Skip to main content
Top
Published in: Cancer and Metastasis Reviews 3-4/2012

01-12-2012

Mouse models of breast cancer metastasis to bone

Authors: Kelsi L. Kretschmann, Alana L. Welm

Published in: Cancer and Metastasis Reviews | Issue 3-4/2012

Login to get access

Abstract

Breast cancer frequently metastasizes to bone, where it takes a significant toll on quality of life. Models of bone metastasis are needed in order to better understand the process of bone metastasis and to develop better treatments. Here, we discuss the available mouse models for breast cancer bone metastasis and critical techniques for imaging bone metastasis in these models.
Literature
1.
go back to reference American Cancer Society. (2012). Cancer facts and figures 2012. Atlanta: American Cancer Society. American Cancer Society. (2012). Cancer facts and figures 2012. Atlanta: American Cancer Society.
2.
go back to reference Colman, R. E. (2002). Future directions in the treatment and prevention of bone metastasis. American Journal of Clinical Oncology, 25, S32–S38.CrossRef Colman, R. E. (2002). Future directions in the treatment and prevention of bone metastasis. American Journal of Clinical Oncology, 25, S32–S38.CrossRef
3.
go back to reference Mundy, G. R. (2002). Metastasis to bone: causes, consequences and therapeutic opportunities. Nature Reviews Cancer, 2, 584–593.PubMedCrossRef Mundy, G. R. (2002). Metastasis to bone: causes, consequences and therapeutic opportunities. Nature Reviews Cancer, 2, 584–593.PubMedCrossRef
4.
go back to reference Deil, I. J., Solomayer, E. F., & Bastert, G. (2000). Treatment of metastatic bone disease in breast cancer, bisphophonates. Clinical Breast Cancer, 1, 43–51.CrossRef Deil, I. J., Solomayer, E. F., & Bastert, G. (2000). Treatment of metastatic bone disease in breast cancer, bisphophonates. Clinical Breast Cancer, 1, 43–51.CrossRef
5.
go back to reference Tsukamoto, A. S., Grosschedl, R., Guzman, R. C., et al. (1988). Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. Cell, 55, 619–625.PubMedCrossRef Tsukamoto, A. S., Grosschedl, R., Guzman, R. C., et al. (1988). Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. Cell, 55, 619–625.PubMedCrossRef
6.
go back to reference Guy, C. T., Webster, M. A., Schaller, M., et al. (1992). Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proceedings of the National Academy of Sciences of the United States of America, 89, 10578–10582.PubMedCrossRef Guy, C. T., Webster, M. A., Schaller, M., et al. (1992). Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proceedings of the National Academy of Sciences of the United States of America, 89, 10578–10582.PubMedCrossRef
7.
go back to reference Bouchard, L., Lamarre, L., Tremblay, P. T., et al. (1989). Stochastic appearance of mammary tumors in transgenic mice carrying the MMTV/c-neu oncogene. Cell, 57, 931–936.PubMedCrossRef Bouchard, L., Lamarre, L., Tremblay, P. T., et al. (1989). Stochastic appearance of mammary tumors in transgenic mice carrying the MMTV/c-neu oncogene. Cell, 57, 931–936.PubMedCrossRef
8.
go back to reference Muller, W. J., Sinn, E., Pattengale, P. K., et al. (1988). Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell, 54, 105–115.PubMedCrossRef Muller, W. J., Sinn, E., Pattengale, P. K., et al. (1988). Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell, 54, 105–115.PubMedCrossRef
9.
go back to reference Nielsen, L. L., Discafani, C. M., Gurnan, M., et al. (1991). Histopathology of salivary and mammary gland tumors in transgenic mice expressing a human Ha-ras oncogene. Cancer Research, 51, 3762–3767.PubMed Nielsen, L. L., Discafani, C. M., Gurnan, M., et al. (1991). Histopathology of salivary and mammary gland tumors in transgenic mice expressing a human Ha-ras oncogene. Cancer Research, 51, 3762–3767.PubMed
10.
go back to reference Sinn, E., Muller, W., Pattengale, P., et al. (1987). Coexpression of MMTV/v-Ha-ras and MMTV/c-myc genes in transgenic mice: synergistic action of oncogenes in vivo. Cell, 49, 465–475.PubMedCrossRef Sinn, E., Muller, W., Pattengale, P., et al. (1987). Coexpression of MMTV/v-Ha-ras and MMTV/c-myc genes in transgenic mice: synergistic action of oncogenes in vivo. Cell, 49, 465–475.PubMedCrossRef
11.
go back to reference Goldstein, R. H., Weinberg, R. A., & Rosenblatt, M. (2010). Of mice and (wo)men: mouse models of breast cancer metastasis to bone. Journal of Bone and Mineral Research, 25, 431–436.PubMedCrossRef Goldstein, R. H., Weinberg, R. A., & Rosenblatt, M. (2010). Of mice and (wo)men: mouse models of breast cancer metastasis to bone. Journal of Bone and Mineral Research, 25, 431–436.PubMedCrossRef
12.
go back to reference Guy, C. T., Cardiff, R. D., & Muller, W. J. (1992). Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Molecular and Cellular Biology, 12, 954–961.PubMed Guy, C. T., Cardiff, R. D., & Muller, W. J. (1992). Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Molecular and Cellular Biology, 12, 954–961.PubMed
13.
go back to reference Ichaso, N., & Dilworth, S. M. (2001). Cell transformation by the middle T-antigen of polyoma virus. Oncogene, 20, 7908–7916.PubMedCrossRef Ichaso, N., & Dilworth, S. M. (2001). Cell transformation by the middle T-antigen of polyoma virus. Oncogene, 20, 7908–7916.PubMedCrossRef
14.
go back to reference Lin, E. Y., Jones, J. G., Li, P., et al. (2003). Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. American Journal of Pathology, 163, 2113–2126.PubMedCrossRef Lin, E. Y., Jones, J. G., Li, P., et al. (2003). Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. American Journal of Pathology, 163, 2113–2126.PubMedCrossRef
15.
go back to reference Fluck, M. M., & Haslam, S. Z. (1996). Mammary tumors induced by polyomavirus. Breast Cancer Research and Treatment, 39, 45–56.PubMedCrossRef Fluck, M. M., & Haslam, S. Z. (1996). Mammary tumors induced by polyomavirus. Breast Cancer Research and Treatment, 39, 45–56.PubMedCrossRef
16.
go back to reference Welm, A. L., Sneddon, J. B., Taylor, C., et al. (2007). The macrophage-stimulating protein pathway promotes metastasis in a mouse model for breast cancer and predicts poor prognosis in humans. Proceedings of the National Academy of Sciences of the United States of America, 104, 7570–7575.PubMedCrossRef Welm, A. L., Sneddon, J. B., Taylor, C., et al. (2007). The macrophage-stimulating protein pathway promotes metastasis in a mouse model for breast cancer and predicts poor prognosis in humans. Proceedings of the National Academy of Sciences of the United States of America, 104, 7570–7575.PubMedCrossRef
17.
go back to reference Kang, Y., Siegel, P. M., Shu, W., et al. (2003). A multigenic program mediating breast cancer metastasis to bone. Cancer Cell, 3, 537–549.PubMedCrossRef Kang, Y., Siegel, P. M., Shu, W., et al. (2003). A multigenic program mediating breast cancer metastasis to bone. Cancer Cell, 3, 537–549.PubMedCrossRef
18.
go back to reference Garcia, T., Jackson, A., Bachelier, R., et al. (2008). A convenient clinically relevant model of human breast cancer to bone metastasis. Clinical & Experimental Metastasis, 25, 33–42.CrossRef Garcia, T., Jackson, A., Bachelier, R., et al. (2008). A convenient clinically relevant model of human breast cancer to bone metastasis. Clinical & Experimental Metastasis, 25, 33–42.CrossRef
19.
go back to reference Tavazoie, S. F., Alarcon, C., Oskarsson, T., et al. (2008). Endogenous human microRNAs that suppress breast cancer metastasis. Nature, 451, 147–152.PubMedCrossRef Tavazoie, S. F., Alarcon, C., Oskarsson, T., et al. (2008). Endogenous human microRNAs that suppress breast cancer metastasis. Nature, 451, 147–152.PubMedCrossRef
20.
go back to reference Minn, A. J., Gupta, G. P., Siegel, P. M., et al. (2005). Genes that mediate breast cancer metastasis to lung. Nature, 436, 518–524.PubMedCrossRef Minn, A. J., Gupta, G. P., Siegel, P. M., et al. (2005). Genes that mediate breast cancer metastasis to lung. Nature, 436, 518–524.PubMedCrossRef
21.
go back to reference Bos, P. D., Zhang, X. H., Nadal, C., et al. (2009). Genes that mediate breast cancer metastasis to brain. Nature, 459, 1005–1009.PubMedCrossRef Bos, P. D., Zhang, X. H., Nadal, C., et al. (2009). Genes that mediate breast cancer metastasis to brain. Nature, 459, 1005–1009.PubMedCrossRef
22.
go back to reference Kakiuchi, S., Daigo, Y., Tsunoda, T., et al. (2003). Genome-wide analysis of organ-preferential metastasis of human small cell lung cancer in mice. Molecular Cancer Research, 1, 485–499.PubMed Kakiuchi, S., Daigo, Y., Tsunoda, T., et al. (2003). Genome-wide analysis of organ-preferential metastasis of human small cell lung cancer in mice. Molecular Cancer Research, 1, 485–499.PubMed
23.
go back to reference Juarez, P., & Guise, T. A. (2011). TGF-β in cancer and bone: implications for treatment of bone metastasis. Bone, 48, 23–29.PubMedCrossRef Juarez, P., & Guise, T. A. (2011). TGF-β in cancer and bone: implications for treatment of bone metastasis. Bone, 48, 23–29.PubMedCrossRef
24.
go back to reference Mundy, G. R., Yoneda, T., & Hiraga, T. (2001). Preclinical studies with zoledronic acid and other bisphosphonates: impact on the bone microenvironment. Seminars in Oncology, 28(2 Suppl 6), 35–44.PubMedCrossRef Mundy, G. R., Yoneda, T., & Hiraga, T. (2001). Preclinical studies with zoledronic acid and other bisphosphonates: impact on the bone microenvironment. Seminars in Oncology, 28(2 Suppl 6), 35–44.PubMedCrossRef
25.
go back to reference Canon, J. R., Roudier, M., Bryant, R., et al. (2008). Inhibition of RANKL blocks skeletal tumor progression and improves survival in a mouse model of breast cancer bone metastasis. Clinical & Experimental Metastasis, 25, 119–129.CrossRef Canon, J. R., Roudier, M., Bryant, R., et al. (2008). Inhibition of RANKL blocks skeletal tumor progression and improves survival in a mouse model of breast cancer bone metastasis. Clinical & Experimental Metastasis, 25, 119–129.CrossRef
26.
go back to reference Valastyan, S., & Weinberg, R. A. (2011). Tumor metastasis: molecular insights and evolving paradigms. Cell, 147, 275–292.PubMedCrossRef Valastyan, S., & Weinberg, R. A. (2011). Tumor metastasis: molecular insights and evolving paradigms. Cell, 147, 275–292.PubMedCrossRef
27.
go back to reference Lelekakis, M., Moseley, J. M., Martin, T. J., et al. (1999). A novel orthotopic model of breast cancer metastasis to bone. Clinical & Experimental Metastasis, 17, 163–170.CrossRef Lelekakis, M., Moseley, J. M., Martin, T. J., et al. (1999). A novel orthotopic model of breast cancer metastasis to bone. Clinical & Experimental Metastasis, 17, 163–170.CrossRef
28.
go back to reference Miller, F. R., Miller, B. E., & Heppner, G. H. (1983). Characterization of metastatic heterogeneity among subpopulations of a single mouse mammary tumor:heterogeneity in phenotypic stability. Invasion and Metastasis, 3, 22–31. Miller, F. R., Miller, B. E., & Heppner, G. H. (1983). Characterization of metastatic heterogeneity among subpopulations of a single mouse mammary tumor:heterogeneity in phenotypic stability. Invasion and Metastasis, 3, 22–31.
29.
go back to reference DeNardo, D. G., & Coussens, L. M. (2007). Inflammation and breast cancer-balancing immune response: crosstalk between adaptive and innate immune cells during breast cancer progression. Breast Cancer Research, 9, 212.PubMedCrossRef DeNardo, D. G., & Coussens, L. M. (2007). Inflammation and breast cancer-balancing immune response: crosstalk between adaptive and innate immune cells during breast cancer progression. Breast Cancer Research, 9, 212.PubMedCrossRef
30.
go back to reference Kuperwasser, C., Chavarria, T., Wu, M., et al. (2004). Reconstitution of functionally normal and malignant human breast tissues in mice. Proceedings of the National Academy of Sciences of the United States of America, 101, 4966–4972.PubMedCrossRef Kuperwasser, C., Chavarria, T., Wu, M., et al. (2004). Reconstitution of functionally normal and malignant human breast tissues in mice. Proceedings of the National Academy of Sciences of the United States of America, 101, 4966–4972.PubMedCrossRef
31.
go back to reference Kuperwasser, C., Dessain, S., Bierbaum, B. E., et al. (2005). A mouse model of human breast cancer metastasis to human bone. Cancer Research, 65, 6130–6138.PubMedCrossRef Kuperwasser, C., Dessain, S., Bierbaum, B. E., et al. (2005). A mouse model of human breast cancer metastasis to human bone. Cancer Research, 65, 6130–6138.PubMedCrossRef
32.
go back to reference Moreau, J. E., Anderson, K., Mauney, J. R., et al. (2007). Tissue-engineered bone serves as a target for metastasis of human breast cancer in a mouse model. Cancer Research, 67, 10304–10308.PubMedCrossRef Moreau, J. E., Anderson, K., Mauney, J. R., et al. (2007). Tissue-engineered bone serves as a target for metastasis of human breast cancer in a mouse model. Cancer Research, 67, 10304–10308.PubMedCrossRef
33.
go back to reference DeRose, Y. S., Wang, G., Lin, Y. C., et al. (2011). Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nature Medicine, 17, 1514–1520.PubMedCrossRef DeRose, Y. S., Wang, G., Lin, Y. C., et al. (2011). Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nature Medicine, 17, 1514–1520.PubMedCrossRef
34.
go back to reference Weissleder, R., Tung, C. H., Mahmood, U., et al. (1999). In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nature Biotechnology, 17, 375–378.PubMedCrossRef Weissleder, R., Tung, C. H., Mahmood, U., et al. (1999). In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nature Biotechnology, 17, 375–378.PubMedCrossRef
35.
go back to reference Henriquez, N. V., van Overveld, P. G., Que, I., et al. (2007). Advances in optical imaging and novel systems for cancer metastasis research. Clinical & Experimental Metastasis, 24, 699–705.CrossRef Henriquez, N. V., van Overveld, P. G., Que, I., et al. (2007). Advances in optical imaging and novel systems for cancer metastasis research. Clinical & Experimental Metastasis, 24, 699–705.CrossRef
36.
go back to reference Serganova, I., Moroz, E., Vider, J., et al. (2009). Multimodality imaging of TGFbeta signaling in breast cancer metastases. The FASEB Journal, 23, 2662–2672.CrossRef Serganova, I., Moroz, E., Vider, J., et al. (2009). Multimodality imaging of TGFbeta signaling in breast cancer metastases. The FASEB Journal, 23, 2662–2672.CrossRef
37.
go back to reference Korpal, M., Yan, J., Lu, X., et al. (2009). Imaging transforming growth factor-β signaling dynamics and therapeutic response in breast cancer bone metastasis. Nature Medicine, 15(8), 960–966.PubMedCrossRef Korpal, M., Yan, J., Lu, X., et al. (2009). Imaging transforming growth factor-β signaling dynamics and therapeutic response in breast cancer bone metastasis. Nature Medicine, 15(8), 960–966.PubMedCrossRef
Metadata
Title
Mouse models of breast cancer metastasis to bone
Authors
Kelsi L. Kretschmann
Alana L. Welm
Publication date
01-12-2012
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 3-4/2012
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-012-9378-4

Other articles of this Issue 3-4/2012

Cancer and Metastasis Reviews 3-4/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine