells. Technology in Cancer Research & Treatment, 9(1), 77–86. Mei, M., Ren, Y., Zhou, X., Yuan, X. B., Han, L., Wang, G. X., et al. (2010). Downregulation of miR-21 enhances chemotherapeutic effect of taxol in breast carcinoma cells. Technology in Cancer Research & Treatment, 9(1), 77–86.
90.
go back to reference Iorio, M. V., Casalini, P., Piovan, C., Di Leva, G., Merlo, A., Triulzi, T., et al. (2009). microRNA-205 regulates HER3 in human breast cancer. Cancer Research, 69(6), 2195–2200.PubMed Iorio, M. V., Casalini, P., Piovan, C., Di Leva, G., Merlo, A., Triulzi, T., et al. (2009). microRNA-205 regulates HER3 in human breast cancer. Cancer Research, 69(6), 2195–2200.PubMed
91.
go back to reference Lujambio, A., Calin, G. A., Villanueva, A., Ropero, S., Sanchez-Cespedes, M., Blanco, D., et al. (2008). A microRNA DNA methylation signature for human cancer metastasis. Proceedings of the National Academy of Sciences of the United States of America, 105(36), 13556–13561.PubMed Lujambio, A., Calin, G. A., Villanueva, A., Ropero, S., Sanchez-Cespedes, M., Blanco, D., et al. (2008). A microRNA DNA methylation signature for human cancer metastasis. Proceedings of the National Academy of Sciences of the United States of America, 105(36), 13556–13561.PubMed
92.
go back to reference Sun, L., Yao, Y., Liu, B., Lin, Z., Lin, L., Yang, M., et al. (2011). MiR-200b and miR-15b regulate chemotherapy-induced epithelial–mesenchymal transition in human tongue cancer cells by targeting BMI1. Oncogene, 31(4), 432–445.PubMed Sun, L., Yao, Y., Liu, B., Lin, Z., Lin, L., Yang, M., et al. (2011). MiR-200b and miR-15b regulate chemotherapy-induced epithelial–mesenchymal transition in human tongue cancer cells by targeting BMI1. Oncogene, 31(4), 432–445.PubMed
93.
go back to reference Zhang, Z., Liu, S., Shi, R., & Zhao, G. (2011). miR-27 promotes human gastric cancer cell metastasis by inducing epithelial-to-mesenchymal transition. Cancer Genetics, 204(9), 486–491.PubMed Zhang, Z., Liu, S., Shi, R., & Zhao, G. (2011). miR-27 promotes human gastric cancer cell metastasis by inducing epithelial-to-mesenchymal transition. Cancer Genetics, 204(9), 486–491.PubMed
94.
go back to reference Gebeshuber, C. A., Zatloukal, K., & Martinez, J. (2009). miR-29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis. EMBO Reports, 10(4), 400–405.PubMed Gebeshuber, C. A., Zatloukal, K., & Martinez, J. (2009). miR-29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis. EMBO Reports, 10(4), 400–405.PubMed
95.
go back to reference Dong, P., Kaneuchi, M., Watari, H., Hamada, J., Sudo, S., Ju, J., et al. (2011). MicroRNA-194 inhibits epithelial to mesenchymal transition of endometrial cancer cells by targeting oncogene BMI-1. Molecular Cancer, 10, 99.PubMed Dong, P., Kaneuchi, M., Watari, H., Hamada, J., Sudo, S., Ju, J., et al. (2011). MicroRNA-194 inhibits epithelial to mesenchymal transition of endometrial cancer cells by targeting oncogene BMI-1. Molecular Cancer, 10, 99.PubMed
96.
go back to reference Korpal, M., Lee, E. S., Hu, G., & Kang, Y. (2008). The miR-200 family inhibits epithelial–mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. Journal of Biological Chemistry, 283(22), 14910–14914.PubMed Korpal, M., Lee, E. S., Hu, G., & Kang, Y. (2008). The miR-200 family inhibits epithelial–mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. Journal of Biological Chemistry, 283(22), 14910–14914.PubMed
97.
go back to reference Kim, T., Veronese, A., Pichiorri, F., Lee, T. J., Jeon, Y. J., Volinia, S., et al. (2011). p53 regulates epithelial–mesenchymal transition through microRNAs targeting ZEB1 and ZEB2. The Journal of Experimental Medicine, 208(5), 875–883.PubMed Kim, T., Veronese, A., Pichiorri, F., Lee, T. J., Jeon, Y. J., Volinia, S., et al. (2011). p53 regulates epithelial–mesenchymal transition through microRNAs targeting ZEB1 and ZEB2. The Journal of Experimental Medicine, 208(5), 875–883.PubMed
98.
go back to reference Vetter, G., Saumet, A., Moes, M., Vallar, L., Le Bechec, A., Laurini, C., et al. (2010). miR-661 expression in SNAI1-induced epithelial to mesenchymal transition contributes to breast cancer cell invasion by targeting Nectin-1 and StarD10 messengers. Oncogene, 29(31), 4436–4448.PubMed Vetter, G., Saumet, A., Moes, M., Vallar, L., Le Bechec, A., Laurini, C., et al. (2010). miR-661 expression in SNAI1-induced epithelial to mesenchymal transition contributes to breast cancer cell invasion by targeting Nectin-1 and StarD10 messengers. Oncogene, 29(31), 4436–4448.PubMed
99.
go back to reference Han, H. B., Gu, J., Zuo, H. J., Chen, Z. G., Zhao, W., Li, M., et al. (2012). Let-7c functions as a metastasis suppressor by targeting MMP11 and PBX3 in colorectal cancer. The Journal of Pathology, 226(3), 544–555. Han, H. B., Gu, J., Zuo, H. J., Chen, Z. G., Zhao, W., Li, M., et al. (2012). Let-7c functions as a metastasis suppressor by targeting MMP11 and PBX3 in colorectal cancer. The Journal of Pathology, 226(3), 544–555.
100.
go back to reference Ji, J., Zhao, L., Budhu, A., Forgues, M., Jia, H. L., Qin, L. X., et al. (2010). Let-7g targets collagen type I alpha2 and inhibits cell migration in hepatocellular carcinoma. Journal of Hepatology, 52(5), 690–697.PubMed Ji, J., Zhao, L., Budhu, A., Forgues, M., Jia, H. L., Qin, L. X., et al. (2010). Let-7g targets collagen type I alpha2 and inhibits cell migration in hepatocellular carcinoma. Journal of Hepatology, 52(5), 690–697.PubMed
101.
go back to reference Qian, P., Zuo, Z., Wu, Z., Meng, X., Li, G., Zhang, W., et al. (2011). Pivotal role of reduced let-7g expression in breast cancer invasion and metastasis. Cancer Research, 71(20), 6463–6474.PubMed Qian, P., Zuo, Z., Wu, Z., Meng, X., Li, G., Zhang, W., et al. (2011). Pivotal role of reduced let-7g expression in breast cancer invasion and metastasis. Cancer Research, 71(20), 6463–6474.PubMed
102.
go back to reference Yang, Q., Jie, Z., Cao, H., Greenlee, A. R., Yang, C., Zou, F., et al. (2011). Low-level expression of let-7a in gastric cancer and its involvement in tumorigenesis by targeting RAB40C. Carcinogenesis, 32(5), 713–722.PubMed Yang, Q., Jie, Z., Cao, H., Greenlee, A. R., Yang, C., Zou, F., et al. (2011). Low-level expression of let-7a in gastric cancer and its involvement in tumorigenesis by targeting RAB40C. Carcinogenesis, 32(5), 713–722.PubMed
103.
go back to reference Chang, T. C., Zeitels, L. R., Hwang, H. W., Chivukula, R. R., Wentzel, E. A., Dews, M., et al. (2009). Lin-28B transactivation is necessary for Myc-mediated let-7 repression and proliferation. Proceedings of the National Academy of Sciences of the United States of America, 106(9), 3384–3389.PubMed Chang, T. C., Zeitels, L. R., Hwang, H. W., Chivukula, R. R., Wentzel, E. A., Dews, M., et al. (2009). Lin-28B transactivation is necessary for Myc-mediated let-7 repression and proliferation. Proceedings of the National Academy of Sciences of the United States of America, 106(9), 3384–3389.PubMed
104.
go back to reference Dangi-Garimella, S., Yun, J., Eves, E. M., Newman, M., Erkeland, S. J., Hammond, S. M., et al. (2009). Raf kinase inhibitory protein suppresses a metastasis signalling cascade involving LIN28 and let-7. EMBO Journal, 28(4), 347–358.PubMed Dangi-Garimella, S., Yun, J., Eves, E. M., Newman, M., Erkeland, S. J., Hammond, S. M., et al. (2009). Raf kinase inhibitory protein suppresses a metastasis signalling cascade involving LIN28 and let-7. EMBO Journal, 28(4), 347–358.PubMed
105.
go back to reference Kefas, B., Godlewski, J., Comeau, L., Li, Y., Abounader, R., Hawkinson, M., et al. (2008). microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Research, 68(10), 3566–3572.PubMed Kefas, B., Godlewski, J., Comeau, L., Li, Y., Abounader, R., Hawkinson, M., et al. (2008). microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Research, 68(10), 3566–3572.PubMed
106.
go back to reference Reddy, S. D., Ohshiro, K., Rayala, S. K., & Kumar, R. (2008). MicroRNA-7, a homeobox D10 target, inhibits p21-activated kinase 1 and regulates its functions. Cancer Research, 68(20), 8195–8200.PubMed Reddy, S. D., Ohshiro, K., Rayala, S. K., & Kumar, R. (2008). MicroRNA-7, a homeobox D10 target, inhibits p21-activated kinase 1 and regulates its functions. Cancer Research, 68(20), 8195–8200.PubMed
107.
go back to reference Weiss, F. U., Marques, I. J., Woltering, J. M., Vlecken, D. H., Aghdassi, A., Partecke, L. I., et al. (2009). Retinoic acid receptor antagonists inhibit miR-10a expression and block metastatic behavior of pancreatic cancer. Gastroenterology, 137(6), 2136–2145. e2131-2137.PubMed Weiss, F. U., Marques, I. J., Woltering, J. M., Vlecken, D. H., Aghdassi, A., Partecke, L. I., et al. (2009). Retinoic acid receptor antagonists inhibit miR-10a expression and block metastatic behavior of pancreatic cancer. Gastroenterology, 137(6), 2136–2145. e2131-2137.PubMed
108.
go back to reference Li, G., Wu, Z., Peng, Y., Liu, X., Lu, J., Wang, L., et al. (2010). MicroRNA-10b induced by Epstein–Barr virus-encoded latent membrane protein-1 promotes the metastasis of human nasopharyngeal carcinoma cells. Cancer Letters, 299(1), 29–36.PubMed Li, G., Wu, Z., Peng, Y., Liu, X., Lu, J., Wang, L., et al. (2010). MicroRNA-10b induced by Epstein–Barr virus-encoded latent membrane protein-1 promotes the metastasis of human nasopharyngeal carcinoma cells. Cancer Letters, 299(1), 29–36.PubMed
109.
go back to reference Takeshita, F., Patrawala, L., Osaki, M., Takahashi, R. U., Yamamoto, Y., Kosaka, N., et al. (2010). Systemic delivery of synthetic microRNA-16 inhibits the growth of metastatic prostate tumors via downregulation of multiple cell-cycle genes. Molecular Therapy, 18(1), 181–187.PubMed Takeshita, F., Patrawala, L., Osaki, M., Takahashi, R. U., Yamamoto, Y., Kosaka, N., et al. (2010). Systemic delivery of synthetic microRNA-16 inhibits the growth of metastatic prostate tumors via downregulation of multiple cell-cycle genes. Molecular Therapy, 18(1), 181–187.PubMed
110.
go back to reference Dews, M., Homayouni, A., Yu, D., Murphy, D., Sevignani, C., Wentzel, E., et al. (2006). Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nature Genetics, 38(9), 1060–1065.PubMed Dews, M., Homayouni, A., Yu, D., Murphy, D., Sevignani, C., Wentzel, E., et al. (2006). Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nature Genetics, 38(9), 1060–1065.PubMed
111.
go back to reference Liu, S., Goldstein, R. H., Scepansky, E. M., & Rosenblatt, M. (2009). Inhibition of rho-associated kinase signaling prevents breast cancer metastasis to human bone. Cancer Research, 69(22), 8742–8751.PubMed Liu, S., Goldstein, R. H., Scepansky, E. M., & Rosenblatt, M. (2009). Inhibition of rho-associated kinase signaling prevents breast cancer metastasis to human bone. Cancer Research, 69(22), 8742–8751.PubMed
112.
go back to reference Xu, D., Takeshita, F., Hino, Y., Fukunaga, S., Kudo, Y., Tamaki, A., et al. (2011). miR-22 represses cancer progression by inducing cellular senescence. The Journal of Cell Biology, 193(2), 409–424.PubMed Xu, D., Takeshita, F., Hino, Y., Fukunaga, S., Kudo, Y., Tamaki, A., et al. (2011). miR-22 represses cancer progression by inducing cellular senescence. The Journal of Cell Biology, 193(2), 409–424.PubMed
113.
go back to reference Coulouarn, C., Factor, V. M., Andersen, J. B., Durkin, M. E., & Thorgeirsson, S. S. (2009). Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. Oncogene, 28(40), 3526–3536.PubMed Coulouarn, C., Factor, V. M., Andersen, J. B., Durkin, M. E., & Thorgeirsson, S. S. (2009). Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. Oncogene, 28(40), 3526–3536.PubMed
114.
go back to reference Tsai, W. C., Hsu, P. W., Lai, T. C., Chau, G. Y., Lin, C. W., Chen, C. M., et al. (2009). MicroRNA-122, a tumor suppressor microRNA that regulates intrahepatic metastasis of hepatocellular carcinoma. Hepatology, 49(5), 1571–1582.PubMed Tsai, W. C., Hsu, P. W., Lai, T. C., Chau, G. Y., Lin, C. W., Chen, C. M., et al. (2009). MicroRNA-122, a tumor suppressor microRNA that regulates intrahepatic metastasis of hepatocellular carcinoma. Hepatology, 49(5), 1571–1582.PubMed
115.
go back to reference Li, Y., Vandenboom, T. G., 2nd, Wang, Z., Kong, D., Ali, S., Philip, P. A., et al. (2010). miR-146a suppresses invasion of pancreatic cancer cells. Cancer Research, 70(4), 1486–1495.PubMed Li, Y., Vandenboom, T. G., 2nd, Wang, Z., Kong, D., Ali, S., Philip, P. A., et al. (2010). miR-146a suppresses invasion of pancreatic cancer cells. Cancer Research, 70(4), 1486–1495.PubMed
116.
go back to reference Lin, S. L., Chiang, A., Chang, D., & Ying, S. Y. (2008). Loss of mir-146a function in hormone-refractory prostate cancer. RNA, 14(3), 417–424.PubMed Lin, S. L., Chiang, A., Chang, D., & Ying, S. Y. (2008). Loss of mir-146a function in hormone-refractory prostate cancer. RNA, 14(3), 417–424.PubMed
117.
go back to reference Xia, H., Qi, Y., Ng, S. S., Chen, X., Li, D., Chen, S., et al. (2009). microRNA-146b inhibits glioma cell migration and invasion by targeting MMPs. Brain Research, 1269, 158–165.PubMed Xia, H., Qi, Y., Ng, S. S., Chen, X., Li, D., Chen, S., et al. (2009). microRNA-146b inhibits glioma cell migration and invasion by targeting MMPs. Brain Research, 1269, 158–165.PubMed
118.
go back to reference Kogo, R., Mimori, K., Tanaka, F., Komune, S., & Mori, M. (2011). Clinical significance of miR-146a in gastric cancer cases. Clinical Cancer Research, 17(13), 4277–4284.PubMed Kogo, R., Mimori, K., Tanaka, F., Komune, S., & Mori, M. (2011). Clinical significance of miR-146a in gastric cancer cases. Clinical Cancer Research, 17(13), 4277–4284.PubMed
119.
go back to reference Bhaumik, D., Scott, G. K., Schokrpur, S., Patil, C. K., Campisi, J., & Benz, C. C. (2008). Expression of microRNA-146 suppresses NF-kappaB activity with reduction of metastatic potential in breast cancer cells. Oncogene, 27(42), 5643–5647.PubMed Bhaumik, D., Scott, G. K., Schokrpur, S., Patil, C. K., Campisi, J., & Benz, C. C. (2008). Expression of microRNA-146 suppresses NF-kappaB activity with reduction of metastatic potential in breast cancer cells. Oncogene, 27(42), 5643–5647.PubMed
120.
go back to reference Edmonds, M. D., Hurst, D. R., Vaidya, K. S., Stafford, L. J., Chen, D., & Welch, D. R. (2009). Breast cancer metastasis suppressor 1 coordinately regulates metastasis-associated microRNA expression. International Journal of Cancer, 125(8), 1778–1785. Edmonds, M. D., Hurst, D. R., Vaidya, K. S., Stafford, L. J., Chen, D., & Welch, D. R. (2009). Breast cancer metastasis suppressor 1 coordinately regulates metastasis-associated microRNA expression. International Journal of Cancer, 125(8), 1778–1785.
121.
go back to reference Meng, Z., Fu, X., Chen, X., Zeng, S., Tian, Y., Jove, R., et al. (2010). miR-194 is a marker of hepatic epithelial cells and suppresses metastasis of liver cancer cells in mice. Hepatology, 52(6), 2148–2157.PubMed Meng, Z., Fu, X., Chen, X., Zeng, S., Tian, Y., Jove, R., et al. (2010). miR-194 is a marker of hepatic epithelial cells and suppresses metastasis of liver cancer cells in mice. Hepatology, 52(6), 2148–2157.PubMed
122.
go back to reference Kondo, N., Toyama, T., Sugiura, H., Fujii, Y., & Yamashita, H. (2008). miR-206 Expression is down-regulated in estrogen receptor alpha-positive human breast cancer. Cancer Research, 68(13), 5004–5008.PubMed Kondo, N., Toyama, T., Sugiura, H., Fujii, Y., & Yamashita, H. (2008). miR-206 Expression is down-regulated in estrogen receptor alpha-positive human breast cancer. Cancer Research, 68(13), 5004–5008.PubMed
123.
go back to reference Yan, D., Dong Xda, E., Chen, X., Wang, L., Lu, C., Wang, J., et al. (2009). MicroRNA-1/206 targets c-Met and inhibits rhabdomyosarcoma development. Journal of Biological Chemistry, 284(43), 29596–29604.PubMed Yan, D., Dong Xda, E., Chen, X., Wang, L., Lu, C., Wang, J., et al. (2009). MicroRNA-1/206 targets c-Met and inhibits rhabdomyosarcoma development. Journal of Biological Chemistry, 284(43), 29596–29604.PubMed
124.
go back to reference Penna, E., Orso, F., Cimino, D., Tenaglia, E., Lembo, A., Quaglino, E., et al. (2011). microRNA-214 contributes to melanoma tumour progression through suppression of TFAP2C. EMBO Journal, 30(10), 1990–2007.PubMed Penna, E., Orso, F., Cimino, D., Tenaglia, E., Lembo, A., Quaglino, E., et al. (2011). microRNA-214 contributes to melanoma tumour progression through suppression of TFAP2C. EMBO Journal, 30(10), 1990–2007.PubMed
125.
go back to reference Xu, Y., Zhao, F., Wang, Z., Song, Y., Luo, Y., Zhang, X., et al. (2012). MicroRNA-335 acts as a metastasis suppressor in gastric cancer by targeting Bcl-w and specificity protein 1. Oncogene, 31(11), 1398–1407. Xu, Y., Zhao, F., Wang, Z., Song, Y., Luo, Y., Zhang, X., et al. (2012). MicroRNA-335 acts as a metastasis suppressor in gastric cancer by targeting Bcl-w and specificity protein 1. Oncogene, 31(11), 1398–1407.
126.
go back to reference Png, K. J., Yoshida, M., Zhang, X. H., Shu, W., Lee, H., Rimner, A., et al. (2011). MicroRNA-335 inhibits tumor reinitiation and is silenced through genetic and epigenetic mechanisms in human breast cancer. Genes & Development, 25(3), 226–231. Png, K. J., Yoshida, M., Zhang, X. H., Shu, W., Lee, H., Rimner, A., et al. (2011). MicroRNA-335 inhibits tumor reinitiation and is silenced through genetic and epigenetic mechanisms in human breast cancer. Genes & Development, 25(3), 226–231.
127.
go back to reference Lee, D. Y., Deng, Z., Wang, C. H., & Yang, B. B. (2007). MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression. Proceedings of the National Academy of Sciences of the United States of America, 104(51), 20350–20355.PubMed Lee, D. Y., Deng, Z., Wang, C. H., & Yang, B. B. (2007). MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression. Proceedings of the National Academy of Sciences of the United States of America, 104(51), 20350–20355.PubMed
Metadata
Title
MicroRNA control of epithelial–mesenchymal transition and metastasis
Authors
Jinsong Zhang
Li Ma
Publication date
01-12-2012
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 3-4/2012
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-012-9368-6

Other articles of this Issue 3-4/2012

Cancer and Metastasis Reviews 3-4/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine