Skip to main content
Top
Published in: Cancer and Metastasis Reviews 3-4/2012

01-12-2012

TGF-β signalling and its role in cancer progression and metastasis

Authors: Yvette Drabsch, Peter ten Dijke

Published in: Cancer and Metastasis Reviews | Issue 3-4/2012

Login to get access

Abstract

The transforming growth factor-β (TGF-β) system signals via protein kinase receptors and SMAD mediators to regulate a large number of biological processes. Alterations of the TGF-β signalling pathway are implicated in human cancer. Prior to tumour initiation and early during progression, TGF-β acts as a tumour suppressor; however, at later stages, it is often a tumour promoter. Knowledge about the mechanisms involved in TGF-β signal transduction has allowed a better understanding of cancer progression, invasion, metastasis and epithelial-to-mesenchymal transition. Furthermore, several molecular targets with great potential in therapeutic interventions have been identified. This review discusses the TGF-β signalling pathway, its involvement in cancer and current therapeutic approaches.
Literature
1.
go back to reference Frolik, C. A., Dart, L. L., Meyers, C. A., Smith, D. M., & Sporn, M. B. (1983). Purification and initial characterization of a type β transforming growth factor from human placenta. Proceedings of the National Academy of Sciences of the United States of America, 80(12), 3676–3680.PubMed Frolik, C. A., Dart, L. L., Meyers, C. A., Smith, D. M., & Sporn, M. B. (1983). Purification and initial characterization of a type β transforming growth factor from human placenta. Proceedings of the National Academy of Sciences of the United States of America, 80(12), 3676–3680.PubMed
2.
go back to reference Galat, A. (2011). Common structural traits for cystine knot domain of the TGF-β superfamily of proteins and three-fingered ectodomain of their cellular receptors. Cellular and Molecular Life Sciences: CMLS, 68(20), 3437–3451.PubMed Galat, A. (2011). Common structural traits for cystine knot domain of the TGF-β superfamily of proteins and three-fingered ectodomain of their cellular receptors. Cellular and Molecular Life Sciences: CMLS, 68(20), 3437–3451.PubMed
3.
go back to reference Roberts, A. B. (1998). Molecular and cell biology of TGF-β. Mineral and Electrolyte Metabolism, 24(2–3), 111–119.PubMed Roberts, A. B. (1998). Molecular and cell biology of TGF-β. Mineral and Electrolyte Metabolism, 24(2–3), 111–119.PubMed
4.
go back to reference Govinden, R., & Bhoola, K. D. (2003). Genealogy, expression, and cellular function of transforming growth factor-β. Pharmacology & Therapeutics, 98(2), 257–265. Govinden, R., & Bhoola, K. D. (2003). Genealogy, expression, and cellular function of transforming growth factor-β. Pharmacology & Therapeutics, 98(2), 257–265.
5.
go back to reference Funkenstein, B., Olekh, E., & Jakowlew, S. B. (2010). Identification of a novel transforming growth factor-β (TGF-β6) gene in fish: regulation in skeletal muscle by nutritional state. BMC Molecular Biology, 11, 37.PubMed Funkenstein, B., Olekh, E., & Jakowlew, S. B. (2010). Identification of a novel transforming growth factor-β (TGF-β6) gene in fish: regulation in skeletal muscle by nutritional state. BMC Molecular Biology, 11, 37.PubMed
6.
go back to reference Rider, C. C., & Mulloy, B. (2010). Bone morphogenetic protein and growth differentiation factor cytokine families and their protein antagonists. The Biochemical Journal, 429(1), 1–12.PubMed Rider, C. C., & Mulloy, B. (2010). Bone morphogenetic protein and growth differentiation factor cytokine families and their protein antagonists. The Biochemical Journal, 429(1), 1–12.PubMed
7.
go back to reference Miyazono, K., Kamiya, Y., & Morikawa, M. (2010). Bone morphogenetic protein receptors and signal transduction. Journal of Biochemistry, 147(1), 35–51.PubMed Miyazono, K., Kamiya, Y., & Morikawa, M. (2010). Bone morphogenetic protein receptors and signal transduction. Journal of Biochemistry, 147(1), 35–51.PubMed
8.
go back to reference Schier, A. F. (2009). Nodal morphogens. Perspectives in Biology, 1(5), a003459.PubMed Schier, A. F. (2009). Nodal morphogens. Perspectives in Biology, 1(5), a003459.PubMed
9.
go back to reference Kumar, A., Lualdi, M., Lewandoski, M., & Kuehn, M. R. (2008). Broad mesodermal and endodermal deletion of nodal at postgastrulation stages results solely in left/right axial defects. Developmental Dynamics, 237(12), 3591–3601.PubMed Kumar, A., Lualdi, M., Lewandoski, M., & Kuehn, M. R. (2008). Broad mesodermal and endodermal deletion of nodal at postgastrulation stages results solely in left/right axial defects. Developmental Dynamics, 237(12), 3591–3601.PubMed
10.
go back to reference Lee, J. D., Migeotte, I., & Anderson, K. V. (2010). Left–right patterning in the mouse requires EPB4.1l5-dependent morphogenesis of the node and midline. Developmental Biology, 346(2), 237–246.PubMed Lee, J. D., Migeotte, I., & Anderson, K. V. (2010). Left–right patterning in the mouse requires EPB4.1l5-dependent morphogenesis of the node and midline. Developmental Biology, 346(2), 237–246.PubMed
11.
go back to reference Lee, S. J. (1990). Identification of a novel member (GDF-1) of the transforming growth factor-β superfamily. Molecular Endocrinology, 4(7), 1034–1040.PubMed Lee, S. J. (1990). Identification of a novel member (GDF-1) of the transforming growth factor-β superfamily. Molecular Endocrinology, 4(7), 1034–1040.PubMed
12.
go back to reference Moustakas, A., & Heldin, C. H. (2009). The regulation of TGF-β signal transduction. Development, 136(22), 3699–3714.PubMed Moustakas, A., & Heldin, C. H. (2009). The regulation of TGF-β signal transduction. Development, 136(22), 3699–3714.PubMed
13.
go back to reference Josso, N., Belville, C., di Clemente, N., & Picard, J. Y. (2005). AMH and AMH receptor defects in persistent Mullerian duct syndrome. Human Reproduction Update, 11(4), 351–356.PubMed Josso, N., Belville, C., di Clemente, N., & Picard, J. Y. (2005). AMH and AMH receptor defects in persistent Mullerian duct syndrome. Human Reproduction Update, 11(4), 351–356.PubMed
14.
go back to reference di Clemente, N., & Belville, C. (2006). Anti-Mullerian hormone receptor defect. Clinical Endocrinology & Metabolism, 20(4), 599–610. di Clemente, N., & Belville, C. (2006). Anti-Mullerian hormone receptor defect. Clinical Endocrinology & Metabolism, 20(4), 599–610.
15.
go back to reference Rosal-Goncalves, M., Almeida, C., Barber, J., Kay, T., Limbert, C., Lopes, L., et al. (2010). Mutation of the MIF type II receptor in two brothers. Journal of Pediatric Endocrinology & Metabolism: JPEM, 23(3), 315–317. Rosal-Goncalves, M., Almeida, C., Barber, J., Kay, T., Limbert, C., Lopes, L., et al. (2010). Mutation of the MIF type II receptor in two brothers. Journal of Pediatric Endocrinology & Metabolism: JPEM, 23(3), 315–317.
16.
go back to reference Xia, Y., & Schneyer, A. L. (2009). The biology of activin: recent advances in structure, regulation and function. The Journal of Endocrinology, 202(1), 1–12.PubMed Xia, Y., & Schneyer, A. L. (2009). The biology of activin: recent advances in structure, regulation and function. The Journal of Endocrinology, 202(1), 1–12.PubMed
17.
go back to reference Aleman-Muench, G. R., & Soldevila, G. (2012). When versatility matters: activins/inhibins as key regulators of immunity. Immunology and Cell Biology, 90, 137–148.PubMed Aleman-Muench, G. R., & Soldevila, G. (2012). When versatility matters: activins/inhibins as key regulators of immunity. Immunology and Cell Biology, 90, 137–148.PubMed
18.
go back to reference Stenvers, K. L., & Findlay, J. K. (2010). Inhibins: from reproductive hormones to tumor suppressors. Trends in Endocrinology and Metabolism, 21(3), 174–180.PubMed Stenvers, K. L., & Findlay, J. K. (2010). Inhibins: from reproductive hormones to tumor suppressors. Trends in Endocrinology and Metabolism, 21(3), 174–180.PubMed
19.
go back to reference Tasaka, K., Kasahara, K., Masumoto, N., Mizuki, J., Fukami, K., Miyake, A., et al. (1994). Characterization of activin A-, activin AB- and activin B-responding cells by their responses to hypothalamic releasing hormones. Biochemical and Biophysical Research Communications, 203(3), 1739–1744.PubMed Tasaka, K., Kasahara, K., Masumoto, N., Mizuki, J., Fukami, K., Miyake, A., et al. (1994). Characterization of activin A-, activin AB- and activin B-responding cells by their responses to hypothalamic releasing hormones. Biochemical and Biophysical Research Communications, 203(3), 1739–1744.PubMed
20.
go back to reference Shi, Y., & Massagué, J. (2003). Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell, 113(6), 685–700.PubMed Shi, Y., & Massagué, J. (2003). Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell, 113(6), 685–700.PubMed
21.
go back to reference Gatza, C. E., Oh, S. Y., & Blobe, G. C. (2010). Roles for the type III TGF-β receptor in human cancer. Cellular Signalling, 22(8), 1163–1174.PubMed Gatza, C. E., Oh, S. Y., & Blobe, G. C. (2010). Roles for the type III TGF-β receptor in human cancer. Cellular Signalling, 22(8), 1163–1174.PubMed
22.
go back to reference Bernabeu, C., Lopez-Novoa, J. M., & Quintanilla, M. (2009). The emerging role of TGF-β superfamily coreceptors in cancer. Biochimica et Biophysica Acta, 1792(10), 954–973.PubMed Bernabeu, C., Lopez-Novoa, J. M., & Quintanilla, M. (2009). The emerging role of TGF-β superfamily coreceptors in cancer. Biochimica et Biophysica Acta, 1792(10), 954–973.PubMed
23.
go back to reference Kang, J. S., Liu, C., & Derynck, R. (2009). New regulatory mechanisms of TGF-β receptor function. Trends in Cell Biology, 19(8), 385–394.PubMed Kang, J. S., Liu, C., & Derynck, R. (2009). New regulatory mechanisms of TGF-β receptor function. Trends in Cell Biology, 19(8), 385–394.PubMed
24.
go back to reference Huminiecki, L., Goldovsky, L., Freilich, S., Moustakas, A., Ouzounis, C., & Heldin, C. H. (2009). Emergence, development and diversification of the TGF-β signalling pathway within the animal kingdom. BMC Evol Biol, 9, 28.PubMed Huminiecki, L., Goldovsky, L., Freilich, S., Moustakas, A., Ouzounis, C., & Heldin, C. H. (2009). Emergence, development and diversification of the TGF-β signalling pathway within the animal kingdom. BMC Evol Biol, 9, 28.PubMed
25.
go back to reference Ross, S., & Hill, C. S. (2008). How the SMADs regulate transcription. The International Journal of Biochemistry & Cell Biology, 40(3), 383–408. Ross, S., & Hill, C. S. (2008). How the SMADs regulate transcription. The International Journal of Biochemistry & Cell Biology, 40(3), 383–408.
26.
go back to reference Tsukazaki, T., Chiang, T. A., Davison, A. F., Attisano, L., & Wrana, J. L. (1998). SARA, a Fyve domain protein that recruits SMAD2 to the TGF-β receptor. Cell, 95(6), 779–791.PubMed Tsukazaki, T., Chiang, T. A., Davison, A. F., Attisano, L., & Wrana, J. L. (1998). SARA, a Fyve domain protein that recruits SMAD2 to the TGF-β receptor. Cell, 95(6), 779–791.PubMed
27.
go back to reference Sflomos, G., Kostaras, E., Panopoulou, E., Pappas, N., Kyrkou, A., Politou, A. S., et al. (2011). ERBIN is a new SARA-interacting protein: competition between SARA and SMAD2 and SMAD3 for binding to ERBIN. Journal of Cell Science, 124(Pt 19), 3209–3222.PubMed Sflomos, G., Kostaras, E., Panopoulou, E., Pappas, N., Kyrkou, A., Politou, A. S., et al. (2011). ERBIN is a new SARA-interacting protein: competition between SARA and SMAD2 and SMAD3 for binding to ERBIN. Journal of Cell Science, 124(Pt 19), 3209–3222.PubMed
28.
go back to reference Makkar, P., Metpally, R. P., Sangadala, S., & Reddy, B. V. (2009). Modeling and analysis of MH1 domain of SMADs and their interaction with promoter DNA sequence motif. Journal of Molecular Graphics & Modelling, 27(7), 803–812. Makkar, P., Metpally, R. P., Sangadala, S., & Reddy, B. V. (2009). Modeling and analysis of MH1 domain of SMADs and their interaction with promoter DNA sequence motif. Journal of Molecular Graphics & Modelling, 27(7), 803–812.
29.
go back to reference Itoh, S., & ten Dijke, P. (2007). Negative regulation of TGF-β receptor/SMAD signal transduction. Current Opinion in Cell Biology, 19(2), 176–184.PubMed Itoh, S., & ten Dijke, P. (2007). Negative regulation of TGF-β receptor/SMAD signal transduction. Current Opinion in Cell Biology, 19(2), 176–184.PubMed
30.
go back to reference Hata, A., Lagna, G., Massagué, J., & Hemmati-Brivanlou, A. (1998). SMAD6 inhibits Bmp/SMAD1 signaling by specifically competing with the SMAD4 tumor suppressor. Genes & Development, 12(2), 186–197. Hata, A., Lagna, G., Massagué, J., & Hemmati-Brivanlou, A. (1998). SMAD6 inhibits Bmp/SMAD1 signaling by specifically competing with the SMAD4 tumor suppressor. Genes & Development, 12(2), 186–197.
31.
go back to reference Dennler, S., Huet, S., & Gauthier, J. M. (1999). A short amino-acid sequence in Mh1 domain is responsible for functional differences between SMAD2 and SMAD3. Oncogene, 18(8), 1643–1648.PubMed Dennler, S., Huet, S., & Gauthier, J. M. (1999). A short amino-acid sequence in Mh1 domain is responsible for functional differences between SMAD2 and SMAD3. Oncogene, 18(8), 1643–1648.PubMed
32.
go back to reference Derynck, R., & Akhurst, R. J. (2007). Differentiation plasticity regulated by TGF-β family proteins in development and disease. Nature Cell Biology, 9(9), 1000–1004.PubMed Derynck, R., & Akhurst, R. J. (2007). Differentiation plasticity regulated by TGF-β family proteins in development and disease. Nature Cell Biology, 9(9), 1000–1004.PubMed
33.
go back to reference Rifkin, D. B. (2005). Latent transforming growth factor-β (TGF-β) binding proteins: orchestrators of TGF-β availability. The Journal of Biological Chemistry, 280(9), 7409–7412.PubMed Rifkin, D. B. (2005). Latent transforming growth factor-β (TGF-β) binding proteins: orchestrators of TGF-β availability. The Journal of Biological Chemistry, 280(9), 7409–7412.PubMed
34.
go back to reference Kusakabe, M., Cheong, P. L., Nikfar, R., McLennan, I. S., & Koishi, K. (2008). The structure of the TGF-β latency associated peptide region determines the ability of the proprotein convertase furin to cleave TGF-β s. Journal of Cellular Biochemistry, 103(1), 311–320.PubMed Kusakabe, M., Cheong, P. L., Nikfar, R., McLennan, I. S., & Koishi, K. (2008). The structure of the TGF-β latency associated peptide region determines the ability of the proprotein convertase furin to cleave TGF-β s. Journal of Cellular Biochemistry, 103(1), 311–320.PubMed
35.
go back to reference Di Guglielmo, G. M., Le Roy, C., Goodfellow, A. F., & Wrana, J. L. (2003). Distinct endocytic pathways regulate TGF-β receptor signalling and turnover. Nature Cell Biology, 5(5), 410–421.PubMed Di Guglielmo, G. M., Le Roy, C., Goodfellow, A. F., & Wrana, J. L. (2003). Distinct endocytic pathways regulate TGF-β receptor signalling and turnover. Nature Cell Biology, 5(5), 410–421.PubMed
36.
go back to reference Santibanez, J. F., Blanco, F. J., Garrido-Martin, E. M., Sanz-Rodriguez, F., del Pozo, M. A., & Bernabeu, C. (2008). Caveolin-1 interacts and cooperates with the transforming growth factor-β type I receptor Alk1 in endothelial caveolae. Cardiovascular Research, 77(4), 791–799.PubMed Santibanez, J. F., Blanco, F. J., Garrido-Martin, E. M., Sanz-Rodriguez, F., del Pozo, M. A., & Bernabeu, C. (2008). Caveolin-1 interacts and cooperates with the transforming growth factor-β type I receptor Alk1 in endothelial caveolae. Cardiovascular Research, 77(4), 791–799.PubMed
37.
go back to reference Zhang, Y. E. (2009). Non-SMAD pathways in TGF-β signaling. Cell Research, 19(1), 128–139.PubMed Zhang, Y. E. (2009). Non-SMAD pathways in TGF-β signaling. Cell Research, 19(1), 128–139.PubMed
38.
go back to reference Sanchez-Elsner, T., Botella, L. M., Velasco, B., Corbi, A., Attisano, L., & Bernabeu, C. (2001). Synergistic cooperation between hypoxia and transforming growth factor-β pathways on human vascular endothelial growth factor gene expression. The Journal of Biological Chemistry, 276(42), 38527–38535.PubMed Sanchez-Elsner, T., Botella, L. M., Velasco, B., Corbi, A., Attisano, L., & Bernabeu, C. (2001). Synergistic cooperation between hypoxia and transforming growth factor-β pathways on human vascular endothelial growth factor gene expression. The Journal of Biological Chemistry, 276(42), 38527–38535.PubMed
39.
go back to reference Liu, F., & Matsuura, I. (2005). Inhibition of SMAD antiproliferative function by Cdk phosphorylation. Cell Cycle, 4(1), 63–66.PubMed Liu, F., & Matsuura, I. (2005). Inhibition of SMAD antiproliferative function by Cdk phosphorylation. Cell Cycle, 4(1), 63–66.PubMed
40.
go back to reference Sherr, C. J., & Roberts, J. M. (1999). Cdk inhibitors: positive and negative regulators of G1-phase progression. Genes & Development, 13(12), 1501–1512. Sherr, C. J., & Roberts, J. M. (1999). Cdk inhibitors: positive and negative regulators of G1-phase progression. Genes & Development, 13(12), 1501–1512.
41.
go back to reference Donovan, J., & Slingerland, J. (2000). Transforming growth factor-β and breast cancer: cell cycle arrest by transforming growth factor-β and its disruption in cancer. Breast Cancer Research, 2(2), 116–124.PubMed Donovan, J., & Slingerland, J. (2000). Transforming growth factor-β and breast cancer: cell cycle arrest by transforming growth factor-β and its disruption in cancer. Breast Cancer Research, 2(2), 116–124.PubMed
42.
go back to reference Laiho, M., DeCaprio, J. A., Ludlow, J. W., Livingston, D. M., & Massagué, J. (1990). Growth inhibition by TGF-β linked to suppression of retinoblastoma protein phosphorylation. Cell, 62(1), 175–185.PubMed Laiho, M., DeCaprio, J. A., Ludlow, J. W., Livingston, D. M., & Massagué, J. (1990). Growth inhibition by TGF-β linked to suppression of retinoblastoma protein phosphorylation. Cell, 62(1), 175–185.PubMed
43.
go back to reference Slingerland, J. M., Hengst, L., Pan, C. H., Alexander, D., Stampfer, M. R., & Reed, S. I. (1994). A novel inhibitor of cyclin-Cdk activity detected in transforming growth factor β-arrested epithelial cells. Molecular and Cellular Biology, 14(6), 3683–3694.PubMed Slingerland, J. M., Hengst, L., Pan, C. H., Alexander, D., Stampfer, M. R., & Reed, S. I. (1994). A novel inhibitor of cyclin-Cdk activity detected in transforming growth factor β-arrested epithelial cells. Molecular and Cellular Biology, 14(6), 3683–3694.PubMed
44.
go back to reference Geng, Y., & Weinberg, R. A. (1993). Transforming growth factor β effects on expression of G1 cyclins and cyclin-dependent protein kinases. Proceedings of the National Academy of Sciences of the United States of America, 90(21), 10315–10319.PubMed Geng, Y., & Weinberg, R. A. (1993). Transforming growth factor β effects on expression of G1 cyclins and cyclin-dependent protein kinases. Proceedings of the National Academy of Sciences of the United States of America, 90(21), 10315–10319.PubMed
45.
go back to reference Massagué, J., Blain, S. W., & Lo, R. S. (2000). TGF-β signaling in growth control, cancer, and heritable disorders. Cell, 103(2), 295–309.PubMed Massagué, J., Blain, S. W., & Lo, R. S. (2000). TGF-β signaling in growth control, cancer, and heritable disorders. Cell, 103(2), 295–309.PubMed
46.
go back to reference Pardali, K., & Moustakas, A. (2007). Actions of TGF-β as tumor suppressor and pro-metastatic factor in human cancer. Biochimica et Biophysica Acta, 1775(1), 21–62.PubMed Pardali, K., & Moustakas, A. (2007). Actions of TGF-β as tumor suppressor and pro-metastatic factor in human cancer. Biochimica et Biophysica Acta, 1775(1), 21–62.PubMed
47.
go back to reference Chen, C. R., Kang, Y., & Massagué, J. (2001). Defective repression of c-myc in breast cancer cells: a loss at the core of the transforming growth factor β growth arrest program. Proceedings of the National Academy of Sciences of the United States of America, 98(3), 992–999.PubMed Chen, C. R., Kang, Y., & Massagué, J. (2001). Defective repression of c-myc in breast cancer cells: a loss at the core of the transforming growth factor β growth arrest program. Proceedings of the National Academy of Sciences of the United States of America, 98(3), 992–999.PubMed
48.
go back to reference Chen, C. R., Kang, Y., Siegel, P. M., & Massagué, J. (2002). E2f4/5 and P107 as SMAD cofactors linking the TGF-β receptor to c-Myc repression. Cell, 110(1), 19–32.PubMed Chen, C. R., Kang, Y., Siegel, P. M., & Massagué, J. (2002). E2f4/5 and P107 as SMAD cofactors linking the TGF-β receptor to c-Myc repression. Cell, 110(1), 19–32.PubMed
49.
go back to reference Frederick, J. P., Liberati, N. T., Waddell, D. S., Shi, Y., & Wang, X. F. (2004). Transforming growth factor β-mediated transcriptional repression of c-Myc is dependent on direct binding of SMAD3 to a novel repressive SMAD binding element. Molecular and Cellular Biology, 24(6), 2546–2559.PubMed Frederick, J. P., Liberati, N. T., Waddell, D. S., Shi, Y., & Wang, X. F. (2004). Transforming growth factor β-mediated transcriptional repression of c-Myc is dependent on direct binding of SMAD3 to a novel repressive SMAD binding element. Molecular and Cellular Biology, 24(6), 2546–2559.PubMed
50.
go back to reference Yagi, K., Furuhashi, M., Aoki, H., Goto, D., Kuwano, H., Sugamura, K., et al. (2002). c-myc is a downstream target of the SMAD pathway. The Journal of Biological Chemistry, 277(1), 854–861.PubMed Yagi, K., Furuhashi, M., Aoki, H., Goto, D., Kuwano, H., Sugamura, K., et al. (2002). c-myc is a downstream target of the SMAD pathway. The Journal of Biological Chemistry, 277(1), 854–861.PubMed
51.
go back to reference Tachibana, I., Imoto, M., Adjei, P. N., Gores, G. J., Subramaniam, M., Spelsberg, T. C., et al. (1997). Overexpression of the TGF-β -regulated zinc finger encoding gene, TIEG, induces apoptosis in pancreatic epithelial cells. The Journal of Clinical Investigation, 99(10), 2365–2374.PubMed Tachibana, I., Imoto, M., Adjei, P. N., Gores, G. J., Subramaniam, M., Spelsberg, T. C., et al. (1997). Overexpression of the TGF-β -regulated zinc finger encoding gene, TIEG, induces apoptosis in pancreatic epithelial cells. The Journal of Clinical Investigation, 99(10), 2365–2374.PubMed
52.
go back to reference Jang, C. W., Chen, C. H., Chen, C. C., Chen, J. Y., Su, Y. H., & Chen, R. H. (2002). TGF-β induces apoptosis through SMAD-mediated expression of DAP-kinase. Nature Cell Biology, 4(1), 51–58.PubMed Jang, C. W., Chen, C. H., Chen, C. C., Chen, J. Y., Su, Y. H., & Chen, R. H. (2002). TGF-β induces apoptosis through SMAD-mediated expression of DAP-kinase. Nature Cell Biology, 4(1), 51–58.PubMed
53.
go back to reference Valderrama-Carvajal, H., Cocolakis, E., Lacerte, A., Lee, E. H., Krystal, G., Ali, S., et al. (2002). Activin/TGF-β induce apoptosis through SMAD-dependent expression of the lipid phosphatase ship. Nature Cell Biology, 4(12), 963–969.PubMed Valderrama-Carvajal, H., Cocolakis, E., Lacerte, A., Lee, E. H., Krystal, G., Ali, S., et al. (2002). Activin/TGF-β induce apoptosis through SMAD-dependent expression of the lipid phosphatase ship. Nature Cell Biology, 4(12), 963–969.PubMed
54.
go back to reference Latres, E., Malumbres, M., Sotillo, R., Martin, J., Ortega, S., Martin-Caballero, J., et al. (2000). Limited overlapping roles of P15(Ink4b) and P18(Ink4c) cell cycle inhibitors in proliferation and tumorigenesis. The EMBO Journal, 19(13), 3496–3506.PubMed Latres, E., Malumbres, M., Sotillo, R., Martin, J., Ortega, S., Martin-Caballero, J., et al. (2000). Limited overlapping roles of P15(Ink4b) and P18(Ink4c) cell cycle inhibitors in proliferation and tumorigenesis. The EMBO Journal, 19(13), 3496–3506.PubMed
55.
go back to reference Gomis, R. R., Alarcon, C., Nadal, C., Van Poznak, C., & Massagué, J. (2006). C/EBPβ at the core of the TGF-β cytostatic response and its evasion in metastatic breast cancer cells. Cancer Cell, 10(3), 203–214.PubMed Gomis, R. R., Alarcon, C., Nadal, C., Van Poznak, C., & Massagué, J. (2006). C/EBPβ at the core of the TGF-β cytostatic response and its evasion in metastatic breast cancer cells. Cancer Cell, 10(3), 203–214.PubMed
56.
go back to reference Fong, S., Itahana, Y., Sumida, T., Singh, J., Coppe, J. P., Liu, Y., et al. (2003). Id-1 as a molecular target in therapy for breast cancer cell invasion and metastasis. Proceedings of the National Academy of Sciences of the United States of America, 100(23), 13543–13548.PubMed Fong, S., Itahana, Y., Sumida, T., Singh, J., Coppe, J. P., Liu, Y., et al. (2003). Id-1 as a molecular target in therapy for breast cancer cell invasion and metastasis. Proceedings of the National Academy of Sciences of the United States of America, 100(23), 13543–13548.PubMed
57.
go back to reference Adorno, M., Cordenonsi, M., Montagner, M., Dupont, S., Wong, C., Hann, B., et al. (2009). A mutant-P53/SMAD complex opposes P63 to empower TGF-β -induced metastasis. Cell, 137(1), 87–98.PubMed Adorno, M., Cordenonsi, M., Montagner, M., Dupont, S., Wong, C., Hann, B., et al. (2009). A mutant-P53/SMAD complex opposes P63 to empower TGF-β -induced metastasis. Cell, 137(1), 87–98.PubMed
58.
go back to reference Grainger, D. J., Heathcote, K., Chiano, M., Snieder, H., Kemp, P. R., Metcalfe, J. C., et al. (1999). Genetic control of the circulating concentration of transforming growth factor type β1. Human Molecular Genetics, 8(1), 93–97.PubMed Grainger, D. J., Heathcote, K., Chiano, M., Snieder, H., Kemp, P. R., Metcalfe, J. C., et al. (1999). Genetic control of the circulating concentration of transforming growth factor type β1. Human Molecular Genetics, 8(1), 93–97.PubMed
59.
go back to reference Yokota, M., Ichihara, S., Lin, T. L., Nakashima, N., & Yamada, Y. (2000). Association of a T29→C polymorphism of the transforming growth factor-β1 gene with genetic susceptibility to myocardial infarction in Japanese. Circulation, 101(24), 2783–2787.PubMed Yokota, M., Ichihara, S., Lin, T. L., Nakashima, N., & Yamada, Y. (2000). Association of a T29→C polymorphism of the transforming growth factor-β1 gene with genetic susceptibility to myocardial infarction in Japanese. Circulation, 101(24), 2783–2787.PubMed
60.
go back to reference Ziv, E., Cauley, J., Morin, P. A., Saiz, R., & Browner, W. S. (2001). Association between the T29→C polymorphism in the transforming growth factor β1 gene and breast cancer among elderly white women: the study of osteoporotic fractures. Journal of the American Medical Association, 285(22), 2859–2863.PubMed Ziv, E., Cauley, J., Morin, P. A., Saiz, R., & Browner, W. S. (2001). Association between the T29→C polymorphism in the transforming growth factor β1 gene and breast cancer among elderly white women: the study of osteoporotic fractures. Journal of the American Medical Association, 285(22), 2859–2863.PubMed
61.
go back to reference Dunning, A. M., Ellis, P. D., McBride, S., Kirschenlohr, H. L., Healey, C. S., Kemp, P. R., et al. (2003). A transforming growth factor β1 signal peptide variant increases secretion in vitro and is associated with increased incidence of invasive breast cancer. Cancer Research, 63(10), 2610–2615.PubMed Dunning, A. M., Ellis, P. D., McBride, S., Kirschenlohr, H. L., Healey, C. S., Kemp, P. R., et al. (2003). A transforming growth factor β1 signal peptide variant increases secretion in vitro and is associated with increased incidence of invasive breast cancer. Cancer Research, 63(10), 2610–2615.PubMed
62.
go back to reference Hishida, A., Iwata, H., Hamajima, N., Matsuo, K., Mizutani, M., Iwase, T., et al. (2003). Transforming growth factor B1 T29c polymorphism and breast cancer risk in Japanese women. Breast Cancer, 10(1), 63–69.PubMed Hishida, A., Iwata, H., Hamajima, N., Matsuo, K., Mizutani, M., Iwase, T., et al. (2003). Transforming growth factor B1 T29c polymorphism and breast cancer risk in Japanese women. Breast Cancer, 10(1), 63–69.PubMed
63.
go back to reference Gobbi, H., Dupont, W. D., Simpson, J. F., Plummer, W. D., Jr., Schuyler, P. A., Olson, S. J., et al. (1999). Transforming growth factor-β and breast cancer risk in women with mammary epithelial hyperplasia. Journal of the National Cancer Institute, 91(24), 2096–2101.PubMed Gobbi, H., Dupont, W. D., Simpson, J. F., Plummer, W. D., Jr., Schuyler, P. A., Olson, S. J., et al. (1999). Transforming growth factor-β and breast cancer risk in women with mammary epithelial hyperplasia. Journal of the National Cancer Institute, 91(24), 2096–2101.PubMed
64.
go back to reference de Jong, J. S., van Diest, P. J., van der Valk, P., & Baak, J. P. (1998). Expression of growth factors, growth inhibiting factors, and their receptors in invasive breast cancer. I: An inventory in search of autocrine and paracrine loops. The Journal of Pathology, 184(1), 44–52.PubMed de Jong, J. S., van Diest, P. J., van der Valk, P., & Baak, J. P. (1998). Expression of growth factors, growth inhibiting factors, and their receptors in invasive breast cancer. I: An inventory in search of autocrine and paracrine loops. The Journal of Pathology, 184(1), 44–52.PubMed
65.
go back to reference de Jong, J. S., van Diest, P. J., van der Valk, P., & Baak, J. P. (1998). Expression of growth factors, growth-inhibiting factors, and their receptors in invasive breast cancer. II: Correlations with proliferation and angiogenesis. The Journal of pathology, 184(1), 53–57.PubMed de Jong, J. S., van Diest, P. J., van der Valk, P., & Baak, J. P. (1998). Expression of growth factors, growth-inhibiting factors, and their receptors in invasive breast cancer. II: Correlations with proliferation and angiogenesis. The Journal of pathology, 184(1), 53–57.PubMed
66.
go back to reference Barlow, J., Yandell, D., Weaver, D., Casey, T., & Plaut, K. (2003). Higher stromal expression of transforming growth factor-β type II receptors is associated with poorer prognosis breast tumors. Breast Cancer Research and Treatment, 79(2), 149–159.PubMed Barlow, J., Yandell, D., Weaver, D., Casey, T., & Plaut, K. (2003). Higher stromal expression of transforming growth factor-β type II receptors is associated with poorer prognosis breast tumors. Breast Cancer Research and Treatment, 79(2), 149–159.PubMed
67.
go back to reference Bacman, D., Merkel, S., Croner, R., Papadopoulos, T., Brueckl, W., & Dimmler, A. (2007). TGF-β receptor 2 downregulation in tumour-associated stroma worsens prognosis and high-grade tumours show more tumour-associated macrophages and lower TGF-β1 expression in colon carcinoma: a retrospective study. BMC Cancer, 7, 156.PubMed Bacman, D., Merkel, S., Croner, R., Papadopoulos, T., Brueckl, W., & Dimmler, A. (2007). TGF-β receptor 2 downregulation in tumour-associated stroma worsens prognosis and high-grade tumours show more tumour-associated macrophages and lower TGF-β1 expression in colon carcinoma: a retrospective study. BMC Cancer, 7, 156.PubMed
68.
go back to reference Tsushima, H., Kawata, S., Tamura, S., Ito, N., Shirai, Y., Kiso, S., et al. (1996). High levels of transforming growth factor β 1 in patients with colorectal cancer: association with disease progression. Gastroenterology, 110(2), 375–382.PubMed Tsushima, H., Kawata, S., Tamura, S., Ito, N., Shirai, Y., Kiso, S., et al. (1996). High levels of transforming growth factor β 1 in patients with colorectal cancer: association with disease progression. Gastroenterology, 110(2), 375–382.PubMed
69.
go back to reference Friedman, E., Gold, L. I., Klimstra, D., Zeng, Z. S., Winawer, S., & Cohen, A. (1995). High levels of transforming growth factor β 1 correlate with disease progression in human colon cancer. Cancer Epidemiology, Biomarkers & Prevention, 4(5), 549–554. Friedman, E., Gold, L. I., Klimstra, D., Zeng, Z. S., Winawer, S., & Cohen, A. (1995). High levels of transforming growth factor β 1 correlate with disease progression in human colon cancer. Cancer Epidemiology, Biomarkers & Prevention, 4(5), 549–554.
70.
go back to reference Robson, H., Anderson, E., James, R. D., & Schofield, P. F. (1996). Transforming growth factor β 1 expression in human colorectal tumours: an independent prognostic marker in a subgroup of poor prognosis patients. British Journal of Cancer, 74(5), 753–758.PubMed Robson, H., Anderson, E., James, R. D., & Schofield, P. F. (1996). Transforming growth factor β 1 expression in human colorectal tumours: an independent prognostic marker in a subgroup of poor prognosis patients. British Journal of Cancer, 74(5), 753–758.PubMed
71.
go back to reference Wikstrom, P., Stattin, P., Franck-Lissbrant, I., Damber, J. E., & Bergh, A. (1998). Transforming growth factor β1 is associated with angiogenesis, metastasis, and poor clinical outcome in prostate cancer. The Prostate, 37(1), 19–29.PubMed Wikstrom, P., Stattin, P., Franck-Lissbrant, I., Damber, J. E., & Bergh, A. (1998). Transforming growth factor β1 is associated with angiogenesis, metastasis, and poor clinical outcome in prostate cancer. The Prostate, 37(1), 19–29.PubMed
72.
go back to reference Diener, K. R., Need, E. F., Buchanan, G., & Hayball, J. D. (2010). TGF-β signalling and immunity in prostate tumourigenesis. Expert Opinion on Therapeutic Targets, 14(2), 179–192.PubMed Diener, K. R., Need, E. F., Buchanan, G., & Hayball, J. D. (2010). TGF-β signalling and immunity in prostate tumourigenesis. Expert Opinion on Therapeutic Targets, 14(2), 179–192.PubMed
73.
go back to reference Bierie, B., & Moses, H. L. (2006). TGF-β and cancer. Cytokine & Growth Factor Reviews, 17(1–2), 29–40. Bierie, B., & Moses, H. L. (2006). TGF-β and cancer. Cytokine & Growth Factor Reviews, 17(1–2), 29–40.
74.
go back to reference Biswas, S., Trobridge, P., Romero-Gallo, J., Billheimer, D., Myeroff, L. L., Willson, J. K., et al. (2008). Mutational inactivation of TGFβR2 in microsatellite unstable colon cancer arises from the cooperation of genomic instability and the clonal outgrowth of transforming growth factor β resistant cells. Genes, Chromosomes & Cancer, 47(2), 95–106. Biswas, S., Trobridge, P., Romero-Gallo, J., Billheimer, D., Myeroff, L. L., Willson, J. K., et al. (2008). Mutational inactivation of TGFβR2 in microsatellite unstable colon cancer arises from the cooperation of genomic instability and the clonal outgrowth of transforming growth factor β resistant cells. Genes, Chromosomes & Cancer, 47(2), 95–106.
75.
go back to reference Grady, W. M., Myeroff, L. L., Swinler, S. E., Rajput, A., Thiagalingam, S., Lutterbaugh, J. D., et al. (1999). Mutational inactivation of transforming growth factor β receptor type Ii in microsatellite stable colon cancers. Cancer Research, 59(2), 320–324.PubMed Grady, W. M., Myeroff, L. L., Swinler, S. E., Rajput, A., Thiagalingam, S., Lutterbaugh, J. D., et al. (1999). Mutational inactivation of transforming growth factor β receptor type Ii in microsatellite stable colon cancers. Cancer Research, 59(2), 320–324.PubMed
76.
go back to reference Akhurst, R. J., & Derynck, R. (2001). TGF-β signaling in cancer—a double-edged sword. Trends in Cell Biology, 11(11), S44–S51.PubMed Akhurst, R. J., & Derynck, R. (2001). TGF-β signaling in cancer—a double-edged sword. Trends in Cell Biology, 11(11), S44–S51.PubMed
77.
go back to reference Parsons, R., Myeroff, L. L., Liu, B., Willson, J. K., Markowitz, S. D., Kinzler, K. W., et al. (1995). Microsatellite instability and mutations of the transforming growth factor β type II receptor gene in colorectal cancer. Cancer Research, 55(23), 5548–5550.PubMed Parsons, R., Myeroff, L. L., Liu, B., Willson, J. K., Markowitz, S. D., Kinzler, K. W., et al. (1995). Microsatellite instability and mutations of the transforming growth factor β type II receptor gene in colorectal cancer. Cancer Research, 55(23), 5548–5550.PubMed
78.
go back to reference Shima, K., Morikawa, T., Yamauchi, M., Kuchiba, A., Imamura, Y., Liao, X., et al. (2011). TGRβR2 and bax mononucleotide tract mutations, microsatellite instability, and prognosis in 1072 colorectal cancers. PLoS One, 6(9), e25062.PubMed Shima, K., Morikawa, T., Yamauchi, M., Kuchiba, A., Imamura, Y., Liao, X., et al. (2011). TGRβR2 and bax mononucleotide tract mutations, microsatellite instability, and prognosis in 1072 colorectal cancers. PLoS One, 6(9), e25062.PubMed
79.
go back to reference Lucke, C. D., Philpott, A., Metcalfe, J. C., Thompson, A. M., Hughes-Davies, L., Kemp, P. R., et al. (2001). Inhibiting mutations in the transforming growth factor β type 2 receptor in recurrent human breast cancer. Cancer Research, 61(2), 482–485.PubMed Lucke, C. D., Philpott, A., Metcalfe, J. C., Thompson, A. M., Hughes-Davies, L., Kemp, P. R., et al. (2001). Inhibiting mutations in the transforming growth factor β type 2 receptor in recurrent human breast cancer. Cancer Research, 61(2), 482–485.PubMed
80.
go back to reference Antony, M. L., Nair, R., Sebastian, P., & Karunagaran, D. (2010). Changes in expression, and/or mutations in TGF-β receptors (TGF-βRI and TGF-βRII) and SMAD 4 in human ovarian tumors. Journal of Cancer Research and Clinical Oncology, 136(3), 351–361.PubMed Antony, M. L., Nair, R., Sebastian, P., & Karunagaran, D. (2010). Changes in expression, and/or mutations in TGF-β receptors (TGF-βRI and TGF-βRII) and SMAD 4 in human ovarian tumors. Journal of Cancer Research and Clinical Oncology, 136(3), 351–361.PubMed
81.
go back to reference Scollen, S., Luccarini, C., Baynes, C., Driver, K., Humphreys, M. K., Garcia-Closas, M., et al. (2011). TGF-β signaling pathway and breast cancer susceptibility. Cancer Epidemiology, Biomarkers & Prevention, 20(6), 1112–1119. Scollen, S., Luccarini, C., Baynes, C., Driver, K., Humphreys, M. K., Garcia-Closas, M., et al. (2011). TGF-β signaling pathway and breast cancer susceptibility. Cancer Epidemiology, Biomarkers & Prevention, 20(6), 1112–1119.
82.
go back to reference Bellam, N., & Pasche, B. (2010). TGF-β signaling alterations and colon cancer. Cancer Treatment and Research, 155, 85–103.PubMed Bellam, N., & Pasche, B. (2010). TGF-β signaling alterations and colon cancer. Cancer Treatment and Research, 155, 85–103.PubMed
83.
go back to reference Yang, G., & Yang, X. (2010). SMAD4-mediated TGF-β signaling in tumorigenesis. International Journal of Biological Sciences, 6(1), 1–8.PubMed Yang, G., & Yang, X. (2010). SMAD4-mediated TGF-β signaling in tumorigenesis. International Journal of Biological Sciences, 6(1), 1–8.PubMed
84.
go back to reference Hahn, S. A., Schutte, M., Hoque, A. T., Moskaluk, C. A., da Costa, L. T., Rozenblum, E., et al. (1996). Dpc4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science, 271(5247), 350–353.PubMed Hahn, S. A., Schutte, M., Hoque, A. T., Moskaluk, C. A., da Costa, L. T., Rozenblum, E., et al. (1996). Dpc4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science, 271(5247), 350–353.PubMed
85.
go back to reference Kretzschmar, M. (2000). Transforming growth factor-β and breast cancer: transforming growth factor-β/SMAD signaling defects and cancer. Breast Cancer Research, 2(2), 107–115.PubMed Kretzschmar, M. (2000). Transforming growth factor-β and breast cancer: transforming growth factor-β/SMAD signaling defects and cancer. Breast Cancer Research, 2(2), 107–115.PubMed
86.
go back to reference Tram, E., Ibrahim-Zada, I., Briollais, L., Knight, J. A., Andrulis, I. L., & Ozcelik, H. (2011). Identification of germline alterations of the mad homology 2 domain of SMAD3 and SMAD4 from the Ontario Site of the Breast Cancer Family Registry (CFR). Breast Cancer Research, 13(4), R77.PubMed Tram, E., Ibrahim-Zada, I., Briollais, L., Knight, J. A., Andrulis, I. L., & Ozcelik, H. (2011). Identification of germline alterations of the mad homology 2 domain of SMAD3 and SMAD4 from the Ontario Site of the Breast Cancer Family Registry (CFR). Breast Cancer Research, 13(4), R77.PubMed
87.
go back to reference Ashktorab, H., Schaffer, A. A., Daremipouran, M., Smoot, D. T., Lee, E., & Brim, H. (2010). Distinct genetic alterations in colorectal cancer. PLoS One, 5(1), e8879.PubMed Ashktorab, H., Schaffer, A. A., Daremipouran, M., Smoot, D. T., Lee, E., & Brim, H. (2010). Distinct genetic alterations in colorectal cancer. PLoS One, 5(1), e8879.PubMed
88.
go back to reference Shao, Y., Zhang, J., Zhang, R., Wan, J., Zhang, W., & Yu, B. (2012). Examination of SMAD2 and SMAD4 copy-number variations in skin cancers. Clinical & Translational Oncology, 14(2), 138–142. Shao, Y., Zhang, J., Zhang, R., Wan, J., Zhang, W., & Yu, B. (2012). Examination of SMAD2 and SMAD4 copy-number variations in skin cancers. Clinical & Translational Oncology, 14(2), 138–142.
89.
go back to reference Xu, G., Chakraborty, C., & Lala, P. K. (2003). Reconstitution of SMAD3 restores TGF-β response of tissue inhibitor of metalloprotease-1 upregulation in human choriocarcinoma cells. Biochemical and Biophysical Research Communications, 300(2), 383–390.PubMed Xu, G., Chakraborty, C., & Lala, P. K. (2003). Reconstitution of SMAD3 restores TGF-β response of tissue inhibitor of metalloprotease-1 upregulation in human choriocarcinoma cells. Biochemical and Biophysical Research Communications, 300(2), 383–390.PubMed
90.
go back to reference Han, S. U., Kim, H. T., Seong, D. H., Kim, Y. S., Park, Y. S., Bang, Y. J., et al. (2004). Loss of the SMAD3 expression increases susceptibility to tumorigenicity in human gastric cancer. Oncogene, 23(7), 1333–1341.PubMed Han, S. U., Kim, H. T., Seong, D. H., Kim, Y. S., Park, Y. S., Bang, Y. J., et al. (2004). Loss of the SMAD3 expression increases susceptibility to tumorigenicity in human gastric cancer. Oncogene, 23(7), 1333–1341.PubMed
91.
go back to reference Walker, L. C., Fredericksen, Z. S., Wang, X., Tarrell, R., Pankratz, V. S., Lindor, N. M., et al. (2010). Evidence for SMAD3 as a modifier of breast cancer risk in BRCA2 mutation carriers. Breast Cancer Research: BCR, 12(6), R102.PubMed Walker, L. C., Fredericksen, Z. S., Wang, X., Tarrell, R., Pankratz, V. S., Lindor, N. M., et al. (2010). Evidence for SMAD3 as a modifier of breast cancer risk in BRCA2 mutation carriers. Breast Cancer Research: BCR, 12(6), R102.PubMed
92.
go back to reference Arany, P. R., Flanders, K. C., DeGraff, W., Cook, J., Mitchell, J. B., & Roberts, A. B. (2007). Absence of SMAD3 confers radioprotection through modulation of Erk-Mapk in primary dermal fibroblasts. Journal of Dermatological Science, 48(1), 35–42.PubMed Arany, P. R., Flanders, K. C., DeGraff, W., Cook, J., Mitchell, J. B., & Roberts, A. B. (2007). Absence of SMAD3 confers radioprotection through modulation of Erk-Mapk in primary dermal fibroblasts. Journal of Dermatological Science, 48(1), 35–42.PubMed
93.
go back to reference Samanta, D., Gonzalez, A. L., Nagathihalli, N., Ye, F., Carbone, D. P., & Datta, P. K. (2012). Smoking attenuates transforming growth factor-β-mediated tumor suppression function through downregulation of SMAD3 in lung cancer. Cancer Prevention Research, 5, 452–463. Samanta, D., Gonzalez, A. L., Nagathihalli, N., Ye, F., Carbone, D. P., & Datta, P. K. (2012). Smoking attenuates transforming growth factor-β-mediated tumor suppression function through downregulation of SMAD3 in lung cancer. Cancer Prevention Research, 5, 452–463.
94.
95.
go back to reference Tian, F., Byfield, S. D., Parks, W. T., Yoo, S., Felici, A., Tang, B. W., et al. (2003). Reduction in SMAD2/3 signaling enhances tumorigenesis but suppresses metastasis of breast cancer cell lines. Cancer Research, 63(23), 8284–8292.PubMed Tian, F., Byfield, S. D., Parks, W. T., Yoo, S., Felici, A., Tang, B. W., et al. (2003). Reduction in SMAD2/3 signaling enhances tumorigenesis but suppresses metastasis of breast cancer cell lines. Cancer Research, 63(23), 8284–8292.PubMed
96.
go back to reference Xu, J., Lamouille, S., & Derynck, R. (2009). TGF-β -induced epithelial to mesenchymal transition. Cell Research, 19(2), 156–172.PubMed Xu, J., Lamouille, S., & Derynck, R. (2009). TGF-β -induced epithelial to mesenchymal transition. Cell Research, 19(2), 156–172.PubMed
97.
go back to reference Miyazono, K. (2009). Transforming growth factor-β signaling in epithelial–mesenchymal transition and progression of cancer. Proceedings of the Japan Academy, 85(8), 314–323. Miyazono, K. (2009). Transforming growth factor-β signaling in epithelial–mesenchymal transition and progression of cancer. Proceedings of the Japan Academy, 85(8), 314–323.
98.
go back to reference Kimelman, D., & Kirschner, M. (1987). Synergistic induction of mesoderm by FGF and TGF-β and the identification of an mRNA coding for FGF in the early Xenopus embryo. Cell, 51(5), 869–877.PubMed Kimelman, D., & Kirschner, M. (1987). Synergistic induction of mesoderm by FGF and TGF-β and the identification of an mRNA coding for FGF in the early Xenopus embryo. Cell, 51(5), 869–877.PubMed
99.
go back to reference Thiery, J. P. (2003). Epithelial–mesenchymal transitions in development and pathologies. Current Opinion in Cell Biology, 15(6), 740–746.PubMed Thiery, J. P. (2003). Epithelial–mesenchymal transitions in development and pathologies. Current Opinion in Cell Biology, 15(6), 740–746.PubMed
100.
go back to reference Singh, A., & Settleman, J. (2010). EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene, 29(34), 4741–4751.PubMed Singh, A., & Settleman, J. (2010). EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene, 29(34), 4741–4751.PubMed
101.
go back to reference Edme, N., Downward, J., Thiery, J. P., & Boyer, B. (2002). Ras induces NBT-II epithelial cell scattering through the coordinate activities of Rac and MAPK pathways. Journal of Cell Science, 115(Pt 12), 2591–2601.PubMed Edme, N., Downward, J., Thiery, J. P., & Boyer, B. (2002). Ras induces NBT-II epithelial cell scattering through the coordinate activities of Rac and MAPK pathways. Journal of Cell Science, 115(Pt 12), 2591–2601.PubMed
102.
go back to reference Horiguchi, K., Shirakihara, T., Nakano, A., Imamura, T., Miyazono, K., & Saitoh, M. (2009). Role of Ras signaling in the induction of snail by transforming growth factor-β. The Journal of Biological Chemistry, 284(1), 245–253.PubMed Horiguchi, K., Shirakihara, T., Nakano, A., Imamura, T., Miyazono, K., & Saitoh, M. (2009). Role of Ras signaling in the induction of snail by transforming growth factor-β. The Journal of Biological Chemistry, 284(1), 245–253.PubMed
103.
go back to reference Jenndahl, L. E., Isakson, P., & Baeckstrom, D. (2005). C-Erbb2-induced epithelial–mesenchymal transition in mammary epithelial cells is suppressed by cell–cell contact and initiated prior to E-cadherin downregulation. International Journal of Oncology, 27(2), 439–448.PubMed Jenndahl, L. E., Isakson, P., & Baeckstrom, D. (2005). C-Erbb2-induced epithelial–mesenchymal transition in mammary epithelial cells is suppressed by cell–cell contact and initiated prior to E-cadherin downregulation. International Journal of Oncology, 27(2), 439–448.PubMed
104.
go back to reference Moustakas, A., & Heldin, C. H. (2007). Signaling networks guiding epithelial–mesenchymal transitions during embryogenesis and cancer progression. Cancer Science, 98(10), 1512–1520.PubMed Moustakas, A., & Heldin, C. H. (2007). Signaling networks guiding epithelial–mesenchymal transitions during embryogenesis and cancer progression. Cancer Science, 98(10), 1512–1520.PubMed
105.
go back to reference Fuxe, J., Vincent, T., & Garcia de Herreros, A. (2010). Transcriptional crosstalk between TGF-β and stem cell pathways in tumor cell invasion: role of EMT promoting SMAD complexes. Cell Cycle, 9(12), 2363–2374.PubMed Fuxe, J., Vincent, T., & Garcia de Herreros, A. (2010). Transcriptional crosstalk between TGF-β and stem cell pathways in tumor cell invasion: role of EMT promoting SMAD complexes. Cell Cycle, 9(12), 2363–2374.PubMed
106.
go back to reference Hills, C. E., Siamantouras, E., Smith, S. W., Cockwell, P., Liu, K. K., & Squires, P. E. (2012). TGF-β modulates cell-to-cell communication in early epithelial-to-mesenchymal transition. Diabetologia, 55(3), 812–824.PubMed Hills, C. E., Siamantouras, E., Smith, S. W., Cockwell, P., Liu, K. K., & Squires, P. E. (2012). TGF-β modulates cell-to-cell communication in early epithelial-to-mesenchymal transition. Diabetologia, 55(3), 812–824.PubMed
107.
go back to reference Xie, L., Law, B. K., Chytil, A. M., Brown, K. A., Aakre, M. E., & Moses, H. L. (2004). Activation of the Erk pathway is required for TGF-β1-induced EMT in vitro. Neoplasia, 6(5), 603–610.PubMed Xie, L., Law, B. K., Chytil, A. M., Brown, K. A., Aakre, M. E., & Moses, H. L. (2004). Activation of the Erk pathway is required for TGF-β1-induced EMT in vitro. Neoplasia, 6(5), 603–610.PubMed
108.
go back to reference Bhowmick, N. A., Zent, R., Ghiassi, M., McDonnell, M., & Moses, H. L. (2001). Integrin β 1 signaling is necessary for transforming growth factor-β activation of p38MAPK and epithelial plasticity. The Journal of Biological Chemistry, 276(50), 46707–46713.PubMed Bhowmick, N. A., Zent, R., Ghiassi, M., McDonnell, M., & Moses, H. L. (2001). Integrin β 1 signaling is necessary for transforming growth factor-β activation of p38MAPK and epithelial plasticity. The Journal of Biological Chemistry, 276(50), 46707–46713.PubMed
109.
go back to reference Galliher, A. J., & Schiemann, W. P. (2006). β3 integrin and Src facilitate transforming growth factor-β mediated induction of epithelial–mesenchymal transition in mammary epithelial cells. Breast Cancer Research, 8(4), R42.PubMed Galliher, A. J., & Schiemann, W. P. (2006). β3 integrin and Src facilitate transforming growth factor-β mediated induction of epithelial–mesenchymal transition in mammary epithelial cells. Breast Cancer Research, 8(4), R42.PubMed
110.
go back to reference Galliher, A. J., & Schiemann, W. P. (2007). Src phosphorylates Tyr284 in TGF-β type II receptor and regulates TGF-β stimulation of p38 MAPK during breast cancer cell proliferation and invasion. Cancer Research, 67(8), 3752–3758.PubMed Galliher, A. J., & Schiemann, W. P. (2007). Src phosphorylates Tyr284 in TGF-β type II receptor and regulates TGF-β stimulation of p38 MAPK during breast cancer cell proliferation and invasion. Cancer Research, 67(8), 3752–3758.PubMed
111.
go back to reference Wendt, M. K., & Schiemann, W. P. (2009). Therapeutic targeting of the focal adhesion complex prevents oncogenic TGF-β signaling and metastasis. Breast Cancer Research, 11(5), R68.PubMed Wendt, M. K., & Schiemann, W. P. (2009). Therapeutic targeting of the focal adhesion complex prevents oncogenic TGF-β signaling and metastasis. Breast Cancer Research, 11(5), R68.PubMed
112.
go back to reference Wendt, M. K., Smith, J. A., & Schiemann, W. P. (2009). P130cas is required for mammary tumor growth and transforming growth factor-β-mediated metastasis through regulation of SMAD2/3 activity. The Journal of Biological Chemistry, 284(49), 34145–34156.PubMed Wendt, M. K., Smith, J. A., & Schiemann, W. P. (2009). P130cas is required for mammary tumor growth and transforming growth factor-β-mediated metastasis through regulation of SMAD2/3 activity. The Journal of Biological Chemistry, 284(49), 34145–34156.PubMed
113.
go back to reference Huber, M. A., Azoitei, N., Baumann, B., Grunert, S., Sommer, A., Pehamberger, H., et al. (2004). NF-κB is essential for epithelial–mesenchymal transition and metastasis in a model of breast cancer progression. The Journal of Clinical Investigation, 114(4), 569–581.PubMed Huber, M. A., Azoitei, N., Baumann, B., Grunert, S., Sommer, A., Pehamberger, H., et al. (2004). NF-κB is essential for epithelial–mesenchymal transition and metastasis in a model of breast cancer progression. The Journal of Clinical Investigation, 114(4), 569–581.PubMed
114.
go back to reference Neil, J. R., Johnson, K. M., Nemenoff, R. A., & Schiemann, W. P. (2008). Cox-2 inactivates SMAD signaling and enhances EMT stimulated by TGF-β through a Pge2-dependent mechanisms. Carcinogenesis, 29(11), 2227–2235.PubMed Neil, J. R., Johnson, K. M., Nemenoff, R. A., & Schiemann, W. P. (2008). Cox-2 inactivates SMAD signaling and enhances EMT stimulated by TGF-β through a Pge2-dependent mechanisms. Carcinogenesis, 29(11), 2227–2235.PubMed
115.
go back to reference Tian, M., & Schiemann, W. P. (2010). PGE2 receptor EP2 mediates the antagonistic effect of COX-2 on TGF-β signaling during mammary tumorigenesis. The FASEB Journal, 24(4), 1105–1116. Tian, M., & Schiemann, W. P. (2010). PGE2 receptor EP2 mediates the antagonistic effect of COX-2 on TGF-β signaling during mammary tumorigenesis. The FASEB Journal, 24(4), 1105–1116.
116.
go back to reference Bakin, A. V., Tomlinson, A. K., Bhowmick, N. A., Moses, H. L., & Arteaga, C. L. (2000). Phosphatidylinositol 3-kinase function is required for transforming growth factor β-mediated epithelial to mesenchymal transition and cell migration. The Journal of Biological Chemistry, 275(47), 36803–36810.PubMed Bakin, A. V., Tomlinson, A. K., Bhowmick, N. A., Moses, H. L., & Arteaga, C. L. (2000). Phosphatidylinositol 3-kinase function is required for transforming growth factor β-mediated epithelial to mesenchymal transition and cell migration. The Journal of Biological Chemistry, 275(47), 36803–36810.PubMed
117.
go back to reference Lamouille, S., & Derynck, R. (2007). Cell size and invasion in TGF-β-induced epithelial to mesenchymal transition is regulated by activation of the mTOR pathway. The Journal of Cell Biology, 178(3), 437–451.PubMed Lamouille, S., & Derynck, R. (2007). Cell size and invasion in TGF-β-induced epithelial to mesenchymal transition is regulated by activation of the mTOR pathway. The Journal of Cell Biology, 178(3), 437–451.PubMed
118.
go back to reference Lamouille, S., & Derynck, R. (2011). Emergence of the phosphoinositide 3-kinase-Akt-mammalian target of rapamycin axis in transforming growth factor-β-induced epithelial–mesenchymal transition. Cells, Tissues, Organs, 193(1–2), 8–22.PubMed Lamouille, S., & Derynck, R. (2011). Emergence of the phosphoinositide 3-kinase-Akt-mammalian target of rapamycin axis in transforming growth factor-β-induced epithelial–mesenchymal transition. Cells, Tissues, Organs, 193(1–2), 8–22.PubMed
119.
go back to reference Wendt, M. K., Allington, T. M., & Schiemann, W. P. (2009). Mechanisms of the epithelial–mesenchymal transition by TGF-β. Future Oncology, 5(8), 1145–1168.PubMed Wendt, M. K., Allington, T. M., & Schiemann, W. P. (2009). Mechanisms of the epithelial–mesenchymal transition by TGF-β. Future Oncology, 5(8), 1145–1168.PubMed
120.
go back to reference Hurd, T. W., Gao, L., Roh, M. H., Macara, I. G., & Margolis, B. (2003). Direct interaction of two polarity complexes implicated in epithelial tight junction assembly. Nature Cell Biology, 5(2), 137–142.PubMed Hurd, T. W., Gao, L., Roh, M. H., Macara, I. G., & Margolis, B. (2003). Direct interaction of two polarity complexes implicated in epithelial tight junction assembly. Nature Cell Biology, 5(2), 137–142.PubMed
121.
go back to reference Ozdamar, B., Bose, R., Barrios-Rodiles, M., Wang, H. R., Zhang, Y., & Wrana, J. L. (2005). Regulation of the polarity protein Par6 by TGF-β receptors controls epithelial cell plasticity. Science, 307(5715), 1603–1609.PubMed Ozdamar, B., Bose, R., Barrios-Rodiles, M., Wang, H. R., Zhang, Y., & Wrana, J. L. (2005). Regulation of the polarity protein Par6 by TGF-β receptors controls epithelial cell plasticity. Science, 307(5715), 1603–1609.PubMed
122.
go back to reference Viloria-Petit, A. M., David, L., Jia, J. Y., Erdemir, T., Bane, A. L., Pinnaduwage, D., et al. (2009). A role for the TGF-β–Par6 polarity pathway in breast cancer progression. Proceedings of the National Academy of Sciences of the United States of America, 106(33), 14028–14033.PubMed Viloria-Petit, A. M., David, L., Jia, J. Y., Erdemir, T., Bane, A. L., Pinnaduwage, D., et al. (2009). A role for the TGF-β–Par6 polarity pathway in breast cancer progression. Proceedings of the National Academy of Sciences of the United States of America, 106(33), 14028–14033.PubMed
123.
go back to reference Araki, S., Eitel, J. A., Batuello, C. N., Bijangi-Vishehsaraei, K., Xie, X. J., Danielpour, D., et al. (2010). TGF-β1-induced expression of human Mdm2 correlates with late-stage metastatic breast cancer. The Journal of Clinical Investigation, 120(1), 290–302.PubMed Araki, S., Eitel, J. A., Batuello, C. N., Bijangi-Vishehsaraei, K., Xie, X. J., Danielpour, D., et al. (2010). TGF-β1-induced expression of human Mdm2 correlates with late-stage metastatic breast cancer. The Journal of Clinical Investigation, 120(1), 290–302.PubMed
124.
go back to reference Pandey, J., Umphress, S. M., Kang, Y., Angdisen, J., Naumova, A., Mercer, K. L., et al. (2007). Modulation of tumor induction and progression of oncogenic K-Ras-positive tumors in the presence of TGF-β 1 haploinsufficiency. Carcinogenesis, 28(12), 2589–2596.PubMed Pandey, J., Umphress, S. M., Kang, Y., Angdisen, J., Naumova, A., Mercer, K. L., et al. (2007). Modulation of tumor induction and progression of oncogenic K-Ras-positive tumors in the presence of TGF-β 1 haploinsufficiency. Carcinogenesis, 28(12), 2589–2596.PubMed
125.
go back to reference Padua, D., Zhang, X. H., Wang, Q., Nadal, C., Gerald, W. L., Gomis, R. R., et al. (2008). TGF-β primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell, 133(1), 66–77.PubMed Padua, D., Zhang, X. H., Wang, Q., Nadal, C., Gerald, W. L., Gomis, R. R., et al. (2008). TGF-β primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell, 133(1), 66–77.PubMed
126.
go back to reference Greco, C., Forte, L., Erba, P., & Mariani, G. (2011). Bone metastases, general and clinical issues. The Quarterly Journal of Nuclear Medicine and Molecular Imaging, 55(4), 337–352.PubMed Greco, C., Forte, L., Erba, P., & Mariani, G. (2011). Bone metastases, general and clinical issues. The Quarterly Journal of Nuclear Medicine and Molecular Imaging, 55(4), 337–352.PubMed
127.
go back to reference Yin, J. J., Pollock, C. B., & Kelly, K. (2005). Mechanisms of cancer metastasis to the bone. Cell Research, 15(1), 57–62.PubMed Yin, J. J., Pollock, C. B., & Kelly, K. (2005). Mechanisms of cancer metastasis to the bone. Cell Research, 15(1), 57–62.PubMed
128.
go back to reference Yin, J. J., Selander, K., Chirgwin, J. M., Dallas, M., Grubbs, B. G., Wieser, R., et al. (1999). TGF-β signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. The Journal of Clinical Investigation, 103(2), 197–206.PubMed Yin, J. J., Selander, K., Chirgwin, J. M., Dallas, M., Grubbs, B. G., Wieser, R., et al. (1999). TGF-β signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. The Journal of Clinical Investigation, 103(2), 197–206.PubMed
129.
go back to reference Guise, T. A., Yin, J. J., Taylor, S. D., Kumagai, Y., Dallas, M., Boyce, B. F., et al. (1996). Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis. The Journal of Clinical Investigation, 98(7), 1544–1549.PubMed Guise, T. A., Yin, J. J., Taylor, S. D., Kumagai, Y., Dallas, M., Boyce, B. F., et al. (1996). Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis. The Journal of Clinical Investigation, 98(7), 1544–1549.PubMed
130.
go back to reference Kingsley, L. A., Fournier, P. G., Chirgwin, J. M., & Guise, T. A. (2007). Molecular biology of bone metastasis. Molecular Cancer Therapeutics, 6(10), 2609–2617.PubMed Kingsley, L. A., Fournier, P. G., Chirgwin, J. M., & Guise, T. A. (2007). Molecular biology of bone metastasis. Molecular Cancer Therapeutics, 6(10), 2609–2617.PubMed
131.
go back to reference Muller, A., Homey, B., Soto, H., Ge, N., Catron, D., Buchanan, M. E., et al. (2001). Involvement of chemokine receptors in breast cancer metastasis. Nature, 410(6824), 50–56.PubMed Muller, A., Homey, B., Soto, H., Ge, N., Catron, D., Buchanan, M. E., et al. (2001). Involvement of chemokine receptors in breast cancer metastasis. Nature, 410(6824), 50–56.PubMed
132.
go back to reference Kang, Y., Siegel, P. M., Shu, W., Drobnjak, M., Kakonen, S. M., Cordon-Cardo, C., et al. (2003). A multigenic program mediating breast cancer metastasis to bone. Cancer Cell, 3(6), 537–549.PubMed Kang, Y., Siegel, P. M., Shu, W., Drobnjak, M., Kakonen, S. M., Cordon-Cardo, C., et al. (2003). A multigenic program mediating breast cancer metastasis to bone. Cancer Cell, 3(6), 537–549.PubMed
133.
go back to reference Thiery, J. P., Acloque, H., Huang, R. Y., & Nieto, M. A. (2009). Epithelial–mesenchymal transitions in development and disease. Cell, 139(5), 871–890.PubMed Thiery, J. P., Acloque, H., Huang, R. Y., & Nieto, M. A. (2009). Epithelial–mesenchymal transitions in development and disease. Cell, 139(5), 871–890.PubMed
134.
go back to reference Soto, A. M., & Sonnenschein, C. (2011). The tissue organization field theory of cancer: a testable replacement for the somatic mutation theory. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology, 33(5), 332–340. Soto, A. M., & Sonnenschein, C. (2011). The tissue organization field theory of cancer: a testable replacement for the somatic mutation theory. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology, 33(5), 332–340.
135.
go back to reference Leight, J. L., Wozniak, M. A., Chen, S., Lynch, M. L., & Chen, C. S. (2012). Matrix rigidity regulates a switch between TGF-β 1-induced apoptosis and epithelial–mesenchymal transition. Molecular Biology of the Cell, 23, 781–791.PubMed Leight, J. L., Wozniak, M. A., Chen, S., Lynch, M. L., & Chen, C. S. (2012). Matrix rigidity regulates a switch between TGF-β 1-induced apoptosis and epithelial–mesenchymal transition. Molecular Biology of the Cell, 23, 781–791.PubMed
136.
go back to reference Copple, B. L. (2010). Hypoxia stimulates hepatocyte epithelial to mesenchymal transition by hypoxia-inducible factor and transforming growth factor-β-dependent mechanisms. Liver International, 30(5), 669–682.PubMed Copple, B. L. (2010). Hypoxia stimulates hepatocyte epithelial to mesenchymal transition by hypoxia-inducible factor and transforming growth factor-β-dependent mechanisms. Liver International, 30(5), 669–682.PubMed
137.
go back to reference Guan, F., Schaffer, L., Handa, K., & Hakomori, S. I. (2010). Functional role of gangliotetraosylceramide in epithelial-to-mesenchymal transition process induced by hypoxia and by TGF-β. The FASEB Journal, 24(12), 4889–4903. Guan, F., Schaffer, L., Handa, K., & Hakomori, S. I. (2010). Functional role of gangliotetraosylceramide in epithelial-to-mesenchymal transition process induced by hypoxia and by TGF-β. The FASEB Journal, 24(12), 4889–4903.
138.
go back to reference Mak, P., Leav, I., Pursell, B., Bae, D., Yang, X., Taglienti, C. A., et al. (2010). ERbβ impedes prostate cancer EMT by destabilizing HIF-1α and inhibiting VEGF-mediated snail nuclear localization: implications for Gleason grading. Cancer Cell, 17(4), 319–332.PubMed Mak, P., Leav, I., Pursell, B., Bae, D., Yang, X., Taglienti, C. A., et al. (2010). ERbβ impedes prostate cancer EMT by destabilizing HIF-1α and inhibiting VEGF-mediated snail nuclear localization: implications for Gleason grading. Cancer Cell, 17(4), 319–332.PubMed
139.
go back to reference Kuperwasser, C., Chavarria, T., Wu, M., Magrane, G., Gray, J. W., Carey, L., et al. (2004). Reconstruction of functionally normal and malignant human breast tissues in mice. Proceedings of the National Academy of Sciences of the United States of America, 101(14), 4966–4971.PubMed Kuperwasser, C., Chavarria, T., Wu, M., Magrane, G., Gray, J. W., Carey, L., et al. (2004). Reconstruction of functionally normal and malignant human breast tissues in mice. Proceedings of the National Academy of Sciences of the United States of America, 101(14), 4966–4971.PubMed
140.
go back to reference Bhowmick, N. A., Chytil, A., Plieth, D., Gorska, A. E., Dumont, N., Shappell, S., et al. (2004). TGF-β signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science, 303(5659), 848–851.PubMed Bhowmick, N. A., Chytil, A., Plieth, D., Gorska, A. E., Dumont, N., Shappell, S., et al. (2004). TGF-β signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science, 303(5659), 848–851.PubMed
141.
go back to reference Maffini, M. V., Soto, A. M., Calabro, J. M., Ucci, A. A., & Sonnenschein, C. (2004). The stroma as a crucial target in rat mammary gland carcinogenesis. Journal of Cell Science, 117(Pt 8), 1495–1502.PubMed Maffini, M. V., Soto, A. M., Calabro, J. M., Ucci, A. A., & Sonnenschein, C. (2004). The stroma as a crucial target in rat mammary gland carcinogenesis. Journal of Cell Science, 117(Pt 8), 1495–1502.PubMed
142.
go back to reference de Visser, K. E., Eichten, A., & Coussens, L. M. (2006). Paradoxical roles of the immune system during cancer development. Nature Reviews. Cancer, 6(1), 24–37.PubMed de Visser, K. E., Eichten, A., & Coussens, L. M. (2006). Paradoxical roles of the immune system during cancer development. Nature Reviews. Cancer, 6(1), 24–37.PubMed
143.
go back to reference Shull, M. M., Ormsby, I., Kier, A. B., Pawlowski, S., Diebold, R. J., Yin, M., et al. (1992). Targeted disruption of the mouse transforming growth factor-β 1 gene results in multifocal inflammatory disease. Nature, 359(6397), 693–699.PubMed Shull, M. M., Ormsby, I., Kier, A. B., Pawlowski, S., Diebold, R. J., Yin, M., et al. (1992). Targeted disruption of the mouse transforming growth factor-β 1 gene results in multifocal inflammatory disease. Nature, 359(6397), 693–699.PubMed
144.
go back to reference Engle, S. J., Ormsby, I., Pawlowski, S., Boivin, G. P., Croft, J., Balish, E., et al. (2002). Elimination of colon cancer in germ-free transforming growth factor β 1-deficient mice. Cancer Research, 62(22), 6362–6366.PubMed Engle, S. J., Ormsby, I., Pawlowski, S., Boivin, G. P., Croft, J., Balish, E., et al. (2002). Elimination of colon cancer in germ-free transforming growth factor β 1-deficient mice. Cancer Research, 62(22), 6362–6366.PubMed
145.
go back to reference Ewan, K. B., Oketch-Rabah, H. A., Ravani, S. A., Shyamala, G., Moses, H. L., & Barcellos-Hoff, M. H. (2005). Proliferation of estrogen receptor-α-positive mammary epithelial cells is restrained by transforming growth factor-β1 in adult mice. The American Journal of Pathology, 167(2), 409–417.PubMed Ewan, K. B., Oketch-Rabah, H. A., Ravani, S. A., Shyamala, G., Moses, H. L., & Barcellos-Hoff, M. H. (2005). Proliferation of estrogen receptor-α-positive mammary epithelial cells is restrained by transforming growth factor-β1 in adult mice. The American Journal of Pathology, 167(2), 409–417.PubMed
146.
go back to reference Barcellos-Hoff, M. H., & Akhurst, R. J. (2009). Transforming growth factor-β in breast cancer: too much, too late. Breast Cancer Research, 11(1), 202.PubMed Barcellos-Hoff, M. H., & Akhurst, R. J. (2009). Transforming growth factor-β in breast cancer: too much, too late. Breast Cancer Research, 11(1), 202.PubMed
147.
go back to reference Saunier, E. F., & Akhurst, R. J. (2006). TGF-β inhibition for cancer therapy. Current Cancer Drug Targets, 6(7), 565–578.PubMed Saunier, E. F., & Akhurst, R. J. (2006). TGF-β inhibition for cancer therapy. Current Cancer Drug Targets, 6(7), 565–578.PubMed
148.
go back to reference Yang, L. (2010). TGF-β and cancer metastasis: an inflammation link. Cancer Metastasis Reviews, 29(2), 263–271.PubMed Yang, L. (2010). TGF-β and cancer metastasis: an inflammation link. Cancer Metastasis Reviews, 29(2), 263–271.PubMed
149.
go back to reference Nam, J. S., Terabe, M., Mamura, M., Kang, M. J., Chae, H., Stuelten, C., et al. (2008). An anti-transforming growth factor β antibody suppresses metastasis via cooperative effects on multiple cell compartments. Cancer Research, 68(10), 3835–3843.PubMed Nam, J. S., Terabe, M., Mamura, M., Kang, M. J., Chae, H., Stuelten, C., et al. (2008). An anti-transforming growth factor β antibody suppresses metastasis via cooperative effects on multiple cell compartments. Cancer Research, 68(10), 3835–3843.PubMed
150.
go back to reference Ohmori, T., Yang, J. L., Price, J. O., & Arteaga, C. L. (1998). Blockade of tumor cell transforming growth factor-βs enhances cell cycle progression and sensitizes human breast carcinoma cells to cytotoxic chemotherapy. Experimental Cell Research, 245(2), 350–359.PubMed Ohmori, T., Yang, J. L., Price, J. O., & Arteaga, C. L. (1998). Blockade of tumor cell transforming growth factor-βs enhances cell cycle progression and sensitizes human breast carcinoma cells to cytotoxic chemotherapy. Experimental Cell Research, 245(2), 350–359.PubMed
151.
go back to reference Liu, P., Menon, K., Alvarez, E., Lu, K., & Teicher, B. A. (2000). Transforming growth factor-β and response to anticancer therapies in human liver and gastric tumors in vitro and in vivo. International Journal of Oncology, 16(3), 599–610.PubMed Liu, P., Menon, K., Alvarez, E., Lu, K., & Teicher, B. A. (2000). Transforming growth factor-β and response to anticancer therapies in human liver and gastric tumors in vitro and in vivo. International Journal of Oncology, 16(3), 599–610.PubMed
152.
go back to reference Teicher, B. A. (2001). Malignant cells, directors of the malignant process: role of transforming growth factor-β. Cancer Metastasis Reviews, 20(1–2), 133–143.PubMed Teicher, B. A. (2001). Malignant cells, directors of the malignant process: role of transforming growth factor-β. Cancer Metastasis Reviews, 20(1–2), 133–143.PubMed
153.
go back to reference Teicher, B. A., Ikebe, M., Ara, G., Keyes, S. R., & Herbst, R. S. (1997). Transforming growth factor-β 1 overexpression produces drug resistance in vivo: reversal by decorin. In Vivo, 11(6), 463–472.PubMed Teicher, B. A., Ikebe, M., Ara, G., Keyes, S. R., & Herbst, R. S. (1997). Transforming growth factor-β 1 overexpression produces drug resistance in vivo: reversal by decorin. In Vivo, 11(6), 463–472.PubMed
154.
go back to reference Kirshner, J., Jobling, M. F., Pajares, M. J., Ravani, S. A., Glick, A. B., Lavin, M. J., et al. (2006). Inhibition of transforming growth factor-β1 signaling attenuates ataxia telangiectasia mutated activity in response to genotoxic stress. Cancer Research, 66(22), 10861–10869.PubMed Kirshner, J., Jobling, M. F., Pajares, M. J., Ravani, S. A., Glick, A. B., Lavin, M. J., et al. (2006). Inhibition of transforming growth factor-β1 signaling attenuates ataxia telangiectasia mutated activity in response to genotoxic stress. Cancer Research, 66(22), 10861–10869.PubMed
155.
go back to reference Ewan, K. B., Henshall-Powell, R. L., Ravani, S. A., Pajares, M. J., Arteaga, C., Warters, R., et al. (2002). Transforming growth factor-β1 mediates cellular response to DNA damage in situ. Cancer Research, 62(20), 5627–5631.PubMed Ewan, K. B., Henshall-Powell, R. L., Ravani, S. A., Pajares, M. J., Arteaga, C., Warters, R., et al. (2002). Transforming growth factor-β1 mediates cellular response to DNA damage in situ. Cancer Research, 62(20), 5627–5631.PubMed
156.
go back to reference Zhang, M., Kleber, S., Rohrich, M., Timke, C., Han, N., Tuettenberg, J., et al. (2011). Blockade of TGF-β signaling by the TGF-β R-I kinase inhibitor Ly2109761 enhances radiation response and prolongs survival in glioblastoma. Cancer Research, 71(23), 7155–7167.PubMed Zhang, M., Kleber, S., Rohrich, M., Timke, C., Han, N., Tuettenberg, J., et al. (2011). Blockade of TGF-β signaling by the TGF-β R-I kinase inhibitor Ly2109761 enhances radiation response and prolongs survival in glioblastoma. Cancer Research, 71(23), 7155–7167.PubMed
157.
go back to reference Liu, Y., Kudo, K., Abe, Y., Hu, D. L., Kijima, H., Nakane, A., et al. (2009). Inhibition of transforming growth factor-β, hypoxia-inducible factor-α and vascular endothelial growth factor reduced late rectal injury induced by irradiation. Journal of Radiation Research, 50(3), 233–239.PubMed Liu, Y., Kudo, K., Abe, Y., Hu, D. L., Kijima, H., Nakane, A., et al. (2009). Inhibition of transforming growth factor-β, hypoxia-inducible factor-α and vascular endothelial growth factor reduced late rectal injury induced by irradiation. Journal of Radiation Research, 50(3), 233–239.PubMed
158.
go back to reference Kakeji, Y., Maehara, Y., Ikebe, M., & Teicher, B. A. (1997). Dynamics of tumor oxygenation, CD31 staining and transforming growth factor-β levels after treatment with radiation or cyclophosphamide in the rat 13762 mammary carcinoma. International Journal of Radiation Oncology, Biology, Physics, 37(5), 1115–1123.PubMed Kakeji, Y., Maehara, Y., Ikebe, M., & Teicher, B. A. (1997). Dynamics of tumor oxygenation, CD31 staining and transforming growth factor-β levels after treatment with radiation or cyclophosphamide in the rat 13762 mammary carcinoma. International Journal of Radiation Oncology, Biology, Physics, 37(5), 1115–1123.PubMed
159.
go back to reference Vujaskovic, Z., Marks, L. B., & Anscher, M. S. (2000). The physical parameters and molecular events associated with radiation-induced lung toxicity. Seminars in Radiation Oncology, 10(4), 296–307.PubMed Vujaskovic, Z., Marks, L. B., & Anscher, M. S. (2000). The physical parameters and molecular events associated with radiation-induced lung toxicity. Seminars in Radiation Oncology, 10(4), 296–307.PubMed
160.
go back to reference Hofer, S. O., Molema, G., Hermens, R. A., Wanebo, H. J., Reichner, J. S., & Hoekstra, H. J. (1999). The effect of surgical wounding on tumour development. European Journal of Surgical Oncology, 25(3), 231–243.PubMed Hofer, S. O., Molema, G., Hermens, R. A., Wanebo, H. J., Reichner, J. S., & Hoekstra, H. J. (1999). The effect of surgical wounding on tumour development. European Journal of Surgical Oncology, 25(3), 231–243.PubMed
161.
go back to reference Teicher, B. A., Maehara, Y., Kakeji, Y., Ara, G., Keyes, S. R., Wong, J., et al. (1997). Reversal of in vivo drug resistance by the transforming growth factor-β inhibitor decorin. International Journal of Cancer, 71(1), 49–58. Teicher, B. A., Maehara, Y., Kakeji, Y., Ara, G., Keyes, S. R., Wong, J., et al. (1997). Reversal of in vivo drug resistance by the transforming growth factor-β inhibitor decorin. International Journal of Cancer, 71(1), 49–58.
162.
go back to reference Yamaguchi, K., Takagi, Y., Aoki, S., Futamura, M., & Saji, S. (2000). Significant detection of circulating cancer cells in the blood by reverse transcriptase-polymerase chain reaction during colorectal cancer resection. Annals of Surgery, 232(1), 58–65.PubMed Yamaguchi, K., Takagi, Y., Aoki, S., Futamura, M., & Saji, S. (2000). Significant detection of circulating cancer cells in the blood by reverse transcriptase-polymerase chain reaction during colorectal cancer resection. Annals of Surgery, 232(1), 58–65.PubMed
163.
go back to reference Tsushima, H., Ito, N., Tamura, S., Matsuda, Y., Inada, M., Yabuuchi, I., et al. (2001). Circulating transforming growth factor β 1 as a predictor of liver metastasis after resection in colorectal cancer. Clinical Cancer Research, 7(5), 1258–1262.PubMed Tsushima, H., Ito, N., Tamura, S., Matsuda, Y., Inada, M., Yabuuchi, I., et al. (2001). Circulating transforming growth factor β 1 as a predictor of liver metastasis after resection in colorectal cancer. Clinical Cancer Research, 7(5), 1258–1262.PubMed
164.
go back to reference Shim, K. S., Kim, K. H., Han, W. S., & Park, E. B. (1999). Elevated serum levels of transforming growth factor-β1 in patients with colorectal carcinoma: its association with tumor progression and its significant decrease after curative surgical resection. Cancer, 85(3), 554–561.PubMed Shim, K. S., Kim, K. H., Han, W. S., & Park, E. B. (1999). Elevated serum levels of transforming growth factor-β1 in patients with colorectal carcinoma: its association with tumor progression and its significant decrease after curative surgical resection. Cancer, 85(3), 554–561.PubMed
165.
go back to reference Feltl, D., Zavadova, E., Pala, M., & Hozak, P. (2005). The dynamics of plasma transforming growth factor β 1 (TGF-β1) level during radiotherapy with or without simultaneous chemotherapy in advanced head and neck cancer. Oral Oncology, 41(2), 208–213.PubMed Feltl, D., Zavadova, E., Pala, M., & Hozak, P. (2005). The dynamics of plasma transforming growth factor β 1 (TGF-β1) level during radiotherapy with or without simultaneous chemotherapy in advanced head and neck cancer. Oral Oncology, 41(2), 208–213.PubMed
166.
go back to reference Robert, F., Busby, E., Marques, M. B., Reynolds, R. E., & Carey, D. E. (2003). Phase II study of docetaxel plus enoxaparin in chemotherapy-naive patients with metastatic non-small cell lung cancer: preliminary results. Lung Cancer, 42(2), 237–245.PubMed Robert, F., Busby, E., Marques, M. B., Reynolds, R. E., & Carey, D. E. (2003). Phase II study of docetaxel plus enoxaparin in chemotherapy-naive patients with metastatic non-small cell lung cancer: preliminary results. Lung Cancer, 42(2), 237–245.PubMed
167.
go back to reference Dave, H., Shah, M., Trivedi, S., & Shukla, S. (2011). Prognostic utility of circulating transforming growth factor β 1 in breast cancer patients. The International Journal of Biological Markers, 27, 53–59. Dave, H., Shah, M., Trivedi, S., & Shukla, S. (2011). Prognostic utility of circulating transforming growth factor β 1 in breast cancer patients. The International Journal of Biological Markers, 27, 53–59.
168.
go back to reference Hirohashi, S., & Kanai, Y. (2003). Cell adhesion system and human cancer morphogenesis. Cancer Science, 94(7), 575–581.PubMed Hirohashi, S., & Kanai, Y. (2003). Cell adhesion system and human cancer morphogenesis. Cancer Science, 94(7), 575–581.PubMed
169.
go back to reference Teicher, B. A., Holden, S. A., Ara, G., & Chen, G. (1996). Transforming growth factor-β in in vivo resistance. Cancer Chemotherapy and Pharmacology, 37(6), 601–609.PubMed Teicher, B. A., Holden, S. A., Ara, G., & Chen, G. (1996). Transforming growth factor-β in in vivo resistance. Cancer Chemotherapy and Pharmacology, 37(6), 601–609.PubMed
170.
go back to reference Andarawewa, K. L., Erickson, A. C., Chou, W. S., Costes, S. V., Gascard, P., Mott, J. D., et al. (2007). Ionizing radiation predisposes nonmalignant human mammary epithelial cells to undergo transforming growth factor β induced epithelial to mesenchymal transition. Cancer Research, 67(18), 8662–8670.PubMed Andarawewa, K. L., Erickson, A. C., Chou, W. S., Costes, S. V., Gascard, P., Mott, J. D., et al. (2007). Ionizing radiation predisposes nonmalignant human mammary epithelial cells to undergo transforming growth factor β induced epithelial to mesenchymal transition. Cancer Research, 67(18), 8662–8670.PubMed
171.
go back to reference Begg, A. C., Stewart, F. A., & Vens, C. (2011). Strategies to improve radiotherapy with targeted drugs. Nature Reviews. Cancer, 11(4), 239–253.PubMed Begg, A. C., Stewart, F. A., & Vens, C. (2011). Strategies to improve radiotherapy with targeted drugs. Nature Reviews. Cancer, 11(4), 239–253.PubMed
172.
go back to reference Burdak-Rothkamm, S., & Prise, K. M. (2009). New molecular targets in radiotherapy: DNA damage signalling and repair in targeted and non-targeted cells. European Journal of Pharmacology, 625(1–3), 151–155.PubMed Burdak-Rothkamm, S., & Prise, K. M. (2009). New molecular targets in radiotherapy: DNA damage signalling and repair in targeted and non-targeted cells. European Journal of Pharmacology, 625(1–3), 151–155.PubMed
173.
go back to reference Wiegman, E. M., Blaese, M. A., Loeffler, H., Coppes, R. P., & Rodemann, H. P. (2007). TGF-β-1 dependent fast stimulation of ATM and P53 phosphorylation following exposure to ionizing radiation does not involve TGF-β-receptor I signalling. Radiotherapy and Oncology, 83(3), 289–295.PubMed Wiegman, E. M., Blaese, M. A., Loeffler, H., Coppes, R. P., & Rodemann, H. P. (2007). TGF-β-1 dependent fast stimulation of ATM and P53 phosphorylation following exposure to ionizing radiation does not involve TGF-β-receptor I signalling. Radiotherapy and Oncology, 83(3), 289–295.PubMed
174.
go back to reference Bouquet, F., Pal, A., Pilones, K. A., Demaria, S., Hann, B., Akhurst, R. J., et al. (2011). TGF-β 1 inhibition increases the radiosensitivity of breast cancer cells in vitro and promotes tumor control by radiation in vivo. Clinical Cancer Research, 17(21), 6754–6765.PubMed Bouquet, F., Pal, A., Pilones, K. A., Demaria, S., Hann, B., Akhurst, R. J., et al. (2011). TGF-β 1 inhibition increases the radiosensitivity of breast cancer cells in vitro and promotes tumor control by radiation in vivo. Clinical Cancer Research, 17(21), 6754–6765.PubMed
175.
go back to reference Martin, M., Lefaix, J., & Delanian, S. (2000). TGF-β 1 and radiation fibrosis: a master switch and a specific therapeutic target? International Journal of Radiation Oncology, Biology, Physics, 47(2), 277–290.PubMed Martin, M., Lefaix, J., & Delanian, S. (2000). TGF-β 1 and radiation fibrosis: a master switch and a specific therapeutic target? International Journal of Radiation Oncology, Biology, Physics, 47(2), 277–290.PubMed
176.
go back to reference Anscher, M. S., Thrasher, B., Rabbani, Z., Teicher, B., & Vujaskovic, Z. (2006). Antitransforming growth factor-β antibody 1d11 ameliorates normal tissue damage caused by high-dose radiation. International Journal of Radiation Oncology, Biology, Physics, 65(3), 876–881.PubMed Anscher, M. S., Thrasher, B., Rabbani, Z., Teicher, B., & Vujaskovic, Z. (2006). Antitransforming growth factor-β antibody 1d11 ameliorates normal tissue damage caused by high-dose radiation. International Journal of Radiation Oncology, Biology, Physics, 65(3), 876–881.PubMed
177.
go back to reference Lan, H. Y. (2011). Diverse roles of TGF-β/SMADs in renal fibrosis and inflammation. International Journal of Biological Sciences, 7(7), 1056–1067.PubMed Lan, H. Y. (2011). Diverse roles of TGF-β/SMADs in renal fibrosis and inflammation. International Journal of Biological Sciences, 7(7), 1056–1067.PubMed
178.
go back to reference Kalluri, R., & Neilson, E. G. (2003). Epithelial–mesenchymal transition and its implications for fibrosis. The Journal of Clinical Investigation, 112(12), 1776–1784.PubMed Kalluri, R., & Neilson, E. G. (2003). Epithelial–mesenchymal transition and its implications for fibrosis. The Journal of Clinical Investigation, 112(12), 1776–1784.PubMed
179.
go back to reference Anido, J., Saez-Borderias, A., Gonzalez-Junca, A., Rodon, L., Folch, G., Carmona, M. A., et al. (2010). TGF-β receptor inhibitors target the CD44(High)/Id1(High) glioma-initiating cell population in human glioblastoma. Cancer Cell, 18(6), 655–668.PubMed Anido, J., Saez-Borderias, A., Gonzalez-Junca, A., Rodon, L., Folch, G., Carmona, M. A., et al. (2010). TGF-β receptor inhibitors target the CD44(High)/Id1(High) glioma-initiating cell population in human glioblastoma. Cancer Cell, 18(6), 655–668.PubMed
180.
go back to reference Fransvea, E., Angelotti, U., Antonaci, S., & Giannelli, G. (2008). Blocking transforming growth factor-β up-regulates E-cadherin and reduces migration and invasion of hepatocellular carcinoma cells. Hepatology, 47(5), 1557–1566.PubMed Fransvea, E., Angelotti, U., Antonaci, S., & Giannelli, G. (2008). Blocking transforming growth factor-β up-regulates E-cadherin and reduces migration and invasion of hepatocellular carcinoma cells. Hepatology, 47(5), 1557–1566.PubMed
181.
go back to reference Fu, K., Corbley, M. J., Sun, L., Friedman, J. E., Shan, F., Papadatos, J. L., et al. (2008). Sm16, an orally active TGF-β type I receptor inhibitor prevents myofibroblast induction and vascular fibrosis in the rat carotid injury model. Arteriosclerosis, Thrombosis, and Vascular Biology, 28(4), 665–671.PubMed Fu, K., Corbley, M. J., Sun, L., Friedman, J. E., Shan, F., Papadatos, J. L., et al. (2008). Sm16, an orally active TGF-β type I receptor inhibitor prevents myofibroblast induction and vascular fibrosis in the rat carotid injury model. Arteriosclerosis, Thrombosis, and Vascular Biology, 28(4), 665–671.PubMed
182.
go back to reference Wallace, A., Kapoor, V., Sun, J., Mrass, P., Weninger, W., Heitjan, D. F., et al. (2008). Transforming growth factor-β receptor blockade augments the effectiveness of adoptive T-cell therapy of established solid cancers. Clinical Cancer Research, 14(12), 3966–3974.PubMed Wallace, A., Kapoor, V., Sun, J., Mrass, P., Weninger, W., Heitjan, D. F., et al. (2008). Transforming growth factor-β receptor blockade augments the effectiveness of adoptive T-cell therapy of established solid cancers. Clinical Cancer Research, 14(12), 3966–3974.PubMed
183.
go back to reference Fakhrai, H., Dorigo, O., Shawler, D. L., Lin, H., Mercola, D., Black, K. L., et al. (1996). Eradication of established intracranial rat gliomas by transforming growth factor β antisense gene therapy. Proceedings of the National Academy of Sciences of the United States of America, 93(7), 2909–2914.PubMed Fakhrai, H., Dorigo, O., Shawler, D. L., Lin, H., Mercola, D., Black, K. L., et al. (1996). Eradication of established intracranial rat gliomas by transforming growth factor β antisense gene therapy. Proceedings of the National Academy of Sciences of the United States of America, 93(7), 2909–2914.PubMed
184.
go back to reference Maggard, M., Meng, L., Ke, B., Allen, R., Devgan, L., & Imagawa, D. K. (2001). Antisense TGF-β2 immunotherapy for hepatocellular carcinoma: treatment in a rat tumor model. Annals of Surgical Oncology, 8(1), 32–37.PubMed Maggard, M., Meng, L., Ke, B., Allen, R., Devgan, L., & Imagawa, D. K. (2001). Antisense TGF-β2 immunotherapy for hepatocellular carcinoma: treatment in a rat tumor model. Annals of Surgical Oncology, 8(1), 32–37.PubMed
185.
go back to reference Olivares, J., Kumar, P., Yu, Y., Maples, P. B., Senzer, N., Bedell, C., et al. (2011). Phase I trial of TGF-β 2 antisense GM-SCF gene-modified autologous tumor cell (Tag) vaccine. Clinical Cancer Research, 17(1), 183–192.PubMed Olivares, J., Kumar, P., Yu, Y., Maples, P. B., Senzer, N., Bedell, C., et al. (2011). Phase I trial of TGF-β 2 antisense GM-SCF gene-modified autologous tumor cell (Tag) vaccine. Clinical Cancer Research, 17(1), 183–192.PubMed
186.
go back to reference Lampropoulos, P., Zizi-Sermpetzoglou, A., Rizos, S., Kostakis, A., Nikiteas, N., Papavassiliou, A.G. (2012). Prognostic significance of transforming growth factor β (TGF-β) signaling axis molecules and E-cadherin in colorectal cancer. Tumour Biology. doi:10.1007/s13277-012-0333-3. Lampropoulos, P., Zizi-Sermpetzoglou, A., Rizos, S., Kostakis, A., Nikiteas, N., Papavassiliou, A.G. (2012). Prognostic significance of transforming growth factor β (TGF-β) signaling axis molecules and E-cadherin in colorectal cancer. Tumour Biology. doi:10.​1007/​s13277-012-0333-3.
187.
go back to reference Matsumura, N., Huang, Z., Mori, S., Baba, T., Fujii, S., Konishi, I., et al. (2011). Epigenetic suppression of the TGF-β pathway revealed by transcriptome profiling in ovarian cancer. Genome Research, 21(1), 74–82.PubMed Matsumura, N., Huang, Z., Mori, S., Baba, T., Fujii, S., Konishi, I., et al. (2011). Epigenetic suppression of the TGF-β pathway revealed by transcriptome profiling in ovarian cancer. Genome Research, 21(1), 74–82.PubMed
188.
go back to reference Wang, Z., Chen, C., Finger, S. N., Kwajah, S., Jung, M., Schwarz, H., et al. (2009). Suberoylanilide hydroxamic acid: a potential epigenetic therapeutic agent for lung fibrosis? The European Respiratory Journal, 34(1), 145–155.PubMed Wang, Z., Chen, C., Finger, S. N., Kwajah, S., Jung, M., Schwarz, H., et al. (2009). Suberoylanilide hydroxamic acid: a potential epigenetic therapeutic agent for lung fibrosis? The European Respiratory Journal, 34(1), 145–155.PubMed
189.
go back to reference Duenas-Gonzalez, A., Candelaria, M., Perez-Plascencia, C., Perez-Cardenas, E., de la Cruz-Hernandez, E., & Herrera, L. A. (2008). Valproic acid as epigenetic cancer drug: preclinical, clinical and transcriptional effects on solid tumors. Cancer Treatment Reviews, 34(3), 206–222.PubMed Duenas-Gonzalez, A., Candelaria, M., Perez-Plascencia, C., Perez-Cardenas, E., de la Cruz-Hernandez, E., & Herrera, L. A. (2008). Valproic acid as epigenetic cancer drug: preclinical, clinical and transcriptional effects on solid tumors. Cancer Treatment Reviews, 34(3), 206–222.PubMed
Metadata
Title
TGF-β signalling and its role in cancer progression and metastasis
Authors
Yvette Drabsch
Peter ten Dijke
Publication date
01-12-2012
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 3-4/2012
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-012-9375-7

Other articles of this Issue 3-4/2012

Cancer and Metastasis Reviews 3-4/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine