Skip to main content
Top
Published in: Cancer and Metastasis Reviews 3-4/2011

01-12-2011

Prostaglandin E2 EP receptors as therapeutic targets in breast cancer

Authors: Jocelyn Reader, Dawn Holt, Amy Fulton

Published in: Cancer and Metastasis Reviews | Issue 3-4/2011

Login to get access

Abstract

Prostaglandins are lipid compounds that mediate many physiological effects. Prostaglandin E2 (PGE2) is the most abundant prostanoid in the human body, and synthesis of PGE2 is driven by cyclooxygenase enzymes including COX-2. Both elevated expression of COX-2 and increased PGE2 levels have been associated with many cancers including breast cancer. PGE2 exerts its effect by binding to the E series of prostaglandin receptors (EP) which are G protein-coupled receptors. Four EP receptor subtypes exist, EP1–4, and each is coupled to different intracellular signaling pathways. As downstream effectors of the COX-2 pathway, EP receptors have been shown to play a role in breast and other malignancies and in cancer metastasis. The role of each EP receptor in malignant behavior is complex and involves the interplay of EP receptor signaling on the tumor cell, on stromal cells, and on host immune effector cells. While preclinical and epidemiological data support the use of nonsteroidal anti-inflammatory drugs and selective COX-2 inhibitors (COXibs) for the prevention and treatment of malignancy, toxicities due to COXibs as well as less than promising results from clinical trials have laboratories seeking alternative targets. As knowledge concerning the role of EP receptors in cancer grows, so does the potential for exploiting EP receptors as therapeutic targets for the treatment or prevention of cancer and cancer metastasis.
Literature
1.
go back to reference Legler, D. F., Bruckner, M., Uetz-von Allmen, E., & Krause, P. (2010). Prostaglandin E2 at new glance: novel insights in functional diversity offer therapeutic chances. The International Journal of Biochemistry & Cell Biology, 42(2), 198–201. Legler, D. F., Bruckner, M., Uetz-von Allmen, E., & Krause, P. (2010). Prostaglandin E2 at new glance: novel insights in functional diversity offer therapeutic chances. The International Journal of Biochemistry & Cell Biology, 42(2), 198–201.
2.
go back to reference Wang, M.-T., Honn, K. V., & Nie, D. (2007). Cyclooxygenases, prostanoids, and tumor progression. Cancer and Metastasis Reviews, 26(3–4), 525–534.PubMed Wang, M.-T., Honn, K. V., & Nie, D. (2007). Cyclooxygenases, prostanoids, and tumor progression. Cancer and Metastasis Reviews, 26(3–4), 525–534.PubMed
3.
go back to reference Sugimoto, Y., & Narumiya, S. (2007). Prostaglandin E receptors. Journal of Biological Chemistry, 282(16), 11613–11617.PubMed Sugimoto, Y., & Narumiya, S. (2007). Prostaglandin E receptors. Journal of Biological Chemistry, 282(16), 11613–11617.PubMed
4.
go back to reference Dannenberg, A. J., & Subbaramaiah, K. (2003). Targeting cyclooxygenase-2 in human neoplasia: rationale and promise. Cancer Cell, 4(6), 431–436.PubMed Dannenberg, A. J., & Subbaramaiah, K. (2003). Targeting cyclooxygenase-2 in human neoplasia: rationale and promise. Cancer Cell, 4(6), 431–436.PubMed
5.
go back to reference Kundu, N., Yang, Q., Dorsey, R., & Fulton, A. M. (2001). Increased cyclooxygenase-2 (cox-2) expression and activity in a murine model of metastatic breast cancer. International Journal of Cancer, 93(5), 681–686. Kundu, N., Yang, Q., Dorsey, R., & Fulton, A. M. (2001). Increased cyclooxygenase-2 (cox-2) expression and activity in a murine model of metastatic breast cancer. International Journal of Cancer, 93(5), 681–686.
6.
go back to reference Greenhough, A., Smartt, H. J. M., Moore, A. E., Roberts, H. R., Williams, A. C., Paraskeva, C., et al. (2009). The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis, 30(3), 377–386.PubMed Greenhough, A., Smartt, H. J. M., Moore, A. E., Roberts, H. R., Williams, A. C., Paraskeva, C., et al. (2009). The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis, 30(3), 377–386.PubMed
7.
go back to reference Menter, D. G., Schilsky, R. L., & DuBois, R. N. (2010). Cyclooxygenase-2 and cancer treatment: understanding the risk should be worth the reward. Clinical Cancer Research, 16(5), 1384–1390.PubMed Menter, D. G., Schilsky, R. L., & DuBois, R. N. (2010). Cyclooxygenase-2 and cancer treatment: understanding the risk should be worth the reward. Clinical Cancer Research, 16(5), 1384–1390.PubMed
8.
go back to reference Wang, D., & Dubois, R. N. (2010). Eicosanoids and cancer. Nature Reviews. Cancer, 10(3), 181–193.PubMed Wang, D., & Dubois, R. N. (2010). Eicosanoids and cancer. Nature Reviews. Cancer, 10(3), 181–193.PubMed
9.
go back to reference Nakanishi, M., Gokhale, V., Meuillet, E. J., & Rosenberg, D. W. (2010). mPGES-1 as a target for cancer suppression: a comprehensive invited review “Phospholipase A2 and lipid mediators”. Biochimie, 92(6), 660–664.PubMed Nakanishi, M., Gokhale, V., Meuillet, E. J., & Rosenberg, D. W. (2010). mPGES-1 as a target for cancer suppression: a comprehensive invited review “Phospholipase A2 and lipid mediators”. Biochimie, 92(6), 660–664.PubMed
10.
go back to reference Schetter, A. J., Heegaard, N. H. H., & Harris, C. C. (2010). Inflammation and cancer: interweaving microRNA, free radical, cytokine and p53 pathways. Carcinogenesis, 31(1), 37–49.PubMed Schetter, A. J., Heegaard, N. H. H., & Harris, C. C. (2010). Inflammation and cancer: interweaving microRNA, free radical, cytokine and p53 pathways. Carcinogenesis, 31(1), 37–49.PubMed
11.
go back to reference Howe, L. R. (2007). Inflammation and breast cancer. Cyclooxygenase/prostaglandin signaling and breast cancer. Breast Cancer Research, 9(4), 210.PubMed Howe, L. R. (2007). Inflammation and breast cancer. Cyclooxygenase/prostaglandin signaling and breast cancer. Breast Cancer Research, 9(4), 210.PubMed
12.
go back to reference Howe, L. R., & Dannenberg, A. J. (2003). COX-2 inhibitors for the prevention of breast cancer. Journal of Mammary Gland Biology and Neoplasia, 8(1), 31–43.PubMed Howe, L. R., & Dannenberg, A. J. (2003). COX-2 inhibitors for the prevention of breast cancer. Journal of Mammary Gland Biology and Neoplasia, 8(1), 31–43.PubMed
13.
go back to reference Ristimäki, A., Sivula, A., Lundin, J., Lundin, M., Salminen, T., Haglund, C., et al. (2002). Prognostic significance of elevated cyclooxygenase-2 expression in breast cancer. Cancer Research, 62(3), 632–635.PubMed Ristimäki, A., Sivula, A., Lundin, J., Lundin, M., Salminen, T., Haglund, C., et al. (2002). Prognostic significance of elevated cyclooxygenase-2 expression in breast cancer. Cancer Research, 62(3), 632–635.PubMed
14.
go back to reference Singh, B., Berry, J. A., Shoher, A., Ayers, G. D., Wei, C., & Lucci, A. (2007). COX-2 involvement in breast cancer metastasis to bone. Oncogene, 26(26), 3789–3796.PubMed Singh, B., Berry, J. A., Shoher, A., Ayers, G. D., Wei, C., & Lucci, A. (2007). COX-2 involvement in breast cancer metastasis to bone. Oncogene, 26(26), 3789–3796.PubMed
15.
go back to reference Liu, C. H., Chang, S. H., Narko, K., Trifan, O. C., Wu, M. T., Smith, E., et al. (2001). Overexpression of cyclooxygenase-2 is sufficient to induce tumorigenesis in transgenic mice. Journal of Biological Chemistry, 276(21), 18563–18569.PubMed Liu, C. H., Chang, S. H., Narko, K., Trifan, O. C., Wu, M. T., Smith, E., et al. (2001). Overexpression of cyclooxygenase-2 is sufficient to induce tumorigenesis in transgenic mice. Journal of Biological Chemistry, 276(21), 18563–18569.PubMed
16.
go back to reference Zerkowski, M. P., Camp, R. L., Burtness, B. A., Rimm, D. L., & Chung, G. G. (2007). Quantitative analysis of breast cancer tissue microarrays shows high cox-2 expression is associated with poor outcome. Cancer Investigation, 25(1), 19–26.PubMed Zerkowski, M. P., Camp, R. L., Burtness, B. A., Rimm, D. L., & Chung, G. G. (2007). Quantitative analysis of breast cancer tissue microarrays shows high cox-2 expression is associated with poor outcome. Cancer Investigation, 25(1), 19–26.PubMed
17.
go back to reference Chuah, B. Y. S., Putti, T., Salto-Tellez, M., Charlton, A., Iau, P., Buhari, S. A., et al. (2011). Serial changes in the expression of breast cancer-related proteins in response to neoadjuvant chemotherapy. Annals of Oncology, 22(8), 1748–1754.PubMed Chuah, B. Y. S., Putti, T., Salto-Tellez, M., Charlton, A., Iau, P., Buhari, S. A., et al. (2011). Serial changes in the expression of breast cancer-related proteins in response to neoadjuvant chemotherapy. Annals of Oncology, 22(8), 1748–1754.PubMed
18.
go back to reference Ranger, G. S., Thomas, V., Jewell, A., & Mokbel, K. (2004). Elevated cyclooxygenase-2 expression correlates with distant metastases in breast cancer. Anticancer Research, 24(4), 2349–2351.PubMed Ranger, G. S., Thomas, V., Jewell, A., & Mokbel, K. (2004). Elevated cyclooxygenase-2 expression correlates with distant metastases in breast cancer. Anticancer Research, 24(4), 2349–2351.PubMed
19.
go back to reference Ma, X., Yang, Q., Wilson, K. T., Kundu, N., Meltzer, S. J., & Fulton, A. M. (2004). Promoter methylation regulates cyclooxygenase expression in breast cancer. Breast Cancer Research, 6(4), R316–321.PubMed Ma, X., Yang, Q., Wilson, K. T., Kundu, N., Meltzer, S. J., & Fulton, A. M. (2004). Promoter methylation regulates cyclooxygenase expression in breast cancer. Breast Cancer Research, 6(4), R316–321.PubMed
20.
go back to reference Kundu, N., & Fulton, A. M. (2002). Selective cyclooxygenase (COX)-1 or COX-2 inhibitors control metastatic disease in a murine model of breast cancer. Cancer Research, 62(8), 2343–2346.PubMed Kundu, N., & Fulton, A. M. (2002). Selective cyclooxygenase (COX)-1 or COX-2 inhibitors control metastatic disease in a murine model of breast cancer. Cancer Research, 62(8), 2343–2346.PubMed
21.
go back to reference Minn, A. J., Gupta, G. P., Siegel, P. M., Bos, P. D., Shu, W., Giri, D. D., et al. (2005). Genes that mediate breast cancer metastasis to lung. Nature, 436(7050), 518–524.PubMed Minn, A. J., Gupta, G. P., Siegel, P. M., Bos, P. D., Shu, W., Giri, D. D., et al. (2005). Genes that mediate breast cancer metastasis to lung. Nature, 436(7050), 518–524.PubMed
22.
go back to reference Bos, P. D., Zhang, X. H.-F., Nadal, C., Shu, W., Gomis, R. R., Nguyen, D. X., et al. (2009). Genes that mediate breast cancer metastasis to the brain. Nature, 459(7249), 1005–1009.PubMed Bos, P. D., Zhang, X. H.-F., Nadal, C., Shu, W., Gomis, R. R., Nguyen, D. X., et al. (2009). Genes that mediate breast cancer metastasis to the brain. Nature, 459(7249), 1005–1009.PubMed
23.
go back to reference Singh, B., Berry, J. A., Shoher, A., Ramakrishnan, V., & Lucci, A. (2005). COX-2 overexpression increases motility and invasion of breast cancer cells. International Journal of Oncology, 26(5), 1393–1399.PubMed Singh, B., Berry, J. A., Shoher, A., Ramakrishnan, V., & Lucci, A. (2005). COX-2 overexpression increases motility and invasion of breast cancer cells. International Journal of Oncology, 26(5), 1393–1399.PubMed
24.
go back to reference Stasinopoulos, I., O’Brien, D. R., Wildes, F., Glunde, K., & Bhujwalla, Z. M. (2007). Silencing of cyclooxygenase-2 inhibits metastasis and delays tumor onset of poorly differentiated metastatic breast cancer cells. Molecular Cancer Research, 5(5), 435–442.PubMed Stasinopoulos, I., O’Brien, D. R., Wildes, F., Glunde, K., & Bhujwalla, Z. M. (2007). Silencing of cyclooxygenase-2 inhibits metastasis and delays tumor onset of poorly differentiated metastatic breast cancer cells. Molecular Cancer Research, 5(5), 435–442.PubMed
25.
go back to reference Greenberg, E. R., Baron, J. A., Freeman, D. H., Jr., Mandel, J. S., & Haile, R. (1993). Reduced risk of large-bowel adenomas among aspirin users. The Polyp Prevention Study Group. Journal of the National Cancer Institute, 85(11), 912–916.PubMed Greenberg, E. R., Baron, J. A., Freeman, D. H., Jr., Mandel, J. S., & Haile, R. (1993). Reduced risk of large-bowel adenomas among aspirin users. The Polyp Prevention Study Group. Journal of the National Cancer Institute, 85(11), 912–916.PubMed
26.
go back to reference Logan, R. F., Little, J., Hawtin, P. G., & Hardcastle, J. D. (1993). Effect of aspirin and non-steroidal anti-inflammatory drugs on colorectal adenomas: case–control study of subjects participating in the Nottingham faecal occult blood screening programme. BMJ, 307(6899), 285–289.PubMed Logan, R. F., Little, J., Hawtin, P. G., & Hardcastle, J. D. (1993). Effect of aspirin and non-steroidal anti-inflammatory drugs on colorectal adenomas: case–control study of subjects participating in the Nottingham faecal occult blood screening programme. BMJ, 307(6899), 285–289.PubMed
27.
go back to reference Reeves, M. J., Newcomb, P. A., Trentham-Dietz, A., Storer, B. E., & Remington, P. L. (1996). Nonsteroidal anti-inflammatory drug use and protection against colorectal cancer in women. Cancer Epidemiology, Biomarkers & Prevention, 5(12), 955–960. Reeves, M. J., Newcomb, P. A., Trentham-Dietz, A., Storer, B. E., & Remington, P. L. (1996). Nonsteroidal anti-inflammatory drug use and protection against colorectal cancer in women. Cancer Epidemiology, Biomarkers & Prevention, 5(12), 955–960.
28.
go back to reference Thun, M. J., Namboodiri, M. M., & Heath, C. W., Jr. (1991). Aspirin use and reduced risk of fatal colon cancer. The New England Journal of Medicine, 325(23), 1593–1596.PubMed Thun, M. J., Namboodiri, M. M., & Heath, C. W., Jr. (1991). Aspirin use and reduced risk of fatal colon cancer. The New England Journal of Medicine, 325(23), 1593–1596.PubMed
29.
go back to reference Eberhart, C. E., Coffey, R. J., Radhika, A., Giardiello, F. M., Ferrenbach, S., & DuBois, R. N. (1994). Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology, 107(4), 1183–1188.PubMed Eberhart, C. E., Coffey, R. J., Radhika, A., Giardiello, F. M., Ferrenbach, S., & DuBois, R. N. (1994). Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology, 107(4), 1183–1188.PubMed
30.
go back to reference Kargman, S. L., O’Neill, G. P., Vickers, P. J., Evans, J. F., Mancini, J. A., & Jothy, S. (1995). Expression of prostaglandin G/H synthase-1 and -2 protein in human colon cancer. Cancer Research, 55(12), 2556–2559.PubMed Kargman, S. L., O’Neill, G. P., Vickers, P. J., Evans, J. F., Mancini, J. A., & Jothy, S. (1995). Expression of prostaglandin G/H synthase-1 and -2 protein in human colon cancer. Cancer Research, 55(12), 2556–2559.PubMed
31.
go back to reference Sano, H., Kawahito, Y., Wilder, R. L., Hashiramoto, A., Mukai, S., Asai, K., et al. (1995). Expression of cyclooxygenase-1 and -2 in human colorectal cancer. Cancer Research, 55(17), 3785–3789.PubMed Sano, H., Kawahito, Y., Wilder, R. L., Hashiramoto, A., Mukai, S., Asai, K., et al. (1995). Expression of cyclooxygenase-1 and -2 in human colorectal cancer. Cancer Research, 55(17), 3785–3789.PubMed
32.
go back to reference Kutchera, W., Jones, D. A., Matsunami, N., Groden, J., McIntyre, T. M., Zimmerman, G. A., et al. (1996). Prostaglandin H synthase 2 is expressed abnormally in human colon cancer: evidence for a transcriptional effect. Proceedings of the National Academy of Sciences of the United States of America, 93(10), 4816–4820.PubMed Kutchera, W., Jones, D. A., Matsunami, N., Groden, J., McIntyre, T. M., Zimmerman, G. A., et al. (1996). Prostaglandin H synthase 2 is expressed abnormally in human colon cancer: evidence for a transcriptional effect. Proceedings of the National Academy of Sciences of the United States of America, 93(10), 4816–4820.PubMed
33.
go back to reference Howe, L. R., Subbaramaiah, K., Brown, A. M., & Dannenberg, A. J. (2001). Cyclooxygenase-2: a target for the prevention and treatment of breast cancer. Endocrine-Related Cancer, 8(2), 97–114.PubMed Howe, L. R., Subbaramaiah, K., Brown, A. M., & Dannenberg, A. J. (2001). Cyclooxygenase-2: a target for the prevention and treatment of breast cancer. Endocrine-Related Cancer, 8(2), 97–114.PubMed
34.
go back to reference Larkins, T. L., Nowell, M., Singh, S., & Sanford, G. L. (2006). Inhibition of cyclooxygenase-2 decreases breast cancer cell motility, invasion and matrix metalloproteinase expression. BMC Cancer, 6, 181.PubMed Larkins, T. L., Nowell, M., Singh, S., & Sanford, G. L. (2006). Inhibition of cyclooxygenase-2 decreases breast cancer cell motility, invasion and matrix metalloproteinase expression. BMC Cancer, 6, 181.PubMed
35.
go back to reference Connolly, E. M., Harmey, J. H., O’Grady, T., Foley, D., Roche-Nagle, G., Kay, E., et al. (2002). Cyclo-oxygenase inhibition reduces tumour growth and metastasis in an orthotopic model of breast cancer. British Journal of Cancer, 87(2), 231–237.PubMed Connolly, E. M., Harmey, J. H., O’Grady, T., Foley, D., Roche-Nagle, G., Kay, E., et al. (2002). Cyclo-oxygenase inhibition reduces tumour growth and metastasis in an orthotopic model of breast cancer. British Journal of Cancer, 87(2), 231–237.PubMed
36.
go back to reference Friedman, G. D., & Ury, H. K. (1980). Initial screening for carcinogenicity of commonly used drugs. Journal of the National Cancer Institute, 65(4), 723–733.PubMed Friedman, G. D., & Ury, H. K. (1980). Initial screening for carcinogenicity of commonly used drugs. Journal of the National Cancer Institute, 65(4), 723–733.PubMed
37.
go back to reference Harris, R. E., Chlebowski, R. T., Jackson, R. D., Frid, D. J., Ascenseo, J. L., Anderson, G., et al. (2003). Breast cancer and nonsteroidal anti-inflammatory drugs: prospective results from the Women’s Health Initiative. Cancer Research, 63(18), 6096–6101.PubMed Harris, R. E., Chlebowski, R. T., Jackson, R. D., Frid, D. J., Ascenseo, J. L., Anderson, G., et al. (2003). Breast cancer and nonsteroidal anti-inflammatory drugs: prospective results from the Women’s Health Initiative. Cancer Research, 63(18), 6096–6101.PubMed
38.
go back to reference Harris, R. E., Namboodiri, K. K., & Farrar, W. B. (1996). Nonsteroidal antiinflammatory drugs and breast cancer. Epidemiology, 7(2), 203–205.PubMed Harris, R. E., Namboodiri, K. K., & Farrar, W. B. (1996). Nonsteroidal antiinflammatory drugs and breast cancer. Epidemiology, 7(2), 203–205.PubMed
39.
go back to reference Harris, R. E., Beebe-Donk, J., & Alshafie, G. A. (2006). Reduction in the risk of human breast cancer by selective cyclooxygenase-2 (COX-2) inhibitors. BMC Cancer, 6, 27.PubMed Harris, R. E., Beebe-Donk, J., & Alshafie, G. A. (2006). Reduction in the risk of human breast cancer by selective cyclooxygenase-2 (COX-2) inhibitors. BMC Cancer, 6, 27.PubMed
40.
go back to reference Rahme, E., Ghosn, J., Dasgupta, K., Rajan, R., & Hudson, M. (2005). Association between frequent use of nonsteroidal anti-inflammatory drugs and breast cancer. BMC Cancer, 5, 159.PubMed Rahme, E., Ghosn, J., Dasgupta, K., Rajan, R., & Hudson, M. (2005). Association between frequent use of nonsteroidal anti-inflammatory drugs and breast cancer. BMC Cancer, 5, 159.PubMed
41.
go back to reference Holmes, M. D., Chen, W. Y., Li, L., Hertzmark, E., Spiegelman, D., & Hankinson, S. E. (2010). Aspirin intake and survival after breast cancer. Journal of Clinical Oncology, 28(9), 1467–1472.PubMed Holmes, M. D., Chen, W. Y., Li, L., Hertzmark, E., Spiegelman, D., & Hankinson, S. E. (2010). Aspirin intake and survival after breast cancer. Journal of Clinical Oncology, 28(9), 1467–1472.PubMed
42.
go back to reference Ready, A., Velicer, C. M., McTiernan, A., & White, E. (2008). NSAID use and breast cancer risk in the VITAL cohort. Breast Cancer Research and Treatment, 109(3), 533–543.PubMed Ready, A., Velicer, C. M., McTiernan, A., & White, E. (2008). NSAID use and breast cancer risk in the VITAL cohort. Breast Cancer Research and Treatment, 109(3), 533–543.PubMed
43.
go back to reference Khuder, S. A., & Mutgi, A. B. (2001). Breast cancer and NSAID use: a meta-analysis. British Journal of Cancer, 84(9), 1188–1192.PubMed Khuder, S. A., & Mutgi, A. B. (2001). Breast cancer and NSAID use: a meta-analysis. British Journal of Cancer, 84(9), 1188–1192.PubMed
44.
go back to reference Bosetti, C., Gallus, S., & La Vecchia, C. (2006). Aspirin and cancer risk: an updated quantitative review to 2005. Cancer Causes & Control, 17(7), 871–888. Bosetti, C., Gallus, S., & La Vecchia, C. (2006). Aspirin and cancer risk: an updated quantitative review to 2005. Cancer Causes & Control, 17(7), 871–888.
45.
go back to reference Mangiapane, S., Blettner, M., & Schlattmann, P. (2008). Aspirin use and breast cancer risk: a meta-analysis and meta-regression of observational studies from 2001 to 2005. Pharmacoepidemiology and Drug Safety, 17(2), 115–124.PubMed Mangiapane, S., Blettner, M., & Schlattmann, P. (2008). Aspirin use and breast cancer risk: a meta-analysis and meta-regression of observational studies from 2001 to 2005. Pharmacoepidemiology and Drug Safety, 17(2), 115–124.PubMed
46.
go back to reference Takkouche, B., Regueira-Méndez, C., & Etminan, M. (2008). Breast cancer and use of nonsteroidal anti-inflammatory drugs: a meta-analysis. Journal of the National Cancer Institute, 100(20), 1439–1447.PubMed Takkouche, B., Regueira-Méndez, C., & Etminan, M. (2008). Breast cancer and use of nonsteroidal anti-inflammatory drugs: a meta-analysis. Journal of the National Cancer Institute, 100(20), 1439–1447.PubMed
47.
go back to reference Valsecchi, M. E., Pomerantz, S. C., Jaslow, R., & Tester, W. (2009). Reduced risk of bone metastasis for patients with breast cancer who use COX-2 inhibitors. Clinical Breast Cancer, 9(4), 225–230.PubMed Valsecchi, M. E., Pomerantz, S. C., Jaslow, R., & Tester, W. (2009). Reduced risk of bone metastasis for patients with breast cancer who use COX-2 inhibitors. Clinical Breast Cancer, 9(4), 225–230.PubMed
48.
go back to reference Gill, J. K., Maskarinec, G., Wilkens, L. R., Pike, M. C., Henderson, B. E., & Kolonel, L. N. (2007). Nonsteroidal antiinflammatory drugs and breast cancer risk: the multiethnic cohort. American Journal of Epidemiology, 166(10), 1150–1158.PubMed Gill, J. K., Maskarinec, G., Wilkens, L. R., Pike, M. C., Henderson, B. E., & Kolonel, L. N. (2007). Nonsteroidal antiinflammatory drugs and breast cancer risk: the multiethnic cohort. American Journal of Epidemiology, 166(10), 1150–1158.PubMed
49.
go back to reference Gierach, G. L., Lacey, J. V., Jr., Schatzkin, A., Leitzmann, M. F., Richesson, D., Hollenbeck, A. R., et al. (2008). Nonsteroidal anti-inflammatory drugs and breast cancer risk in the National Institutes of Health-AARP Diet and Health Study. Breast Cancer Research, 10(2), R38.PubMed Gierach, G. L., Lacey, J. V., Jr., Schatzkin, A., Leitzmann, M. F., Richesson, D., Hollenbeck, A. R., et al. (2008). Nonsteroidal anti-inflammatory drugs and breast cancer risk in the National Institutes of Health-AARP Diet and Health Study. Breast Cancer Research, 10(2), R38.PubMed
50.
go back to reference Zhang, S. M., Cook, N. R., Manson, J. E., Lee, I.-M., & Buring, J. E. (2008). Low-dose aspirin and breast cancer risk: results by tumour characteristics from a randomised trial. British Journal of Cancer, 98(5), 989–991.PubMed Zhang, S. M., Cook, N. R., Manson, J. E., Lee, I.-M., & Buring, J. E. (2008). Low-dose aspirin and breast cancer risk: results by tumour characteristics from a randomised trial. British Journal of Cancer, 98(5), 989–991.PubMed
51.
go back to reference Jacobs, E. J., Thun, M. J., Bain, E. B., Rodriguez, C., Henley, S. J., & Calle, E. E. (2007). A large cohort study of long-term daily use of adult-strength aspirin and cancer incidence. Journal of the National Cancer Institute, 99(8), 608–615.PubMed Jacobs, E. J., Thun, M. J., Bain, E. B., Rodriguez, C., Henley, S. J., & Calle, E. E. (2007). A large cohort study of long-term daily use of adult-strength aspirin and cancer incidence. Journal of the National Cancer Institute, 99(8), 608–615.PubMed
52.
go back to reference Bresalier, R. S., Sandler, R. S., Quan, H., Bolognese, J. A., Oxenius, B., Horgan, K., et al. (2005). Cardiovascular events associated with rofecoxib in a colorectal adenoma chemoprevention trial. The New England Journal of Medicine, 352(11), 1092–1102.PubMed Bresalier, R. S., Sandler, R. S., Quan, H., Bolognese, J. A., Oxenius, B., Horgan, K., et al. (2005). Cardiovascular events associated with rofecoxib in a colorectal adenoma chemoprevention trial. The New England Journal of Medicine, 352(11), 1092–1102.PubMed
53.
go back to reference Solomon, S. D., McMurray, J. J. V., Pfeffer, M. A., Wittes, J., Fowler, R., Finn, P., et al. (2005). Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention. The New England Journal of Medicine, 352(11), 1071–1080.PubMed Solomon, S. D., McMurray, J. J. V., Pfeffer, M. A., Wittes, J., Fowler, R., Finn, P., et al. (2005). Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention. The New England Journal of Medicine, 352(11), 1071–1080.PubMed
54.
go back to reference Grosser, T., Fries, S., & FitzGerald, G. A. (2006). Biological basis for the cardiovascular consequences of COX-2 inhibition: therapeutic challenges and opportunities. The Journal of Clinical Investigation, 116(1), 4–15.PubMed Grosser, T., Fries, S., & FitzGerald, G. A. (2006). Biological basis for the cardiovascular consequences of COX-2 inhibition: therapeutic challenges and opportunities. The Journal of Clinical Investigation, 116(1), 4–15.PubMed
55.
go back to reference Oldham, W. M., & Hamm, H. E. (2008). Heterotrimeric G protein activation by G-protein-coupled receptors. Nature Reviews Molecular Cell Biology, 9(1), 60–71.PubMed Oldham, W. M., & Hamm, H. E. (2008). Heterotrimeric G protein activation by G-protein-coupled receptors. Nature Reviews Molecular Cell Biology, 9(1), 60–71.PubMed
56.
go back to reference Lappano, R., & Maggiolini, M. (2011). G protein-coupled receptors: novel targets for drug discovery in cancer. Nature Reviews. Drug Discovery, 10(1), 47–60.PubMed Lappano, R., & Maggiolini, M. (2011). G protein-coupled receptors: novel targets for drug discovery in cancer. Nature Reviews. Drug Discovery, 10(1), 47–60.PubMed
57.
go back to reference Fulton, A. M., Ma, X., & Kundu, N. (2006). Targeting prostaglandin E EP receptors to inhibit metastasis. Cancer Research, 66(20), 9794–9797.PubMed Fulton, A. M., Ma, X., & Kundu, N. (2006). Targeting prostaglandin E EP receptors to inhibit metastasis. Cancer Research, 66(20), 9794–9797.PubMed
58.
go back to reference Ichikawa, A., Sugimoto, Y., & Tanaka, S. (2010). Molecular biology of histidine decarboxylase and prostaglandin receptors. Proceedings of the Japan Academy. Series B, Physical and Biological Sciences, 86(8), 848–866.PubMed Ichikawa, A., Sugimoto, Y., & Tanaka, S. (2010). Molecular biology of histidine decarboxylase and prostaglandin receptors. Proceedings of the Japan Academy. Series B, Physical and Biological Sciences, 86(8), 848–866.PubMed
59.
go back to reference Regan, J. W. (2003). EP2 and EP4 prostanoid receptor signaling. Life Sciences, 74(2–3), 143–153.PubMed Regan, J. W. (2003). EP2 and EP4 prostanoid receptor signaling. Life Sciences, 74(2–3), 143–153.PubMed
60.
go back to reference Dey, I., Lejeune, M., & Chadee, K. (2006). Prostaglandin E2 receptor distribution and function in the gastrointestinal tract. British Journal of Pharmacology, 149(6), 611–623.PubMed Dey, I., Lejeune, M., & Chadee, K. (2006). Prostaglandin E2 receptor distribution and function in the gastrointestinal tract. British Journal of Pharmacology, 149(6), 611–623.PubMed
61.
go back to reference Fujino, H., & Regan, J. W. (2006). EP(4) prostanoid receptor coupling to a pertussis toxin-sensitive inhibitory G protein. Molecular Pharmacology, 69(1), 5–10.PubMed Fujino, H., & Regan, J. W. (2006). EP(4) prostanoid receptor coupling to a pertussis toxin-sensitive inhibitory G protein. Molecular Pharmacology, 69(1), 5–10.PubMed
62.
go back to reference Katoh, H., Watabe, A., Sugimoto, Y., Ichikawa, A., & Negishi, M. (1995). Characterization of the signal transduction of prostaglandin E receptor EP1 subtype in cDNA-transfected Chinese hamster ovary cells. Biochimica et Biophysica Acta, 1244(1), 41–48.PubMed Katoh, H., Watabe, A., Sugimoto, Y., Ichikawa, A., & Negishi, M. (1995). Characterization of the signal transduction of prostaglandin E receptor EP1 subtype in cDNA-transfected Chinese hamster ovary cells. Biochimica et Biophysica Acta, 1244(1), 41–48.PubMed
63.
go back to reference Tabata, H., Tanaka, S., Sugimoto, Y., Kanki, H., Kaneko, S., & Ichikawa, A. (2002). Possible coupling of prostaglandin E receptor EP(1) to TRP5 expressed in Xenopus laevis oocytes. Biochemical and Biophysical Research Communications, 298(3), 398–402.PubMed Tabata, H., Tanaka, S., Sugimoto, Y., Kanki, H., Kaneko, S., & Ichikawa, A. (2002). Possible coupling of prostaglandin E receptor EP(1) to TRP5 expressed in Xenopus laevis oocytes. Biochemical and Biophysical Research Communications, 298(3), 398–402.PubMed
64.
go back to reference Ji, R., Chou, C.-L., Xu, W., Chen, X.-B., Woodward, D. F., & Regan, J. W. (2010). EP1 prostanoid receptor coupling to G i/o up-regulates the expression of hypoxia-inducible factor-1 alpha through activation of a phosphoinositide-3 kinase signaling pathway. Molecular Pharmacology, 77(6), 1025–1036.PubMed Ji, R., Chou, C.-L., Xu, W., Chen, X.-B., Woodward, D. F., & Regan, J. W. (2010). EP1 prostanoid receptor coupling to G i/o up-regulates the expression of hypoxia-inducible factor-1 alpha through activation of a phosphoinositide-3 kinase signaling pathway. Molecular Pharmacology, 77(6), 1025–1036.PubMed
65.
go back to reference Voss, B., McLaughlin, J. N., Holinstat, M., Zent, R., & Hamm, H. E. (2007). PAR1, but not PAR4, activates human platelets through a Gi/o/phosphoinositide-3 kinase signaling axis. Molecular Pharmacology, 71(5), 1399–1406.PubMed Voss, B., McLaughlin, J. N., Holinstat, M., Zent, R., & Hamm, H. E. (2007). PAR1, but not PAR4, activates human platelets through a Gi/o/phosphoinositide-3 kinase signaling axis. Molecular Pharmacology, 71(5), 1399–1406.PubMed
66.
go back to reference Okuda-Ashitaka, E., Sakamoto, K., Ezashi, T., Miwa, K., Ito, S., & Hayaishi, O. (1996). Suppression of prostaglandin E receptor signaling by the variant form of EP1 subtype. Journal of Biological Chemistry, 271(49), 31255–31261.PubMed Okuda-Ashitaka, E., Sakamoto, K., Ezashi, T., Miwa, K., Ito, S., & Hayaishi, O. (1996). Suppression of prostaglandin E receptor signaling by the variant form of EP1 subtype. Journal of Biological Chemistry, 271(49), 31255–31261.PubMed
67.
go back to reference Gomi, K., Zhu, F. G., & Marshall, J. S. (2000). Prostaglandin E2 selectively enhances the IgE-mediated production of IL-6 and granulocyte-macrophage colony-stimulating factor by mast cells through an EP1/EP3-dependent mechanism. Journal of Immunology, 165(11), 6545–6552. Gomi, K., Zhu, F. G., & Marshall, J. S. (2000). Prostaglandin E2 selectively enhances the IgE-mediated production of IL-6 and granulocyte-macrophage colony-stimulating factor by mast cells through an EP1/EP3-dependent mechanism. Journal of Immunology, 165(11), 6545–6552.
68.
go back to reference Kotelevets, L., Foudi, N., Louedec, L., Couvelard, A., Chastre, E., & Norel, X. (2007). A new mRNA splice variant coding for the human EP3-I receptor isoform. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 77(3–4), 195–201.PubMed Kotelevets, L., Foudi, N., Louedec, L., Couvelard, A., Chastre, E., & Norel, X. (2007). A new mRNA splice variant coding for the human EP3-I receptor isoform. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 77(3–4), 195–201.PubMed
69.
go back to reference Israel, D. D., & Regan, J. W. (2009). EP(3) prostanoid receptor isoforms utilize distinct mechanisms to regulate ERK 1/2 activation. Biochimica et Biophysica Acta, 1791(4), 238–245.PubMed Israel, D. D., & Regan, J. W. (2009). EP(3) prostanoid receptor isoforms utilize distinct mechanisms to regulate ERK 1/2 activation. Biochimica et Biophysica Acta, 1791(4), 238–245.PubMed
70.
go back to reference Kotani, M., Tanaka, I., Ogawa, Y., Usui, T., Mori, K., Ichikawa, A., et al. (1995). Molecular cloning and expression of multiple isoforms of human prostaglandin E receptor EP3 subtype generated by alternative messenger RNA splicing: multiple second messenger systems and tissue-specific distributions. Molecular Pharmacology, 48(5), 869–879.PubMed Kotani, M., Tanaka, I., Ogawa, Y., Usui, T., Mori, K., Ichikawa, A., et al. (1995). Molecular cloning and expression of multiple isoforms of human prostaglandin E receptor EP3 subtype generated by alternative messenger RNA splicing: multiple second messenger systems and tissue-specific distributions. Molecular Pharmacology, 48(5), 869–879.PubMed
71.
go back to reference Bilson, H. A., Mitchell, D. L., & Ashby, B. (2004). Human prostaglandin EP3 receptor isoforms show different agonist-induced internalization patterns. FEBS Letters, 572(1–3), 271–275.PubMed Bilson, H. A., Mitchell, D. L., & Ashby, B. (2004). Human prostaglandin EP3 receptor isoforms show different agonist-induced internalization patterns. FEBS Letters, 572(1–3), 271–275.PubMed
72.
go back to reference Jin, J., Mao, G. F., & Ashby, B. (1997). Constitutive activity of human prostaglandin E receptor EP3 isoforms. British Journal of Pharmacology, 121(2), 317–323.PubMed Jin, J., Mao, G. F., & Ashby, B. (1997). Constitutive activity of human prostaglandin E receptor EP3 isoforms. British Journal of Pharmacology, 121(2), 317–323.PubMed
73.
go back to reference Breyer, R. M., Bagdassarian, C. K., Myers, S. A., & Breyer, M. D. (2001). Prostanoid receptors: subtypes and signaling. Annual Review of Pharmacology and Toxicology, 41, 661–690.PubMed Breyer, R. M., Bagdassarian, C. K., Myers, S. A., & Breyer, M. D. (2001). Prostanoid receptors: subtypes and signaling. Annual Review of Pharmacology and Toxicology, 41, 661–690.PubMed
74.
go back to reference An, S., Yang, J., So, S. W., Zeng, L., & Goetzl, E. J. (1994). Isoforms of the EP3 subtype of human prostaglandin E2 receptor transduce both intracellular calcium and cAMP signals. Biochemistry, 33(48), 14496–14502.PubMed An, S., Yang, J., So, S. W., Zeng, L., & Goetzl, E. J. (1994). Isoforms of the EP3 subtype of human prostaglandin E2 receptor transduce both intracellular calcium and cAMP signals. Biochemistry, 33(48), 14496–14502.PubMed
75.
go back to reference Schmid, A., Thierauch, K. H., Schleuning, W. D., & Dinter, H. (1995). Splice variants of the human EP3 receptor for prostaglandin E2. European Journal of Biochemistry, 228(1), 23–30.PubMed Schmid, A., Thierauch, K. H., Schleuning, W. D., & Dinter, H. (1995). Splice variants of the human EP3 receptor for prostaglandin E2. European Journal of Biochemistry, 228(1), 23–30.PubMed
76.
go back to reference Hatae, N., Sugimoto, Y., & Ichikawa, A. (2002). Prostaglandin receptors: advances in the study of EP3 receptor signaling. Journal of Biochemistry, 131(6), 781–784.PubMed Hatae, N., Sugimoto, Y., & Ichikawa, A. (2002). Prostaglandin receptors: advances in the study of EP3 receptor signaling. Journal of Biochemistry, 131(6), 781–784.PubMed
77.
go back to reference Sugimoto, Y., Negishi, M., Hayashi, Y., Namba, T., Honda, A., Watabe, A., et al. (1993). Two isoforms of the EP3 receptor with different carboxyl-terminal domains. Identical ligand binding properties and different coupling properties with Gi proteins. Journal of Biological Chemistry, 268(4), 2712–2718.PubMed Sugimoto, Y., Negishi, M., Hayashi, Y., Namba, T., Honda, A., Watabe, A., et al. (1993). Two isoforms of the EP3 receptor with different carboxyl-terminal domains. Identical ligand binding properties and different coupling properties with Gi proteins. Journal of Biological Chemistry, 268(4), 2712–2718.PubMed
78.
go back to reference Irie, A., Sugimoto, Y., Namba, T., Harazono, A., Honda, A., Watabe, A., et al. (1993). Third isoform of the prostaglandin-E-receptor EP3 subtype with different C-terminal tail coupling to both stimulation and inhibition of adenylate cyclase. European Journal of Biochemistry, 217(1), 313–318.PubMed Irie, A., Sugimoto, Y., Namba, T., Harazono, A., Honda, A., Watabe, A., et al. (1993). Third isoform of the prostaglandin-E-receptor EP3 subtype with different C-terminal tail coupling to both stimulation and inhibition of adenylate cyclase. European Journal of Biochemistry, 217(1), 313–318.PubMed
79.
go back to reference Yamaoka, K., Yano, A., Kuroiwa, K., Morimoto, K., Inazumi, T., Hatae, N., et al. (2009). Prostaglandin EP3 receptor superactivates adenylyl cyclase via the Gq/PLC/Ca2+ pathway in a lipid raft-dependent manner. Biochemical and Biophysical Research Communications, 389(4), 678–682.PubMed Yamaoka, K., Yano, A., Kuroiwa, K., Morimoto, K., Inazumi, T., Hatae, N., et al. (2009). Prostaglandin EP3 receptor superactivates adenylyl cyclase via the Gq/PLC/Ca2+ pathway in a lipid raft-dependent manner. Biochemical and Biophysical Research Communications, 389(4), 678–682.PubMed
80.
go back to reference Hatae, N., Yamaoka, K., Sugimoto, Y., Negishi, M., & Ichikawa, A. (2002). Augmentation of receptor-mediated adenylyl cyclase activity by Gi-coupled prostaglandin receptor subtype EP3 in a Gbetagamma subunit-independent manner. Biochemical and Biophysical Research Communications, 290(1), 162–168.PubMed Hatae, N., Yamaoka, K., Sugimoto, Y., Negishi, M., & Ichikawa, A. (2002). Augmentation of receptor-mediated adenylyl cyclase activity by Gi-coupled prostaglandin receptor subtype EP3 in a Gbetagamma subunit-independent manner. Biochemical and Biophysical Research Communications, 290(1), 162–168.PubMed
81.
go back to reference Irie, A., Segi, E., Sugimoto, Y., Ichikawa, A., & Negishi, M. (1994). Mouse prostaglandin E receptor EP3 subtype mediates calcium signals via Gi in cDNA-transfected Chinese hamster ovary cells. Biochemical and Biophysical Research Communications, 204(1), 303–309.PubMed Irie, A., Segi, E., Sugimoto, Y., Ichikawa, A., & Negishi, M. (1994). Mouse prostaglandin E receptor EP3 subtype mediates calcium signals via Gi in cDNA-transfected Chinese hamster ovary cells. Biochemical and Biophysical Research Communications, 204(1), 303–309.PubMed
82.
go back to reference Zhu, T., Gobeil, F., Vazquez-Tello, A., Leduc, M., Rihakova, L., Bossolasco, M., et al. (2006). Intracrine signaling through lipid mediators and their cognate nuclear G-protein-coupled receptors: a paradigm based on PGE2, PAF, and LPA1 receptors. Canadian Journal of Physiology and Pharmacology, 84(3–4), 377–391.PubMed Zhu, T., Gobeil, F., Vazquez-Tello, A., Leduc, M., Rihakova, L., Bossolasco, M., et al. (2006). Intracrine signaling through lipid mediators and their cognate nuclear G-protein-coupled receptors: a paradigm based on PGE2, PAF, and LPA1 receptors. Canadian Journal of Physiology and Pharmacology, 84(3–4), 377–391.PubMed
83.
go back to reference Gobeil, F., Fortier, A., Zhu, T., Bossolasco, M., Leduc, M., Grandbois, M., et al. (2006). G-protein-coupled receptors signalling at the cell nucleus: an emerging paradigm. Canadian Journal of Physiology and Pharmacology, 84(3–4), 287–297.PubMed Gobeil, F., Fortier, A., Zhu, T., Bossolasco, M., Leduc, M., Grandbois, M., et al. (2006). G-protein-coupled receptors signalling at the cell nucleus: an emerging paradigm. Canadian Journal of Physiology and Pharmacology, 84(3–4), 287–297.PubMed
84.
go back to reference Gobeil, F., Jr., Vazquez-Tello, A., Marrache, A. M., Bhattacharya, M., Checchin, D., Bkaily, G., et al. (2003). Nuclear prostaglandin signaling system: biogenesis and actions via heptahelical receptors. Canadian Journal of Physiology and Pharmacology, 81(2), 196–204.PubMed Gobeil, F., Jr., Vazquez-Tello, A., Marrache, A. M., Bhattacharya, M., Checchin, D., Bkaily, G., et al. (2003). Nuclear prostaglandin signaling system: biogenesis and actions via heptahelical receptors. Canadian Journal of Physiology and Pharmacology, 81(2), 196–204.PubMed
85.
go back to reference Gobeil, F., Jr., Dumont, I., Marrache, A. M., Vazquez-Tello, A., Bernier, S. G., Abran, D., et al. (2002). Regulation of eNOS expression in brain endothelial cells by perinuclear EP(3) receptors. Circulation Research, 90(6), 682–689.PubMed Gobeil, F., Jr., Dumont, I., Marrache, A. M., Vazquez-Tello, A., Bernier, S. G., Abran, D., et al. (2002). Regulation of eNOS expression in brain endothelial cells by perinuclear EP(3) receptors. Circulation Research, 90(6), 682–689.PubMed
86.
go back to reference Bhattacharya, M., Peri, K., Ribeiro-da-Silva, A., Almazan, G., Shichi, H., Hou, X., et al. (1999). Localization of functional prostaglandin E2 receptors EP3 and EP4 in the nuclear envelope. Journal of Biological Chemistry, 274(22), 15719–15724.PubMed Bhattacharya, M., Peri, K., Ribeiro-da-Silva, A., Almazan, G., Shichi, H., Hou, X., et al. (1999). Localization of functional prostaglandin E2 receptors EP3 and EP4 in the nuclear envelope. Journal of Biological Chemistry, 274(22), 15719–15724.PubMed
87.
go back to reference Bhattacharya, M., Peri, K. G., Almazan, G., Ribeiro-da-Silva, A., Shichi, H., Durocher, Y., et al. (1998). Nuclear localization of prostaglandin E2 receptors. Proceedings of the National Academy of Sciences of the United States of America, 95(26), 15792–15797.PubMed Bhattacharya, M., Peri, K. G., Almazan, G., Ribeiro-da-Silva, A., Shichi, H., Durocher, Y., et al. (1998). Nuclear localization of prostaglandin E2 receptors. Proceedings of the National Academy of Sciences of the United States of America, 95(26), 15792–15797.PubMed
88.
go back to reference Thorat, M. A., Morimiya, A., Mehrotra, S., Konger, R., & Badve, S. S. (2008). Prostanoid receptor EP1 expression in breast cancer. Modern Pathology, 21(1), 15–21.PubMed Thorat, M. A., Morimiya, A., Mehrotra, S., Konger, R., & Badve, S. S. (2008). Prostanoid receptor EP1 expression in breast cancer. Modern Pathology, 21(1), 15–21.PubMed
89.
go back to reference Ma, X., Kundu, N., Ioffe, O. B., Goloubeva, O., Konger, R., Baquet, C., et al. (2010). Prostaglandin E receptor EP1 suppresses breast cancer metastasis and is linked to survival differences and cancer disparities. Molecular Cancer Research, 8(10), 1310–1318.PubMed Ma, X., Kundu, N., Ioffe, O. B., Goloubeva, O., Konger, R., Baquet, C., et al. (2010). Prostaglandin E receptor EP1 suppresses breast cancer metastasis and is linked to survival differences and cancer disparities. Molecular Cancer Research, 8(10), 1310–1318.PubMed
90.
go back to reference Han, C., Demetris, A. J., Stolz, D. B., Xu, L., Lim, K., & Wu, T. (2006). Modulation of Stat3 activation by the cytosolic phospholipase A2alpha and cyclooxygenase-2-controlled prostaglandin E2 signaling pathway. Journal of Biological Chemistry, 281(34), 24831–24846.PubMed Han, C., Demetris, A. J., Stolz, D. B., Xu, L., Lim, K., & Wu, T. (2006). Modulation of Stat3 activation by the cytosolic phospholipase A2alpha and cyclooxygenase-2-controlled prostaglandin E2 signaling pathway. Journal of Biological Chemistry, 281(34), 24831–24846.PubMed
91.
go back to reference Rolland, P. H., Martin, P. M., Jacquemier, J., Rolland, A. M., & Toga, M. (1980). Prostaglandin in human breast cancer: evidence suggesting that an elevated prostaglandin production is a marker of high metastatic potential for neoplastic cells. Journal of the National Cancer Institute, 64(5), 1061–1070.PubMed Rolland, P. H., Martin, P. M., Jacquemier, J., Rolland, A. M., & Toga, M. (1980). Prostaglandin in human breast cancer: evidence suggesting that an elevated prostaglandin production is a marker of high metastatic potential for neoplastic cells. Journal of the National Cancer Institute, 64(5), 1061–1070.PubMed
92.
go back to reference Bennett, A., Charlier, E. M., McDonald, A. M., Simpson, J. S., Stamford, I. F., & Zebro, T. (1977). Prostaglandins and breast cancer. Lancet, 2(8039), 624–626.PubMed Bennett, A., Charlier, E. M., McDonald, A. M., Simpson, J. S., Stamford, I. F., & Zebro, T. (1977). Prostaglandins and breast cancer. Lancet, 2(8039), 624–626.PubMed
93.
go back to reference Tan, W. C., Privett, O. S., & Goldyne, M. E. (1974). Studies of prostaglandins in rat mammary tumors induced by 7,12-dimethylbenz(a)anthracene. Cancer Research, 34(12), 3229–3231.PubMed Tan, W. C., Privett, O. S., & Goldyne, M. E. (1974). Studies of prostaglandins in rat mammary tumors induced by 7,12-dimethylbenz(a)anthracene. Cancer Research, 34(12), 3229–3231.PubMed
94.
go back to reference Chang, S.-H., Liu, C. H., Conway, R., Han, D. K., Nithipatikom, K., Trifan, O. C., et al. (2004). Role of prostaglandin E2-dependent angiogenic switch in cyclooxygenase 2-induced breast cancer progression. Proceedings of the National Academy of Sciences of the United States of America, 101(2), 591–596.PubMed Chang, S.-H., Liu, C. H., Conway, R., Han, D. K., Nithipatikom, K., Trifan, O. C., et al. (2004). Role of prostaglandin E2-dependent angiogenic switch in cyclooxygenase 2-induced breast cancer progression. Proceedings of the National Academy of Sciences of the United States of America, 101(2), 591–596.PubMed
95.
go back to reference Chang, S.-H., Ai, Y., Breyer, R. M., Lane, T. F., & Hla, T. (2005). The prostaglandin E2 receptor EP2 is required for cyclooxygenase 2-mediated mammary hyperplasia. Cancer Research, 65(11), 4496–4499.PubMed Chang, S.-H., Ai, Y., Breyer, R. M., Lane, T. F., & Hla, T. (2005). The prostaglandin E2 receptor EP2 is required for cyclooxygenase 2-mediated mammary hyperplasia. Cancer Research, 65(11), 4496–4499.PubMed
96.
go back to reference Chang, S.-H., Liu, C. H., Wu, M.-T., & Hla, T. (2005). Regulation of vascular endothelial cell growth factor expression in mouse mammary tumor cells by the EP2 subtype of the prostaglandin E2 receptor. Prostaglandins & Other Lipid Mediators, 76(1–4), 48–58. Chang, S.-H., Liu, C. H., Wu, M.-T., & Hla, T. (2005). Regulation of vascular endothelial cell growth factor expression in mouse mammary tumor cells by the EP2 subtype of the prostaglandin E2 receptor. Prostaglandins & Other Lipid Mediators, 76(1–4), 48–58.
97.
go back to reference Tian, M., & Schiemann, W. P. (2010). PGE2 receptor EP2 mediates the antagonistic effect of COX-2 on TGF-beta signaling during mammary tumorigenesis. The FASEB Journal, 24(4), 1105–1116.PubMed Tian, M., & Schiemann, W. P. (2010). PGE2 receptor EP2 mediates the antagonistic effect of COX-2 on TGF-beta signaling during mammary tumorigenesis. The FASEB Journal, 24(4), 1105–1116.PubMed
98.
go back to reference Subbaramaiah, K., Hudis, C., Chang, S. H., Hla, T., & Dannenberg, A. J. (2008). EP2 and EP4 receptors regulate aromatase expression in human adipocytes and breast cancer cells. Evidence of a BRCA1 and p300 exchange. Journal of Biological Chemistry, 283(6), 3433–3444.PubMed Subbaramaiah, K., Hudis, C., Chang, S. H., Hla, T., & Dannenberg, A. J. (2008). EP2 and EP4 receptors regulate aromatase expression in human adipocytes and breast cancer cells. Evidence of a BRCA1 and p300 exchange. Journal of Biological Chemistry, 283(6), 3433–3444.PubMed
99.
go back to reference Richards, J. A., & Brueggemeier, R. W. (2003). Prostaglandin E2 regulates aromatase activity and expression in human adipose stromal cells via two distinct receptor subtypes. Journal of Clinical Endocrinology and Metabolism, 88(6), 2810–2816.PubMed Richards, J. A., & Brueggemeier, R. W. (2003). Prostaglandin E2 regulates aromatase activity and expression in human adipose stromal cells via two distinct receptor subtypes. Journal of Clinical Endocrinology and Metabolism, 88(6), 2810–2816.PubMed
100.
go back to reference Zhao, Y., Agarwal, V. R., Mendelson, C. R., & Simpson, E. R. (1996). Estrogen biosynthesis proximal to a breast tumor is stimulated by PGE2 via cyclic AMP, leading to activation of promoter II of the CYP19 (aromatase) gene. Endocrinology, 137(12), 5739–5742.PubMed Zhao, Y., Agarwal, V. R., Mendelson, C. R., & Simpson, E. R. (1996). Estrogen biosynthesis proximal to a breast tumor is stimulated by PGE2 via cyclic AMP, leading to activation of promoter II of the CYP19 (aromatase) gene. Endocrinology, 137(12), 5739–5742.PubMed
101.
go back to reference Han, E. H., Kim, H. G., Hwang, Y. P., Choi, J. H., Im, J. H., Park, B., et al. (2010). The role of cyclooxygenase-2-dependent signaling via cyclic AMP response element activation on aromatase up-regulation by o,p′-DDT in human breast cancer cells. Toxicology Letters, 198(3), 331–341.PubMed Han, E. H., Kim, H. G., Hwang, Y. P., Choi, J. H., Im, J. H., Park, B., et al. (2010). The role of cyclooxygenase-2-dependent signaling via cyclic AMP response element activation on aromatase up-regulation by o,p′-DDT in human breast cancer cells. Toxicology Letters, 198(3), 331–341.PubMed
102.
go back to reference Subbaramaiah, K., Howe, L. R., Bhardwaj, P., Du, B., Gravaghi, C., Yantiss, R. K., et al. (2011). Obesity is associated with inflammation and elevated aromatase expression in the mouse mammary gland. Cancer Prevention Research (Philadelphia, Pa.), 4(3), 329–346. Subbaramaiah, K., Howe, L. R., Bhardwaj, P., Du, B., Gravaghi, C., Yantiss, R. K., et al. (2011). Obesity is associated with inflammation and elevated aromatase expression in the mouse mammary gland. Cancer Prevention Research (Philadelphia, Pa.), 4(3), 329–346.
103.
go back to reference Robertson, F. M., Simeone, A.-M., Mazumdar, A., Shah, A. H., McMurray, J. S., Ghosh, S., et al. (2008). Molecular and pharmacological blockade of the EP4 receptor selectively inhibits both proliferation and invasion of human inflammatory breast cancer cells. Journal of Experimental Therapeutics and Oncology, 7(4), 299–312.PubMed Robertson, F. M., Simeone, A.-M., Mazumdar, A., Shah, A. H., McMurray, J. S., Ghosh, S., et al. (2008). Molecular and pharmacological blockade of the EP4 receptor selectively inhibits both proliferation and invasion of human inflammatory breast cancer cells. Journal of Experimental Therapeutics and Oncology, 7(4), 299–312.PubMed
104.
go back to reference Robertson, F. M., Simeone, A.-M., Lucci, A., McMurray, J. S., Ghosh, S., & Cristofanilli, M. (2010). Differential regulation of the aggressive phenotype of inflammatory breast cancer cells by prostanoid receptors EP3 and EP4. Cancer, 116(11 Suppl), 2806–2814.PubMed Robertson, F. M., Simeone, A.-M., Lucci, A., McMurray, J. S., Ghosh, S., & Cristofanilli, M. (2010). Differential regulation of the aggressive phenotype of inflammatory breast cancer cells by prostanoid receptors EP3 and EP4. Cancer, 116(11 Suppl), 2806–2814.PubMed
105.
go back to reference Blindt, R., Bosserhoff, A.-K., vom Dahl, J., Hanrath, P., Schrör, K., Hohlfeld, T., et al. (2002). Activation of IP and EP(3) receptors alters cAMP-dependent cell migration. European Journal of Pharmacology, 444(1–2), 31–37.PubMed Blindt, R., Bosserhoff, A.-K., vom Dahl, J., Hanrath, P., Schrör, K., Hohlfeld, T., et al. (2002). Activation of IP and EP(3) receptors alters cAMP-dependent cell migration. European Journal of Pharmacology, 444(1–2), 31–37.PubMed
106.
go back to reference Amano, H., Hayashi, I., Endo, H., Kitasato, H., Yamashina, S., Maruyama, T., et al. (2003). Host prostaglandin E(2)-EP3 signaling regulates tumor-associated angiogenesis and tumor growth. The Journal of Experimental Medicine, 197(2), 221–232.PubMed Amano, H., Hayashi, I., Endo, H., Kitasato, H., Yamashina, S., Maruyama, T., et al. (2003). Host prostaglandin E(2)-EP3 signaling regulates tumor-associated angiogenesis and tumor growth. The Journal of Experimental Medicine, 197(2), 221–232.PubMed
107.
go back to reference Taniguchi, T., Fujino, H., Israel, D. D., Regan, J. W., & Murayama, T. (2008). Human EP3(I) prostanoid receptor induces VEGF and VEGF receptor-1 mRNA expression. Biochemical and Biophysical Research Communications, 377(4), 1173–1178.PubMed Taniguchi, T., Fujino, H., Israel, D. D., Regan, J. W., & Murayama, T. (2008). Human EP3(I) prostanoid receptor induces VEGF and VEGF receptor-1 mRNA expression. Biochemical and Biophysical Research Communications, 377(4), 1173–1178.PubMed
108.
go back to reference Kubo, H., Hosono, K., Suzuki, T., Ogawa, Y., Kato, H., Kamata, H., et al. (2010). Host prostaglandin EP3 receptor signaling relevant to tumor-associated lymphangiogenesis. Biomedicine and Pharmacotherapy, 64(2), 101–106. Kubo, H., Hosono, K., Suzuki, T., Ogawa, Y., Kato, H., Kamata, H., et al. (2010). Host prostaglandin EP3 receptor signaling relevant to tumor-associated lymphangiogenesis. Biomedicine and Pharmacotherapy, 64(2), 101–106.
109.
go back to reference Timoshenko, A. V., Chakraborty, C., Wagner, G. F., & Lala, P. K. (2006). COX-2-mediated stimulation of the lymphangiogenic factor VEGF-C in human breast cancer. British Journal of Cancer, 94(8), 1154–1163.PubMed Timoshenko, A. V., Chakraborty, C., Wagner, G. F., & Lala, P. K. (2006). COX-2-mediated stimulation of the lymphangiogenic factor VEGF-C in human breast cancer. British Journal of Cancer, 94(8), 1154–1163.PubMed
110.
go back to reference Tober, K. L., Wilgus, T. A., Kusewitt, D. F., Thomas-Ahner, J. M., Maruyama, T., & Oberyszyn, T. M. (2006). Importance of the EP(1) receptor in cutaneous UVB-induced inflammation and tumor development. The Journal of Investigative Dermatology, 126(1), 205–211.PubMed Tober, K. L., Wilgus, T. A., Kusewitt, D. F., Thomas-Ahner, J. M., Maruyama, T., & Oberyszyn, T. M. (2006). Importance of the EP(1) receptor in cutaneous UVB-induced inflammation and tumor development. The Journal of Investigative Dermatology, 126(1), 205–211.PubMed
111.
go back to reference Bai, X.-M., Jiang, H., Ding, J.-X., Peng, T., Ma, J., Wang, Y.-H., et al. (2010). Prostaglandin E2 upregulates survivin expression via the EP1 receptor in hepatocellular carcinoma cells. Life Sciences, 86(5–6), 214–223.PubMed Bai, X.-M., Jiang, H., Ding, J.-X., Peng, T., Ma, J., Wang, Y.-H., et al. (2010). Prostaglandin E2 upregulates survivin expression via the EP1 receptor in hepatocellular carcinoma cells. Life Sciences, 86(5–6), 214–223.PubMed
112.
go back to reference Kawamori, T., Uchiya, N., Nakatsugi, S., Watanabe, K., Ohuchida, S., Yamamoto, H., et al. (2001). Chemopreventive effects of ONO-8711, a selective prostaglandin E receptor EP(1) antagonist, on breast cancer development. Carcinogenesis, 22(12), 2001–2004.PubMed Kawamori, T., Uchiya, N., Nakatsugi, S., Watanabe, K., Ohuchida, S., Yamamoto, H., et al. (2001). Chemopreventive effects of ONO-8711, a selective prostaglandin E receptor EP(1) antagonist, on breast cancer development. Carcinogenesis, 22(12), 2001–2004.PubMed
113.
go back to reference Chandramouli, A., Mercado-Pimentel, M. E., Hutchinson, A., Gibadulinová, A., Olson, E. R., Dickinson, S., et al. (2010). The induction of S100p expression by the Prostaglandin E2 (PGE2)/EP4 receptor signaling pathway in colon cancer cells. Cancer Biology & Therapy, 10(10), 1056–1066. Chandramouli, A., Mercado-Pimentel, M. E., Hutchinson, A., Gibadulinová, A., Olson, E. R., Dickinson, S., et al. (2010). The induction of S100p expression by the Prostaglandin E2 (PGE2)/EP4 receptor signaling pathway in colon cancer cells. Cancer Biology & Therapy, 10(10), 1056–1066.
114.
go back to reference Cherukuri, D. P., Chen, X. B. O., Goulet, A.-C., Young, R. N., Han, Y., Heimark, R. L., et al. (2007). The EP4 receptor antagonist, L-161,982, blocks prostaglandin E2-induced signal transduction and cell proliferation in HCA-7 colon cancer cells. Experimental Cell Research, 313(14), 2969–2979.PubMed Cherukuri, D. P., Chen, X. B. O., Goulet, A.-C., Young, R. N., Han, Y., Heimark, R. L., et al. (2007). The EP4 receptor antagonist, L-161,982, blocks prostaglandin E2-induced signal transduction and cell proliferation in HCA-7 colon cancer cells. Experimental Cell Research, 313(14), 2969–2979.PubMed
115.
go back to reference Yang, L., Huang, Y., Porta, R., Yanagisawa, K., Gonzalez, A., Segi, E., et al. (2006). Host and direct antitumor effects and profound reduction in tumor metastasis with selective EP4 receptor antagonism. Cancer Research, 66(19), 9665–9672.PubMed Yang, L., Huang, Y., Porta, R., Yanagisawa, K., Gonzalez, A., Segi, E., et al. (2006). Host and direct antitumor effects and profound reduction in tumor metastasis with selective EP4 receptor antagonism. Cancer Research, 66(19), 9665–9672.PubMed
116.
go back to reference Oshima, H., Popivanova, B. K., Oguma, K., Kong, D., Ishikawa, T. O., & Oshima, M. (2011). Activation of epidermal growth factor receptor signaling by the prostaglandin E(2) receptor EP4 pathway during gastric tumorigenesis. Cancer Science, 102(4), 713–719.PubMed Oshima, H., Popivanova, B. K., Oguma, K., Kong, D., Ishikawa, T. O., & Oshima, M. (2011). Activation of epidermal growth factor receptor signaling by the prostaglandin E(2) receptor EP4 pathway during gastric tumorigenesis. Cancer Science, 102(4), 713–719.PubMed
117.
go back to reference Terada, N., Shimizu, Y., Kamba, T., Inoue, T., Maeno, A., Kobayashi, T., et al. (2010). Identification of EP4 as a potential target for the treatment of castration-resistant prostate cancer using a novel xenograft model. Cancer Research, 70(4), 1606–1615.PubMed Terada, N., Shimizu, Y., Kamba, T., Inoue, T., Maeno, A., Kobayashi, T., et al. (2010). Identification of EP4 as a potential target for the treatment of castration-resistant prostate cancer using a novel xenograft model. Cancer Research, 70(4), 1606–1615.PubMed
118.
go back to reference Zheng, Y., Ritzenthaler, J. D., Sun, X., Roman, J., & Han, S. (2009). Prostaglandin E2 stimulates human lung carcinoma cell growth through induction of integrin-linked kinase: the involvement of EP4 and Sp1. Cancer Research, 69(3), 896–904.PubMed Zheng, Y., Ritzenthaler, J. D., Sun, X., Roman, J., & Han, S. (2009). Prostaglandin E2 stimulates human lung carcinoma cell growth through induction of integrin-linked kinase: the involvement of EP4 and Sp1. Cancer Research, 69(3), 896–904.PubMed
119.
go back to reference Kim, J. I., Lakshmikanthan, V., Frilot, N., & Daaka, Y. (2010). Prostaglandin E2 promotes lung cancer cell migration via EP4-βArrestin1-c-Src signalsome. Molecular Cancer Research, 8(4), 569–577.PubMed Kim, J. I., Lakshmikanthan, V., Frilot, N., & Daaka, Y. (2010). Prostaglandin E2 promotes lung cancer cell migration via EP4-βArrestin1-c-Src signalsome. Molecular Cancer Research, 8(4), 569–577.PubMed
120.
go back to reference Timoshenko, A., Guoxiong, X., CHakrabarti, S., Lala, P., & Chakraborty, C. (2003). Role of prostaglandin E2 receptors in migration of murine and human breast cancer cells. Experimental Cell Research, 289, 265–274.PubMed Timoshenko, A., Guoxiong, X., CHakrabarti, S., Lala, P., & Chakraborty, C. (2003). Role of prostaglandin E2 receptors in migration of murine and human breast cancer cells. Experimental Cell Research, 289, 265–274.PubMed
121.
go back to reference Timoshenko, A. V., Lala, P. K., & Chakraborty, C. (2004). PGE2-mediated upregulation of iNOS in murine breast cancer cells through the activation of EP4 receptors. International Journal of Cancer, 108(3), 384–389. Timoshenko, A. V., Lala, P. K., & Chakraborty, C. (2004). PGE2-mediated upregulation of iNOS in murine breast cancer cells through the activation of EP4 receptors. International Journal of Cancer, 108(3), 384–389.
122.
go back to reference Jadeski, L. C., Chakraborty, C., & Lala, P. K. (2002). Role of nitric oxide in tumour progression with special reference to a murine breast cancer model. Canadian Journal of Physiology and Pharmacology, 80(2), 125–135.PubMed Jadeski, L. C., Chakraborty, C., & Lala, P. K. (2002). Role of nitric oxide in tumour progression with special reference to a murine breast cancer model. Canadian Journal of Physiology and Pharmacology, 80(2), 125–135.PubMed
123.
go back to reference Ohshiba, T., Miyaura, C., & Ito, A. (2003). Role of prostaglandin E produced by osteoblasts in osteolysis due to bone metastasis. Biochemical and Biophysical Research Communications, 300(4), 957–964.PubMed Ohshiba, T., Miyaura, C., & Ito, A. (2003). Role of prostaglandin E produced by osteoblasts in osteolysis due to bone metastasis. Biochemical and Biophysical Research Communications, 300(4), 957–964.PubMed
124.
go back to reference Pan, M.-R., Hou, M.-F., Chang, H.-C., & Hung, W.-C. (2008). Cyclooxygenase-2 up-regulates CCR7 via EP2/EP4 receptor signaling pathways to enhance lymphatic invasion of breast cancer cells. Journal of Biological Chemistry, 283(17), 11155–11163.PubMed Pan, M.-R., Hou, M.-F., Chang, H.-C., & Hung, W.-C. (2008). Cyclooxygenase-2 up-regulates CCR7 via EP2/EP4 receptor signaling pathways to enhance lymphatic invasion of breast cancer cells. Journal of Biological Chemistry, 283(17), 11155–11163.PubMed
125.
go back to reference Subbaramaiah, K., Benezra, R., Hudis, C., & Dannenberg, A. J. (2008). Cyclooxygenase-2-derived prostaglandin E2 stimulates Id-1 transcription. Journal of Biological Chemistry, 283(49), 33955–33968.PubMed Subbaramaiah, K., Benezra, R., Hudis, C., & Dannenberg, A. J. (2008). Cyclooxygenase-2-derived prostaglandin E2 stimulates Id-1 transcription. Journal of Biological Chemistry, 283(49), 33955–33968.PubMed
126.
go back to reference Ma, X., Kundu, N., Rifat, S., Walser, T., & Fulton, A. M. (2006). Prostaglandin E receptor EP4 antagonism inhibits breast cancer metastasis. Cancer Research, 66(6), 2923–2927.PubMed Ma, X., Kundu, N., Rifat, S., Walser, T., & Fulton, A. M. (2006). Prostaglandin E receptor EP4 antagonism inhibits breast cancer metastasis. Cancer Research, 66(6), 2923–2927.PubMed
127.
go back to reference Kundu, N., Ma, X., Holt, D., Goloubeva, O., Ostrand-Rosenberg, S., & Fulton, A. M. (2009). Antagonism of the prostaglandin E receptor EP4 inhibits metastasis and enhances NK function. Breast Cancer Research and Treatment, 117(2), 235–242.PubMed Kundu, N., Ma, X., Holt, D., Goloubeva, O., Ostrand-Rosenberg, S., & Fulton, A. M. (2009). Antagonism of the prostaglandin E receptor EP4 inhibits metastasis and enhances NK function. Breast Cancer Research and Treatment, 117(2), 235–242.PubMed
128.
go back to reference Choudhry, M., Ahmed, Z., & Sayeed, M. (1999). PGE(2)-mediated inhibition of T-cell p59 (fyn) is independent of cAMP. American Journal of Physiology, 277(2Pt1), C301–C309. Choudhry, M., Ahmed, Z., & Sayeed, M. (1999). PGE(2)-mediated inhibition of T-cell p59 (fyn) is independent of cAMP. American Journal of Physiology, 277(2Pt1), C301–C309.
129.
go back to reference Harris, S., Padilla, J., Koumas, L., Ray, D., & Phipps, R. (2002). Prostaglandins as modulators of immunity. Trends in Immunology, 23(3), 144–150.PubMed Harris, S., Padilla, J., Koumas, L., Ray, D., & Phipps, R. (2002). Prostaglandins as modulators of immunity. Trends in Immunology, 23(3), 144–150.PubMed
130.
go back to reference Choudhry, M., Hockberger, P., & Sayeed, M. (1999). PGE2 suppresses mitogen-induced Ca2+ mobilization in T cells. American Journal of Physiology, 277(6Pt2), R17410–R1748. Choudhry, M., Hockberger, P., & Sayeed, M. (1999). PGE2 suppresses mitogen-induced Ca2+ mobilization in T cells. American Journal of Physiology, 277(6Pt2), R17410–R1748.
131.
go back to reference Porter, B., & Malek, T. (1999). Prostaglandin E2 inhibits T-cell activation-induced apoptosis and Fas-mediated cellular cytotoxicity by blockade of Fas-ligand induction. European Journal of Immunology, 29(7), 2360–2365.PubMed Porter, B., & Malek, T. (1999). Prostaglandin E2 inhibits T-cell activation-induced apoptosis and Fas-mediated cellular cytotoxicity by blockade of Fas-ligand induction. European Journal of Immunology, 29(7), 2360–2365.PubMed
132.
go back to reference Hilkens, C., Snijders, A., Snijdewint, F., Wierenga, E., & Kapsenberg, M. (1996). Modulation of T-cell cytokine secretion by accessory-cell-derived products. European Respiratory Journal Supplement, 22, 90s–94s. Hilkens, C., Snijders, A., Snijdewint, F., Wierenga, E., & Kapsenberg, M. (1996). Modulation of T-cell cytokine secretion by accessory-cell-derived products. European Respiratory Journal Supplement, 22, 90s–94s.
133.
go back to reference Garrone, P., Galibert, L., Rousset, F., Fu, S., & Branchereau, J. (1994). Regulatory effects of prostaglandin E2 on the growth and differentiation of human B lymphocytes activated through their CD40 antigen. Journal of Immunology, 152(9), 4282–4290. Garrone, P., Galibert, L., Rousset, F., Fu, S., & Branchereau, J. (1994). Regulatory effects of prostaglandin E2 on the growth and differentiation of human B lymphocytes activated through their CD40 antigen. Journal of Immunology, 152(9), 4282–4290.
134.
go back to reference Brown, D., Warner, G., Ales-Marinez, S., Scott, D., & Phipps, R. (1992). Prostaglandin E2 induces apoptosis in immature normal and malignant B lymphocytes. Clinical Immunology and Immunopathology, 63(3), 221–229.PubMed Brown, D., Warner, G., Ales-Marinez, S., Scott, D., & Phipps, R. (1992). Prostaglandin E2 induces apoptosis in immature normal and malignant B lymphocytes. Clinical Immunology and Immunopathology, 63(3), 221–229.PubMed
135.
go back to reference Roper, R., Brown, D., & Phipps, R. (1995). Prostaglandin E2 promotes B lymphocyte Ig isotype switching to IgE. The Journal of Immunology, 154, 162–170.PubMed Roper, R., Brown, D., & Phipps, R. (1995). Prostaglandin E2 promotes B lymphocyte Ig isotype switching to IgE. The Journal of Immunology, 154, 162–170.PubMed
136.
go back to reference Ikegami, R., Sugimoto, Y., Segi, E., Katsuyama, M., Karahashi, H., Amano, F., et al. (2001). The expression of prostaglandin E2 receptors EP2 and EP4 and their different regulation by lipopolysaccharide in C3H/HeN peritoneal macrophages. The Journal of Immunology, 166(7), 4689–4696.PubMed Ikegami, R., Sugimoto, Y., Segi, E., Katsuyama, M., Karahashi, H., Amano, F., et al. (2001). The expression of prostaglandin E2 receptors EP2 and EP4 and their different regulation by lipopolysaccharide in C3H/HeN peritoneal macrophages. The Journal of Immunology, 166(7), 4689–4696.PubMed
137.
go back to reference Voiculescu, C., Rosu, L., & Rogoz, S. (1988). Modulation of mouse spleen natural killer (NK) cell activity by beta-interferon, interleukin-1, and prostaglandins. Lymphology, 21, 144–151.PubMed Voiculescu, C., Rosu, L., & Rogoz, S. (1988). Modulation of mouse spleen natural killer (NK) cell activity by beta-interferon, interleukin-1, and prostaglandins. Lymphology, 21, 144–151.PubMed
138.
go back to reference Brunda, M. J., Herberman, R. B., & Holden, H. T. (1980). Inhibition of murine natural killer cell activity by prostaglandin. The Journal of Immunology, 124(6), 2682–2687.PubMed Brunda, M. J., Herberman, R. B., & Holden, H. T. (1980). Inhibition of murine natural killer cell activity by prostaglandin. The Journal of Immunology, 124(6), 2682–2687.PubMed
139.
go back to reference Bankhurst, A. (1982). The modulation of human natural killer cell activity by prostaglandins. Journal of Clinical & Laboratory Immunology, 7, 85–91. Bankhurst, A. (1982). The modulation of human natural killer cell activity by prostaglandins. Journal of Clinical & Laboratory Immunology, 7, 85–91.
140.
go back to reference Baxevanis, C., Reclos, G., Gritzapis, A., Dedousis, G., Missitzis, I., & Papamichail, M. (1993). Elevated prostaglandin E2 production by monocytes is responsible for the depressed levels of natural killer and lymphokine-activated killer cell function in patients with breast cancer. Cancer, 72(2), 491–501.PubMed Baxevanis, C., Reclos, G., Gritzapis, A., Dedousis, G., Missitzis, I., & Papamichail, M. (1993). Elevated prostaglandin E2 production by monocytes is responsible for the depressed levels of natural killer and lymphokine-activated killer cell function in patients with breast cancer. Cancer, 72(2), 491–501.PubMed
141.
go back to reference Fulton, A. (1988). Inhibition of experimental metastasis with indomethacin: role of macrophages and natural killer cells. Prostaglandins, 35(3), 413–425.PubMed Fulton, A. (1988). Inhibition of experimental metastasis with indomethacin: role of macrophages and natural killer cells. Prostaglandins, 35(3), 413–425.PubMed
142.
go back to reference Su, Y., Huang, X., Raskovalova, T., Zacharia, L., Lokshin, A., Jackson, E., et al. (2008). Cooperation of adenosine and prostaglandin E2 (PGE2) in amplification of cAMP-PKA signaling and immunosuppression. Cancer Immunology and Immunotherapeutics, 57, 1611–1623. Su, Y., Huang, X., Raskovalova, T., Zacharia, L., Lokshin, A., Jackson, E., et al. (2008). Cooperation of adenosine and prostaglandin E2 (PGE2) in amplification of cAMP-PKA signaling and immunosuppression. Cancer Immunology and Immunotherapeutics, 57, 1611–1623.
143.
go back to reference Su, Y., Jackson, E., & Gorelik, E. (2011). Receptor desensitization and blockade of the suppressive effects of prostaglandin E2 and adenosine on the cytotoxic activity of human melanoma-infiltrating T lymphocytes. Cancer Immunology and Immunotherapy, 60(1), 111–122. Su, Y., Jackson, E., & Gorelik, E. (2011). Receptor desensitization and blockade of the suppressive effects of prostaglandin E2 and adenosine on the cytotoxic activity of human melanoma-infiltrating T lymphocytes. Cancer Immunology and Immunotherapy, 60(1), 111–122.
144.
go back to reference Holt, D., Ma, X., Kundu, N., Fulton, A., (2011). Prostaglandin E2 (PGE2) suppresses natural killer cell function through the PGE2 receptor EP4. Cancer Immunology and Immunotherapy. doi:10.1007/s00262-011-1064-9. Holt, D., Ma, X., Kundu, N., Fulton, A., (2011). Prostaglandin E2 (PGE2) suppresses natural killer cell function through the PGE2 receptor EP4. Cancer Immunology and Immunotherapy. doi:10.​1007/​s00262-011-1064-9.
145.
go back to reference Nataraj, C., Thomas, D., Tilley, S., Nguyen, M., Mannon, R., Koller, B., et al. (2001). Receptors for prostaglandin E2 that regulate cellular immune responses in the mouse. The Journal of Clinical Investigation, 108(8), 1229–1235.PubMed Nataraj, C., Thomas, D., Tilley, S., Nguyen, M., Mannon, R., Koller, B., et al. (2001). Receptors for prostaglandin E2 that regulate cellular immune responses in the mouse. The Journal of Clinical Investigation, 108(8), 1229–1235.PubMed
146.
go back to reference Yao, C., Sakata, D., Esaki, Y., Li, Y., Matsuoka, T., Kuroiwa, K., et al. (2009). Prostaglandin E2-EP4 signaling promotes immune inflammation through Th1 cell differentiation and Th17 cell expansion. Nature Medicine, 15(6), 633–640.PubMed Yao, C., Sakata, D., Esaki, Y., Li, Y., Matsuoka, T., Kuroiwa, K., et al. (2009). Prostaglandin E2-EP4 signaling promotes immune inflammation through Th1 cell differentiation and Th17 cell expansion. Nature Medicine, 15(6), 633–640.PubMed
147.
go back to reference Boniface, K., Bak-Jensen, K., Li, Y., Blumenschein, W., McGeachy, M., McClanahan, T., et al. (2009). Prostaglandin E2 regulates Th17 cell differentiation and function through cyclic AMP and EP2/EP4 receptor signaling. The Journal of Experimental Medicine, 206(3), 535–548.PubMed Boniface, K., Bak-Jensen, K., Li, Y., Blumenschein, W., McGeachy, M., McClanahan, T., et al. (2009). Prostaglandin E2 regulates Th17 cell differentiation and function through cyclic AMP and EP2/EP4 receptor signaling. The Journal of Experimental Medicine, 206(3), 535–548.PubMed
148.
go back to reference Sharma, S., Yang, S., Zhu, L., Reckamp, K., Gardner, B., Baratelli, F., et al. (2005). Tumor cyclooxygenase-2/prostaglandin E2-dependent promotion of FOXP3 expression and CD4+CD25+ T regulatory cell activities in lung cancer. Cancer Research, 65(12), 5211–5220.PubMed Sharma, S., Yang, S., Zhu, L., Reckamp, K., Gardner, B., Baratelli, F., et al. (2005). Tumor cyclooxygenase-2/prostaglandin E2-dependent promotion of FOXP3 expression and CD4+CD25+ T regulatory cell activities in lung cancer. Cancer Research, 65(12), 5211–5220.PubMed
149.
go back to reference Fedyk, E., & Phipps, R. (1996). Prostaglandin E2 receptors of the EP2 and EP4 subtype regulate activation and differentiation of mouse B lymphocytes to IgE-secreting cells. Proceedings of the National Academy of Sciences, 93, 10978–10983. Fedyk, E., & Phipps, R. (1996). Prostaglandin E2 receptors of the EP2 and EP4 subtype regulate activation and differentiation of mouse B lymphocytes to IgE-secreting cells. Proceedings of the National Academy of Sciences, 93, 10978–10983.
150.
go back to reference Panzer, U., & Uguccioni, M. (2004). Prostaglandin E2 modulates the functional responsiveness of human monocytes to chemokines. European Journal of Immunology, 34(12), 3682–3689.PubMed Panzer, U., & Uguccioni, M. (2004). Prostaglandin E2 modulates the functional responsiveness of human monocytes to chemokines. European Journal of Immunology, 34(12), 3682–3689.PubMed
151.
go back to reference De Vries, G., Guarino, P., McLaughlin, A., Chen, J., Andrews, S., & Woodward, D. (1995). An EP receptor with a novel pharmacological profile in the T-cell line Jurkat. British Journal of Pharmacology, 115, 1231–1234.PubMed De Vries, G., Guarino, P., McLaughlin, A., Chen, J., Andrews, S., & Woodward, D. (1995). An EP receptor with a novel pharmacological profile in the T-cell line Jurkat. British Journal of Pharmacology, 115, 1231–1234.PubMed
152.
go back to reference Fedyk, E., Ripper, J., Brown, D., & Phipps, R. (1996). A molecular analysis of PGE receptor (EP) expression on normal and transformed B lymphocytes: coexpression of EP1, EP2, EP3β, EP4. Molecular Immunology, 33(1), 33–45.PubMed Fedyk, E., Ripper, J., Brown, D., & Phipps, R. (1996). A molecular analysis of PGE receptor (EP) expression on normal and transformed B lymphocytes: coexpression of EP1, EP2, EP3β, EP4. Molecular Immunology, 33(1), 33–45.PubMed
153.
go back to reference Sinha, P., Clements, V. K., Fulton, A. M., & Ostrand-Rosenberg, S. (2007). Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Research, 67(9), 4507–4513.PubMed Sinha, P., Clements, V. K., Fulton, A. M., & Ostrand-Rosenberg, S. (2007). Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Research, 67(9), 4507–4513.PubMed
Metadata
Title
Prostaglandin E2 EP receptors as therapeutic targets in breast cancer
Authors
Jocelyn Reader
Dawn Holt
Amy Fulton
Publication date
01-12-2011
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 3-4/2011
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-011-9303-2

Other articles of this Issue 3-4/2011

Cancer and Metastasis Reviews 3-4/2011 Go to the issue

EditorialNotes

Preface

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine