Skip to main content
Top
Published in: Cancer and Metastasis Reviews 3-4/2011

01-12-2011

Eicosanoids and other lipid mediators and the tumor hypoxic microenvironment

Authors: Sriram Krishnamoorthy, Kenneth V. Honn

Published in: Cancer and Metastasis Reviews | Issue 3-4/2011

Login to get access

Abstract

Hypoxia is a pathological hallmark feature of solid tumors. Though hypoxia is an adverse physiological state, tumors have evolved to utilize this unsuitable environment to their own advantage by activating key biochemical and cellular pathways that are important in progression, survival, and metastasis. Several studies have emphasized the importance of lipid mediators in regulating key biomolecules in the hypoxic microenvironment, for example hypoxia inducible factor-1 (HIF-1), the master regulator of hypoxia. Lipid mediators have been reported to enhance the levels and activity of HIF-1, which subsequently signal to stimulate angiogenesis and tumor cell survival under hypoxic conditions. There are also reports of hypoxia and HIF-1 enhancing the levels of some lipid mediators mostly by upregulating the levels of the enzymes responsible for their biosynthesis. This review gives a brief overview of these two mechanisms and the role played by bioactive lipid mediators in the regulation of tumor progression and survival under hypoxia.
Literature
1.
go back to reference Harris, A. L. (2002). Hypoxia—a key regulatory factor in tumour growth. Nature Reviews Cancer, 2(1), 38–47.PubMedCrossRef Harris, A. L. (2002). Hypoxia—a key regulatory factor in tumour growth. Nature Reviews Cancer, 2(1), 38–47.PubMedCrossRef
2.
go back to reference Brahimi-Horn, M. C., Chiche, J., & Pouyssegur, J. (2007). Hypoxia and cancer. Journal of Molecular Medicine, 85(12), 1301–1307.PubMedCrossRef Brahimi-Horn, M. C., Chiche, J., & Pouyssegur, J. (2007). Hypoxia and cancer. Journal of Molecular Medicine, 85(12), 1301–1307.PubMedCrossRef
3.
go back to reference Moeller, B. J., Richardson, R. A., & Dewhirst, M. W. (2007). Hypoxia and radiotherapy: opportunities for improved outcomes in cancer treatment. Cancer Metastasis Reviews, 26(2), 241–248.PubMedCrossRef Moeller, B. J., Richardson, R. A., & Dewhirst, M. W. (2007). Hypoxia and radiotherapy: opportunities for improved outcomes in cancer treatment. Cancer Metastasis Reviews, 26(2), 241–248.PubMedCrossRef
4.
go back to reference Semenza, G. L. (2010). Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene, 29(5), 625–634.PubMedCrossRef Semenza, G. L. (2010). Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene, 29(5), 625–634.PubMedCrossRef
5.
go back to reference Wang, G. L., & Semenza, G. L. (1995). Purification and characterization of hypoxia-inducible factor 1. Journal of Biological Chemistry, 270(3), 1230–1237.PubMedCrossRef Wang, G. L., & Semenza, G. L. (1995). Purification and characterization of hypoxia-inducible factor 1. Journal of Biological Chemistry, 270(3), 1230–1237.PubMedCrossRef
6.
go back to reference Forsythe, J. A., Jiang, B. H., Iyer, N. V., Agani, F., Leung, S. W., Koos, R. D., et al. (1996). Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Molecular and Cellular Biology, 16(9), 4604–4613.PubMed Forsythe, J. A., Jiang, B. H., Iyer, N. V., Agani, F., Leung, S. W., Koos, R. D., et al. (1996). Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Molecular and Cellular Biology, 16(9), 4604–4613.PubMed
7.
go back to reference Behrooz, A., & Ismail-Beigi, F. (1997). Dual control of glut1 glucose transporter gene expression by hypoxia and by inhibition of oxidative phosphorylation. Journal of Biological Chemistry, 272(9), 5555–5562.PubMedCrossRef Behrooz, A., & Ismail-Beigi, F. (1997). Dual control of glut1 glucose transporter gene expression by hypoxia and by inhibition of oxidative phosphorylation. Journal of Biological Chemistry, 272(9), 5555–5562.PubMedCrossRef
8.
go back to reference Funk, C. D. (2001). Prostaglandins and leukotrienes: advances in eicosanoid biology. Science, 294(5548), 1871–1875.PubMedCrossRef Funk, C. D. (2001). Prostaglandins and leukotrienes: advances in eicosanoid biology. Science, 294(5548), 1871–1875.PubMedCrossRef
9.
go back to reference Serhan, C. N. (2007). Resolution phase of inflammation: novel endogenous anti-inflammatory and proresolving lipid mediators and pathways. Annual Review of Immunology, 25, 101–137.PubMedCrossRef Serhan, C. N. (2007). Resolution phase of inflammation: novel endogenous anti-inflammatory and proresolving lipid mediators and pathways. Annual Review of Immunology, 25, 101–137.PubMedCrossRef
10.
go back to reference Smith, W. L., DeWitt, D. L., & Garavito, R. M. (2000). Cyclooxygenases: structural, cellular, and molecular biology. Annual Review of Biochemistry, 69, 145–182.PubMedCrossRef Smith, W. L., DeWitt, D. L., & Garavito, R. M. (2000). Cyclooxygenases: structural, cellular, and molecular biology. Annual Review of Biochemistry, 69, 145–182.PubMedCrossRef
11.
go back to reference Menter, D. G., Schilsky, R. L., & DuBois, R. N. (2010). Cyclooxygenase-2 and cancer treatment: understanding the risk should be worth the reward. Clinical Cancer Research, 16(5), 1384–1390.PubMedCrossRef Menter, D. G., Schilsky, R. L., & DuBois, R. N. (2010). Cyclooxygenase-2 and cancer treatment: understanding the risk should be worth the reward. Clinical Cancer Research, 16(5), 1384–1390.PubMedCrossRef
12.
go back to reference Rigas, B., Goldman, I. S., & Levine, L. (1993). Altered eicosanoid levels in human colon cancer. The Journal of Laboratory and Clinical Medicine, 122(5), 518–523.PubMed Rigas, B., Goldman, I. S., & Levine, L. (1993). Altered eicosanoid levels in human colon cancer. The Journal of Laboratory and Clinical Medicine, 122(5), 518–523.PubMed
13.
go back to reference Greenhough, A., Smartt, H. J., Moore, A. E., Roberts, H. R., Williams, A. C., Paraskeva, C., et al. (2009). The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis, 30(3), 377–386.PubMedCrossRef Greenhough, A., Smartt, H. J., Moore, A. E., Roberts, H. R., Williams, A. C., Paraskeva, C., et al. (2009). The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis, 30(3), 377–386.PubMedCrossRef
14.
go back to reference Backlund, M. G., Mann, J. R., Holla, V. R., Shi, Q., Daikoku, T., Dey, S. K., et al. (2008). Repression of 15-hydroxyprostaglandin dehydrogenase involves histone deacetylase 2 and snail in colorectal cancer. Cancer Research, 68(22), 9331–9337.PubMedCrossRef Backlund, M. G., Mann, J. R., Holla, V. R., Shi, Q., Daikoku, T., Dey, S. K., et al. (2008). Repression of 15-hydroxyprostaglandin dehydrogenase involves histone deacetylase 2 and snail in colorectal cancer. Cancer Research, 68(22), 9331–9337.PubMedCrossRef
15.
go back to reference Schmedtje, J. F., Jr., Ji, Y. S., Liu, W. L., DuBois, R. N., & Runge, M. S. (1997). Hypoxia induces cyclooxygenase-2 via the NF-kappaB p65 transcription factor in human vascular endothelial cells. Journal of Biological Chemistry, 272(1), 601–608.PubMedCrossRef Schmedtje, J. F., Jr., Ji, Y. S., Liu, W. L., DuBois, R. N., & Runge, M. S. (1997). Hypoxia induces cyclooxygenase-2 via the NF-kappaB p65 transcription factor in human vascular endothelial cells. Journal of Biological Chemistry, 272(1), 601–608.PubMedCrossRef
16.
go back to reference Bonazzi, A., Mastyugin, V., Mieyal, P. A., Dunn, M. W., & Laniado-Schwartzman, M. (2000). Regulation of cyclooxygenase-2 by hypoxia and peroxisome proliferators in the corneal epithelium. Journal of Biological Chemistry, 275(4), 2837–2844.PubMedCrossRef Bonazzi, A., Mastyugin, V., Mieyal, P. A., Dunn, M. W., & Laniado-Schwartzman, M. (2000). Regulation of cyclooxygenase-2 by hypoxia and peroxisome proliferators in the corneal epithelium. Journal of Biological Chemistry, 275(4), 2837–2844.PubMedCrossRef
17.
go back to reference Liu, X. H., Kirschenbaum, A., Yao, S., Stearns, M. E., Holland, J. F., Claffey, K., et al. (1999). Upregulation of vascular endothelial growth factor by cobalt chloride-simulated hypoxia is mediated by persistent induction of cyclooxygenase-2 in a metastatic human prostate cancer cell line. Clinical & Experimental Metastasis, 17(8), 687–694.CrossRef Liu, X. H., Kirschenbaum, A., Yao, S., Stearns, M. E., Holland, J. F., Claffey, K., et al. (1999). Upregulation of vascular endothelial growth factor by cobalt chloride-simulated hypoxia is mediated by persistent induction of cyclooxygenase-2 in a metastatic human prostate cancer cell line. Clinical & Experimental Metastasis, 17(8), 687–694.CrossRef
18.
go back to reference Liu, X. H., Kirschenbaum, A., Lu, M., Yao, S., Dosoretz, A., Holland, J. F., et al. (2002). Prostaglandin E2 induces hypoxia-inducible factor-1alpha stabilization and nuclear localization in a human prostate cancer cell line. Journal of Biological Chemistry, 277(51), 50081–50086.PubMedCrossRef Liu, X. H., Kirschenbaum, A., Lu, M., Yao, S., Dosoretz, A., Holland, J. F., et al. (2002). Prostaglandin E2 induces hypoxia-inducible factor-1alpha stabilization and nuclear localization in a human prostate cancer cell line. Journal of Biological Chemistry, 277(51), 50081–50086.PubMedCrossRef
19.
go back to reference Fukuda, R., Kelly, B., & Semenza, G. L. (2003). Vascular endothelial growth factor gene expression in colon cancer cells exposed to prostaglandin E2 is mediated by hypoxia-inducible factor 1. Cancer Research, 63(9), 2330–2334.PubMed Fukuda, R., Kelly, B., & Semenza, G. L. (2003). Vascular endothelial growth factor gene expression in colon cancer cells exposed to prostaglandin E2 is mediated by hypoxia-inducible factor 1. Cancer Research, 63(9), 2330–2334.PubMed
20.
go back to reference Huang, S. P., Wu, M. S., Shun, C. T., Wang, H. P., Hsieh, C. Y., Kuo, M. L., et al. (2005). Cyclooxygenase-2 increases hypoxia-inducible factor-1 and vascular endothelial growth factor to promote angiogenesis in gastric carcinoma. Journal of Biomedical Science, 12(1), 229–241.PubMedCrossRef Huang, S. P., Wu, M. S., Shun, C. T., Wang, H. P., Hsieh, C. Y., Kuo, M. L., et al. (2005). Cyclooxygenase-2 increases hypoxia-inducible factor-1 and vascular endothelial growth factor to promote angiogenesis in gastric carcinoma. Journal of Biomedical Science, 12(1), 229–241.PubMedCrossRef
21.
go back to reference Csiki, I., Yanagisawa, K., Haruki, N., Nadaf, S., Morrow, J. D., Johnson, D. H., et al. (2006). Thioredoxin-1 modulates transcription of cyclooxygenase-2 via hypoxia-inducible factor-1alpha in non-small cell lung cancer. Cancer Research, 66(1), 143–150.PubMedCrossRef Csiki, I., Yanagisawa, K., Haruki, N., Nadaf, S., Morrow, J. D., Johnson, D. H., et al. (2006). Thioredoxin-1 modulates transcription of cyclooxygenase-2 via hypoxia-inducible factor-1alpha in non-small cell lung cancer. Cancer Research, 66(1), 143–150.PubMedCrossRef
22.
go back to reference Kaidi, A., Qualtrough, D., Williams, A. C., & Paraskeva, C. (2006). Direct transcriptional up-regulation of cyclooxygenase-2 by hypoxia-inducible factor (HIF)-1 promotes colorectal tumor cell survival and enhances HIF-1 transcriptional activity during hypoxia. Cancer Research, 66(13), 6683–6691.PubMedCrossRef Kaidi, A., Qualtrough, D., Williams, A. C., & Paraskeva, C. (2006). Direct transcriptional up-regulation of cyclooxygenase-2 by hypoxia-inducible factor (HIF)-1 promotes colorectal tumor cell survival and enhances HIF-1 transcriptional activity during hypoxia. Cancer Research, 66(13), 6683–6691.PubMedCrossRef
23.
go back to reference Moore, A. E., Greenhough, A., Roberts, H. R., Hicks, D. J., Patsos, H. A., Williams, A. C., et al. (2009). HGF/Met signalling promotes PGE(2) biogenesis via regulation of COX-2 and 15-PGDH expression in colorectal cancer cells. Carcinogenesis, 30(10), 1796–1804.PubMedCrossRef Moore, A. E., Greenhough, A., Roberts, H. R., Hicks, D. J., Patsos, H. A., Williams, A. C., et al. (2009). HGF/Met signalling promotes PGE(2) biogenesis via regulation of COX-2 and 15-PGDH expression in colorectal cancer cells. Carcinogenesis, 30(10), 1796–1804.PubMedCrossRef
24.
go back to reference Ji, R., Chou, C. L., Xu, W., Chen, X. B., Woodward, D. F., & Regan, J. W. (2010). EP1 prostanoid receptor coupling to G i/o up-regulates the expression of hypoxia-inducible factor-1 alpha through activation of a phosphoinositide-3 kinase signaling pathway. Molecular Pharmacology, 77(6), 1025–1036.PubMedCrossRef Ji, R., Chou, C. L., Xu, W., Chen, X. B., Woodward, D. F., & Regan, J. W. (2010). EP1 prostanoid receptor coupling to G i/o up-regulates the expression of hypoxia-inducible factor-1 alpha through activation of a phosphoinositide-3 kinase signaling pathway. Molecular Pharmacology, 77(6), 1025–1036.PubMedCrossRef
25.
go back to reference Lee, J. J., Natsuizaka, M., Ohashi, S., Wong, G. S., Takaoka, M., Michaylira, C. Z., et al. (2010). Hypoxia activates the cyclooxygenase-2-prostaglandin E synthase axis. Carcinogenesis, 31(3), 427–434.PubMedCrossRef Lee, J. J., Natsuizaka, M., Ohashi, S., Wong, G. S., Takaoka, M., Michaylira, C. Z., et al. (2010). Hypoxia activates the cyclooxygenase-2-prostaglandin E synthase axis. Carcinogenesis, 31(3), 427–434.PubMedCrossRef
26.
go back to reference Samuelsson, B., Dahlen, S. E., Lindgren, J. A., Rouzer, C. A., & Serhan, C. N. (1987). Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. Science, 237(4819), 1171–1176.PubMedCrossRef Samuelsson, B., Dahlen, S. E., Lindgren, J. A., Rouzer, C. A., & Serhan, C. N. (1987). Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. Science, 237(4819), 1171–1176.PubMedCrossRef
27.
go back to reference Marks, F., & Fürstenberger, G. (1999). Prostaglandins, leukotrienes, and other eicosanoids: from biogenesis to clinical applications. Weinheim: Wiley-VCH.CrossRef Marks, F., & Fürstenberger, G. (1999). Prostaglandins, leukotrienes, and other eicosanoids: from biogenesis to clinical applications. Weinheim: Wiley-VCH.CrossRef
28.
go back to reference Guo, Y., Zhang, W., Giroux, C., Cai, Y., Ekambaram, P., Dilly, A. K., et al. (2011). Identification of the orphan G protein coupled receptor GPR31 as a receptor for 12(S)hydroxyeicosatetraenoic acid. Journal of Biological Chemistry, 286, 33832–33840.PubMedCrossRef Guo, Y., Zhang, W., Giroux, C., Cai, Y., Ekambaram, P., Dilly, A. K., et al. (2011). Identification of the orphan G protein coupled receptor GPR31 as a receptor for 12(S)hydroxyeicosatetraenoic acid. Journal of Biological Chemistry, 286, 33832–33840.PubMedCrossRef
29.
go back to reference Krishnamoorthy, S., & Honn, K. V. (2008). Eicosanoids in tumor progression and metastasis. Subcellular Biochemistry, 49, 145–168.PubMedCrossRef Krishnamoorthy, S., & Honn, K. V. (2008). Eicosanoids in tumor progression and metastasis. Subcellular Biochemistry, 49, 145–168.PubMedCrossRef
30.
go back to reference Bernaudin, M., Tang, Y., Reilly, M., Petit, E., & Sharp, F. R. (2002). Brain genomic response following hypoxia and re-oxygenation in the neonatal rat. Identification of genes that might contribute to hypoxia-induced ischemic tolerance. The Journal of Biological Chemistry, 277(42), 39728–39738.PubMedCrossRef Bernaudin, M., Tang, Y., Reilly, M., Petit, E., & Sharp, F. R. (2002). Brain genomic response following hypoxia and re-oxygenation in the neonatal rat. Identification of genes that might contribute to hypoxia-induced ischemic tolerance. The Journal of Biological Chemistry, 277(42), 39728–39738.PubMedCrossRef
31.
go back to reference Preston, I. R., Hill, N. S., Warburton, R. R., & Fanburg, B. L. (2006). Role of 12-lipoxygenase in hypoxia-induced rat pulmonary artery smooth muscle cell proliferation. American Journal of Physiology. Lung Cellular and Molecular Physiology, 290(2), L367–L374.PubMedCrossRef Preston, I. R., Hill, N. S., Warburton, R. R., & Fanburg, B. L. (2006). Role of 12-lipoxygenase in hypoxia-induced rat pulmonary artery smooth muscle cell proliferation. American Journal of Physiology. Lung Cellular and Molecular Physiology, 290(2), L367–L374.PubMedCrossRef
32.
go back to reference Gonsalves, C. S., & Kalra, V. K. (2010). Hypoxia-mediated expression of 5-lipoxygenase-activating protein involves HIF-1α and NF-kB and microRNAs 135a and 199a-5p. Journal of Immunology, 184(7), 3878–3888.CrossRef Gonsalves, C. S., & Kalra, V. K. (2010). Hypoxia-mediated expression of 5-lipoxygenase-activating protein involves HIF-1α and NF-kB and microRNAs 135a and 199a-5p. Journal of Immunology, 184(7), 3878–3888.CrossRef
33.
go back to reference Zhu, D., Medhora, M., Campbell, W. B., Spitzbarth, N., Baker, J. E., & Jacobs, E. R. (2003). Chronic hypoxia activates lung 15-lipoxygenase, which catalyzes production of 15-HETE and enhances constriction in neonatal rabbit pulmonary arteries. Circulation Research, 92(9), 992–1000.PubMedCrossRef Zhu, D., Medhora, M., Campbell, W. B., Spitzbarth, N., Baker, J. E., & Jacobs, E. R. (2003). Chronic hypoxia activates lung 15-lipoxygenase, which catalyzes production of 15-HETE and enhances constriction in neonatal rabbit pulmonary arteries. Circulation Research, 92(9), 992–1000.PubMedCrossRef
34.
go back to reference Rydberg, E. K., Krettek, A., Ullstrom, C., Ekstrom, K., Svensson, P. A., Carlsson, L. M., et al. (2004). Hypoxia increases LDL oxidation and expression of 15-lipoxygenase-2 in human macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 24(11), 2040–2045.PubMedCrossRef Rydberg, E. K., Krettek, A., Ullstrom, C., Ekstrom, K., Svensson, P. A., Carlsson, L. M., et al. (2004). Hypoxia increases LDL oxidation and expression of 15-lipoxygenase-2 in human macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 24(11), 2040–2045.PubMedCrossRef
35.
go back to reference Krishnamoorthy, S., Jin, R., Cai, Y., Maddipati, K. R., Nie, D., Pages, G., et al. (2010). 12-Lipoxygenase and the regulation of hypoxia-inducible factor in prostate cancer cells. Experimental Cell Research, 316(10), 1706–1715.PubMedCrossRef Krishnamoorthy, S., Jin, R., Cai, Y., Maddipati, K. R., Nie, D., Pages, G., et al. (2010). 12-Lipoxygenase and the regulation of hypoxia-inducible factor in prostate cancer cells. Experimental Cell Research, 316(10), 1706–1715.PubMedCrossRef
36.
go back to reference Fyrst, H., & Saba, J. D. (2010). An update on sphingosine-1-phosphate and other sphingolipid mediators. Nature Chemical Biology, 6(7), 489–497.PubMedCrossRef Fyrst, H., & Saba, J. D. (2010). An update on sphingosine-1-phosphate and other sphingolipid mediators. Nature Chemical Biology, 6(7), 489–497.PubMedCrossRef
37.
go back to reference Yoshida, Y., Nakada, M., Harada, T., Tanaka, S., Furuta, T., Hayashi, Y., et al. (2010). The expression level of sphingosine-1-phosphate receptor type 1 is related to MIB-1 labeling index and predicts survival of glioblastoma patients. Journal of Neuro-Oncology, 98(1), 41–47.PubMedCrossRef Yoshida, Y., Nakada, M., Harada, T., Tanaka, S., Furuta, T., Hayashi, Y., et al. (2010). The expression level of sphingosine-1-phosphate receptor type 1 is related to MIB-1 labeling index and predicts survival of glioblastoma patients. Journal of Neuro-Oncology, 98(1), 41–47.PubMedCrossRef
38.
go back to reference Jin, Z. Q., Goetzl, E. J., & Karliner, J. S. (2004). Sphingosine kinase activation mediates ischemic preconditioning in murine heart. Circulation, 110(14), 1980–1989.PubMedCrossRef Jin, Z. Q., Goetzl, E. J., & Karliner, J. S. (2004). Sphingosine kinase activation mediates ischemic preconditioning in murine heart. Circulation, 110(14), 1980–1989.PubMedCrossRef
39.
go back to reference Jin, Z. Q., Zhou, H. Z., Zhu, P., Honbo, N., Mochly-Rosen, D., Messing, R. O., et al. (2002). Cardioprotection mediated by sphingosine-1-phosphate and ganglioside GM-1 in wild-type and PKC epsilon knockout mouse hearts. American Journal of Physiology. Heart and Circulatory Physiology, 282(6), H1970–H1977.PubMed Jin, Z. Q., Zhou, H. Z., Zhu, P., Honbo, N., Mochly-Rosen, D., Messing, R. O., et al. (2002). Cardioprotection mediated by sphingosine-1-phosphate and ganglioside GM-1 in wild-type and PKC epsilon knockout mouse hearts. American Journal of Physiology. Heart and Circulatory Physiology, 282(6), H1970–H1977.PubMed
40.
go back to reference Tao, R., Zhang, J., Vessey, D. A., Honbo, N., & Karliner, J. S. (2007). Deletion of the sphingosine kinase-1 gene influences cell fate during hypoxia and glucose deprivation in adult mouse cardiomyocytes. Cardiovascular Research, 74(1), 56–63.PubMedCrossRef Tao, R., Zhang, J., Vessey, D. A., Honbo, N., & Karliner, J. S. (2007). Deletion of the sphingosine kinase-1 gene influences cell fate during hypoxia and glucose deprivation in adult mouse cardiomyocytes. Cardiovascular Research, 74(1), 56–63.PubMedCrossRef
41.
go back to reference Yun, J. K., & Kester, M. (2002). Regulatory role of sphingomyelin metabolites in hypoxia-induced vascular smooth muscle cell proliferation. Archives of Biochemistry and Biophysics, 408(1), 78–86.PubMedCrossRef Yun, J. K., & Kester, M. (2002). Regulatory role of sphingomyelin metabolites in hypoxia-induced vascular smooth muscle cell proliferation. Archives of Biochemistry and Biophysics, 408(1), 78–86.PubMedCrossRef
42.
go back to reference Ahmad, M., Long, J. S., Pyne, N. J., & Pyne, S. (2006). The effect of hypoxia on lipid phosphate receptor and sphingosine kinase expression and mitogen-activated protein kinase signaling in human pulmonary smooth muscle cells. Prostaglandins & Other Lipid Mediators, 79(3–4), 278–286.CrossRef Ahmad, M., Long, J. S., Pyne, N. J., & Pyne, S. (2006). The effect of hypoxia on lipid phosphate receptor and sphingosine kinase expression and mitogen-activated protein kinase signaling in human pulmonary smooth muscle cells. Prostaglandins & Other Lipid Mediators, 79(3–4), 278–286.CrossRef
43.
go back to reference Ader, I., Brizuela, L., Bouquerel, P., Malavaud, B., & Cuvillier, O. (2008). Sphingosine kinase 1: a new modulator of hypoxia inducible factor 1alpha during hypoxia in human cancer cells. Cancer Research, 68(20), 8635–8642.PubMedCrossRef Ader, I., Brizuela, L., Bouquerel, P., Malavaud, B., & Cuvillier, O. (2008). Sphingosine kinase 1: a new modulator of hypoxia inducible factor 1alpha during hypoxia in human cancer cells. Cancer Research, 68(20), 8635–8642.PubMedCrossRef
44.
go back to reference Ader, I., Malavaud, B., & Cuvillier, O. (2009). When the sphingosine kinase 1/sphingosine 1-phosphate pathway meets hypoxia signaling: new targets for cancer therapy. Cancer Research, 69(9), 3723–3726.PubMedCrossRef Ader, I., Malavaud, B., & Cuvillier, O. (2009). When the sphingosine kinase 1/sphingosine 1-phosphate pathway meets hypoxia signaling: new targets for cancer therapy. Cancer Research, 69(9), 3723–3726.PubMedCrossRef
45.
go back to reference Anelli, V., Gault, C. R., Cheng, A. B., & Obeid, L. M. (2008). Sphingosine kinase 1 is up-regulated during hypoxia in U87MG glioma cells. Role of hypoxia-inducible factors 1 and 2. Journal of Biological Chemistry, 283(6), 3365–3375.PubMedCrossRef Anelli, V., Gault, C. R., Cheng, A. B., & Obeid, L. M. (2008). Sphingosine kinase 1 is up-regulated during hypoxia in U87MG glioma cells. Role of hypoxia-inducible factors 1 and 2. Journal of Biological Chemistry, 283(6), 3365–3375.PubMedCrossRef
46.
go back to reference Michaud, M. D., Robitaille, G. A., Gratton, J. P., & Richard, D. E. (2009). Sphingosine-1-phosphate: a novel nonhypoxic activator of hypoxia-inducible factor-1 in vascular cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 29(6), 902–908.PubMedCrossRef Michaud, M. D., Robitaille, G. A., Gratton, J. P., & Richard, D. E. (2009). Sphingosine-1-phosphate: a novel nonhypoxic activator of hypoxia-inducible factor-1 in vascular cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 29(6), 902–908.PubMedCrossRef
Metadata
Title
Eicosanoids and other lipid mediators and the tumor hypoxic microenvironment
Authors
Sriram Krishnamoorthy
Kenneth V. Honn
Publication date
01-12-2011
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 3-4/2011
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-011-9309-9

Other articles of this Issue 3-4/2011

Cancer and Metastasis Reviews 3-4/2011 Go to the issue

EditorialNotes

Preface

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine