Skip to main content
Top
Published in: Cancer and Metastasis Reviews 3-4/2011

01-12-2011

Cyclooxygenase-dependent signaling is causally linked to non-melanoma skin carcinogenesis: pharmacological, genetic, and clinical evidence

Author: Karin Müller-Decker

Published in: Cancer and Metastasis Reviews | Issue 3-4/2011

Login to get access

Abstract

Cyclooxygenase (COX)-derived prostaglandins (PGs) exhibit manifold functions in acute and chronic skin inflammation induced by a number of physical (ultraviolet (UV) light, wounding) and chemical (12-O-tetradecanoylphorbol 13-acetate (TPA), arachidonic acid) noxious stimuli. Depending on the challenge and the context, constitutively expressed COX-1 or the transiently induced COX-2 isoform are of relevance. Moreover, squamous cell carcinoma (SCC) of skin is a prominent example of epithelial neoplasia that consistently overexpresses COX-2 in the parenchyme and the mesenchyme of premalignant and malignant lesions, while COX-1 expression remains unaltered. Pharmacological, clinical, and experimental animal studies as well as a few epidemiological studies document the importance of PG signaling in non-melanoma skin cancer including SCC and basal cell carcinoma (BCC) in humans and mice. Increased levels of PGE2 and PGF in premalignant and/or malignant epithelial skin cancers are due to the constitutive upregulation of enzymes involved in PG biosynthesis, such as COX-2, and downregulation of the tumor suppressor gene 15-hydroxy-prostaglandin dehydrogenase (15-PGDH), which is involved in the inactivation of PG, thus counteracting the activities of COX. Most remarkably, genetic studies show that mice which are deficient in COX-2 or COX-1 are protected from the development of SCC when applying the multi-stage chemical carcinogenesis protocol. Conversely, the forced overexpression of COX-2 in the proliferative basal compartment of the stratified skin epidermis results in spontaneous hyperplasia and dysplasia in transgenic mice and furthermore a sensitization for cancer development by conferring an auto-promoted skin phenotype. In multi-stage carcinogenesis, it also becomes clear that aberrant COX-2 overexpression and activity are causally involved in tumor promotion and tumor progression rather than initiation. In contrast, using as inducer of carcinogenesis the complete carcinogen UV B light, depletion of COX-2 but not of COX-1 makes mouse skin resistant for SCC, indicating that here, only COX-2 is essential. Depending on the type of challenge, COX-2-dependent signaling contributes to the pre-invasive growth of the skin epidermis by a delayed onset of terminal differentiation, or stimulation of hyperproliferation and survival. With respect to BCC, the genetic ablation of COX-2 but also of COX-1 leads to a strongly reduced tumor burden in the skin of Patched (Ptch)1+/− mice, which due to the deletion of a Ptch1 allele, spontaneously develop BCC resembling human familial basal cell nevus syndrome and sporadic BCC. Nonsteroidal anti-inflammatory drugs and the COX-2-selective inhibitors (COXibs) exhibit impressive efficacy inhibiting tumor burden in various mouse models of SCC and BCC. Most importantly, in humans the interruption of COX-2 signaling is an effective strategy to treat and chemo-prevent non-melanoma skin cancer in individuals who are at high risk for the disease. However, any potential beneficial effect of this medicine has to be balanced against the adverse effects that are known to be associated with these drugs in a subset of patients.
Literature
1.
go back to reference Szabowsky, A., Maas-Szabowski, N., Andrecht, S., Kolbus, A., Schorpp-Kistner, M., Fusenig, N. E., et al. (2000). C-Jun and JunB antagonistically control cytokine-regulated mesenchymal-epidermal interaction in skin. Cell, 103, 745–755. Szabowsky, A., Maas-Szabowski, N., Andrecht, S., Kolbus, A., Schorpp-Kistner, M., Fusenig, N. E., et al. (2000). C-Jun and JunB antagonistically control cytokine-regulated mesenchymal-epidermal interaction in skin. Cell, 103, 745–755.
2.
go back to reference Boulais, N., & Misery, L. (2008). The epidermis: a sensory tissue. European Journal of Dermatology, 18, 119–127.PubMed Boulais, N., & Misery, L. (2008). The epidermis: a sensory tissue. European Journal of Dermatology, 18, 119–127.PubMed
3.
go back to reference Fuchs, E., & Raghavan, S. (2002). Getting under the skin of epidermis. Nature Reviews of Genetics, 3, 199–209. Fuchs, E., & Raghavan, S. (2002). Getting under the skin of epidermis. Nature Reviews of Genetics, 3, 199–209.
4.
go back to reference Candi, E., Schmidt, R., & Melino, G. (2005). The cornified envelope: a model of cell death in the skin. Nature, 6, 328–340. Candi, E., Schmidt, R., & Melino, G. (2005). The cornified envelope: a model of cell death in the skin. Nature, 6, 328–340.
5.
go back to reference Koster, M. I., & Roop, D. R. (2007). Mechanisms regulating epithelial stratification. Annual Review of Cell and Developmental Biology, 23, 93–113.PubMed Koster, M. I., & Roop, D. R. (2007). Mechanisms regulating epithelial stratification. Annual Review of Cell and Developmental Biology, 23, 93–113.PubMed
6.
go back to reference Feingold, K. R. (2007). The role of epidermal lipids in cutaneous permeability barrier homeostasis. Journal of Lipid Research, 48, 2531–2546.PubMed Feingold, K. R. (2007). The role of epidermal lipids in cutaneous permeability barrier homeostasis. Journal of Lipid Research, 48, 2531–2546.PubMed
7.
go back to reference Delfino-Machin, M., Chipperfield, T. R., Rodrigues, S. L. M., & Kelsh, R. N. (2007). The proliferating field of neural crest stem cells. Developmental Dynamics, 236, 3242–3254.PubMed Delfino-Machin, M., Chipperfield, T. R., Rodrigues, S. L. M., & Kelsh, R. N. (2007). The proliferating field of neural crest stem cells. Developmental Dynamics, 236, 3242–3254.PubMed
8.
go back to reference Romani, N., Clausen, B. E., & Stoitzner, P. (2010). Langerhans cells and more: Langerin-expressing dendritic cell subsets in the skin. Immunology Reviews, 234, 120–141. Romani, N., Clausen, B. E., & Stoitzner, P. (2010). Langerhans cells and more: Langerin-expressing dendritic cell subsets in the skin. Immunology Reviews, 234, 120–141.
9.
go back to reference Lin, J. Y., & Fisher, D. E. (2007). Melanocyte biology and skin pigmentation. Nature, 445, 843–850.PubMed Lin, J. Y., & Fisher, D. E. (2007). Melanocyte biology and skin pigmentation. Nature, 445, 843–850.PubMed
10.
go back to reference Gray-Schopfer, V., Wellbrock, C., & Marais, R. (2007). Melanoma biology and new targeted therapy. Nature, 445, 851–857.PubMed Gray-Schopfer, V., Wellbrock, C., & Marais, R. (2007). Melanoma biology and new targeted therapy. Nature, 445, 851–857.PubMed
11.
go back to reference Merad, M., Ginhoux, F., & Collin, M. (2008). Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells. Nature Reviews of Immunology, 8, 935–947. Merad, M., Ginhoux, F., & Collin, M. (2008). Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells. Nature Reviews of Immunology, 8, 935–947.
12.
go back to reference Maricich, S. M., Wellnitz, S. A., Nelson, A. M., Lesniak, D. R., Gerling, G. J., Lumpkin, E. A., et al. (2009). Merkel cells are essential for light-touch responses. Science, 324, 1580–1582.PubMed Maricich, S. M., Wellnitz, S. A., Nelson, A. M., Lesniak, D. R., Gerling, G. J., Lumpkin, E. A., et al. (2009). Merkel cells are essential for light-touch responses. Science, 324, 1580–1582.PubMed
13.
go back to reference Van Keymeulen, A., Mascre, G., Youseff, K. K., Harel, I., Michaux, C., De Geest, N., et al. (2009). Epidermal progenitors give rise to Merkel cells during embryonic development and adult homeostasis. The Journal of Cell Biology, 187, 91–100.PubMed Van Keymeulen, A., Mascre, G., Youseff, K. K., Harel, I., Michaux, C., De Geest, N., et al. (2009). Epidermal progenitors give rise to Merkel cells during embryonic development and adult homeostasis. The Journal of Cell Biology, 187, 91–100.PubMed
14.
go back to reference Lewis, J. M., Girardi, M., Roberts, S. J., Barbee, S. D., Hayday, A. C., & Tigelaar, R. E. (2006). Selection of the cutaneous intraepithelial γδ+ T cell repertoire by a thymic stromal determinant. Nature Immunology, 7, 843–850.PubMed Lewis, J. M., Girardi, M., Roberts, S. J., Barbee, S. D., Hayday, A. C., & Tigelaar, R. E. (2006). Selection of the cutaneous intraepithelial γδ+ T cell repertoire by a thymic stromal determinant. Nature Immunology, 7, 843–850.PubMed
15.
go back to reference Sumaria, N., Roedinger, B., Ng, L. G., Qin, J., Pinto, R., Cavanagh, L. L., et al. (2011). Cutaneous immunosurveillance by self-renewing dermal gammadelta T cells. The Journal of Experimental Medicine, 208, 505–518.PubMed Sumaria, N., Roedinger, B., Ng, L. G., Qin, J., Pinto, R., Cavanagh, L. L., et al. (2011). Cutaneous immunosurveillance by self-renewing dermal gammadelta T cells. The Journal of Experimental Medicine, 208, 505–518.PubMed
16.
go back to reference Bonventre, J. V., Huang, Z., Taheri, M. R., O’Leahy, E., Li, E., Moskowitz, M. A., et al. (1997). Reduced fertility and postischaemic brain injury in mice deficient in cytosolic phospholipase A2. Nature, 390, 622–625.PubMed Bonventre, J. V., Huang, Z., Taheri, M. R., O’Leahy, E., Li, E., Moskowitz, M. A., et al. (1997). Reduced fertility and postischaemic brain injury in mice deficient in cytosolic phospholipase A2. Nature, 390, 622–625.PubMed
17.
go back to reference Hirabashi, T., Murayama, T., & Shimizu, T. (2004). Regulatory mechanism and physiological role of cytosolic phospholipase A2. Biological and Pharmacological Bulletin, 27, 1168–1173. Hirabashi, T., Murayama, T., & Shimizu, T. (2004). Regulatory mechanism and physiological role of cytosolic phospholipase A2. Biological and Pharmacological Bulletin, 27, 1168–1173.
18.
go back to reference Smith, W. L., Dewitt, D. L., & Garavito, R. M. (2000). Cyclooxygenases: structural, cellular, andmolecular biology. Annual Reviews of Biochemistry, 69, 145–182. Smith, W. L., Dewitt, D. L., & Garavito, R. M. (2000). Cyclooxygenases: structural, cellular, andmolecular biology. Annual Reviews of Biochemistry, 69, 145–182.
19.
go back to reference Hara, S., Kamei, D., Sasaki, Y., Tanemoto, A., Nakatani, Y., & Murakami, M. (2010). Prostaglandin E synthases: understanding their pathophysiological roles through mouse genetic models. Biochemie, 92, 651–659. Hara, S., Kamei, D., Sasaki, Y., Tanemoto, A., Nakatani, Y., & Murakami, M. (2010). Prostaglandin E synthases: understanding their pathophysiological roles through mouse genetic models. Biochemie, 92, 651–659.
20.
go back to reference Helliwell, R. J., Adams, L. F., & Mitchell, M. D. (2004). Prostaglandin synthases: recent developments and a novel hypothesis. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 70, 101–113.PubMed Helliwell, R. J., Adams, L. F., & Mitchell, M. D. (2004). Prostaglandin synthases: recent developments and a novel hypothesis. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 70, 101–113.PubMed
21.
go back to reference Reid, G., Wielinga, P., Zelcer, N., van der Heijden, I., Kuil, A., de Haas, M., et al. (2003). The human multidrug resistance protein MRP4 functions as a prostaglandin efflux transporter and is inhibited by nonsteroidal anti-inflammatory drugs. Proceedings of the National Academy of Sciences of the United States of America, 100, 9244–9249.PubMed Reid, G., Wielinga, P., Zelcer, N., van der Heijden, I., Kuil, A., de Haas, M., et al. (2003). The human multidrug resistance protein MRP4 functions as a prostaglandin efflux transporter and is inhibited by nonsteroidal anti-inflammatory drugs. Proceedings of the National Academy of Sciences of the United States of America, 100, 9244–9249.PubMed
22.
go back to reference Woodward, D.F., Jones, R.L., & Narumiya, S. (2011). International union of basic and clinical pharmacology, classification of prostanoid receptors, updating 15 years of progress. Pharmacological Reviews, 63, 471–538. Woodward, D.F., Jones, R.L., & Narumiya, S. (2011). International union of basic and clinical pharmacology, classification of prostanoid receptors, updating 15 years of progress. Pharmacological Reviews, 63, 471–538.
23.
go back to reference Hata, N. A., & Breyer, R. M. (2004). Pharmacology and signalling of prostaglandin receptors: multiple roles in inflammation and immune modulation. Pharmacology and Therapeutics, 103, 147–166.PubMed Hata, N. A., & Breyer, R. M. (2004). Pharmacology and signalling of prostaglandin receptors: multiple roles in inflammation and immune modulation. Pharmacology and Therapeutics, 103, 147–166.PubMed
24.
go back to reference Wang, D., & DuBois, R. N. (2007). Inflammatory mediators and nuclear receptor signaling in colorectal cancer. Cell Cycle, 6, 682–685.PubMed Wang, D., & DuBois, R. N. (2007). Inflammatory mediators and nuclear receptor signaling in colorectal cancer. Cell Cycle, 6, 682–685.PubMed
25.
go back to reference Schuster, V. L. (2002). Prostaglandin transport. Prostaglandins and Lipid Mediators, 68–69, 633–647. Schuster, V. L. (2002). Prostaglandin transport. Prostaglandins and Lipid Mediators, 68–69, 633–647.
26.
go back to reference Myung, S. J., Rerko, R. M., Yan, M., Platzer, P., Guda, K., Dotson, A., et al. (2006). 15-Hydroxyprostaglandin dehydrogenase is an in vivo suppressor of colon tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 103, 12098–12102.PubMed Myung, S. J., Rerko, R. M., Yan, M., Platzer, P., Guda, K., Dotson, A., et al. (2006). 15-Hydroxyprostaglandin dehydrogenase is an in vivo suppressor of colon tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 103, 12098–12102.PubMed
27.
go back to reference Wolf, I., O’Kelly, J., Rubinek, T., Tong, M., Nguyen, A., Lin, B. T., et al. (2006). 15-hydroxyprostaglandin dehydrogenase is a tumor suppressor of human breast cancer. Cancer Research, 66, 7818–7823.PubMed Wolf, I., O’Kelly, J., Rubinek, T., Tong, M., Nguyen, A., Lin, B. T., et al. (2006). 15-hydroxyprostaglandin dehydrogenase is a tumor suppressor of human breast cancer. Cancer Research, 66, 7818–7823.PubMed
28.
go back to reference Ding, Y., Tong, M., Liu, S., Moscow, J. A., & Tai, H. H. (2005). NAD + −linked 15-hydroxyprostaglandin dehydrogenase (15-PGDH) behaves as a tumor suppressor in lung cancer. Carcinogenesis, 26, 65–72.PubMed Ding, Y., Tong, M., Liu, S., Moscow, J. A., & Tai, H. H. (2005). NAD + −linked 15-hydroxyprostaglandin dehydrogenase (15-PGDH) behaves as a tumor suppressor in lung cancer. Carcinogenesis, 26, 65–72.PubMed
29.
go back to reference Mann, J. R., Backlund, M. G., Buchanan, F. G., Daikoku, T., Holla, V. R., Rosenberg, D. W., et al. (2006). Repression of prostaglandin dehydrogenase by epidermal growth factor and snail increases prostaglandin E2 and promotes cancer progression. Cancer Research, 66, 6649–6656.PubMed Mann, J. R., Backlund, M. G., Buchanan, F. G., Daikoku, T., Holla, V. R., Rosenberg, D. W., et al. (2006). Repression of prostaglandin dehydrogenase by epidermal growth factor and snail increases prostaglandin E2 and promotes cancer progression. Cancer Research, 66, 6649–6656.PubMed
30.
go back to reference Judson, B. L., Miyaki, A., Kekapture, V. D., Du, B., Gilleaudeau, P., Sullivan-Whalen, M., et al. (2010). UV radiation inhibits 15-hydroxyprostaglandin dehydrogenase levels in human skin: evidence of transcriptional suppression. Cancer and Prevention Research, 3, 1104–1111. Judson, B. L., Miyaki, A., Kekapture, V. D., Du, B., Gilleaudeau, P., Sullivan-Whalen, M., et al. (2010). UV radiation inhibits 15-hydroxyprostaglandin dehydrogenase levels in human skin: evidence of transcriptional suppression. Cancer and Prevention Research, 3, 1104–1111.
31.
go back to reference Simmons, D. L., Botting, R. M., & Hla, T. (2004). Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharmacological Reviews, 56, 387–437.PubMed Simmons, D. L., Botting, R. M., & Hla, T. (2004). Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharmacological Reviews, 56, 387–437.PubMed
32.
go back to reference Loftin, C. D., Tiano, H. F., & Langenbach, R. (2002). Phenotypes of the COX-deficient mice indicate physiological and pathophysiological roles for COX-1 and COX-2. Prostaglandins and Lipid Mediators, 68–69, 177–185. Loftin, C. D., Tiano, H. F., & Langenbach, R. (2002). Phenotypes of the COX-deficient mice indicate physiological and pathophysiological roles for COX-1 and COX-2. Prostaglandins and Lipid Mediators, 68–69, 177–185.
33.
go back to reference Cha, Y. I., & DuBois, R. N. (2007). NSAIDs and cancer prevention: targets downstream of COX-2. Annual Reviews of Medicine, 58, 239–252. Cha, Y. I., & DuBois, R. N. (2007). NSAIDs and cancer prevention: targets downstream of COX-2. Annual Reviews of Medicine, 58, 239–252.
34.
go back to reference Blackwell, K. A., Raisz, L. G., & Pilbeam, C. C. (2010). Prostaglandins in bone: bad cop, good cop? Trends in Endocrinoogy and Metabolism, 21, 294–300. Blackwell, K. A., Raisz, L. G., & Pilbeam, C. C. (2010). Prostaglandins in bone: bad cop, good cop? Trends in Endocrinoogy and Metabolism, 21, 294–300.
35.
go back to reference Vegiopoulos, A., Müller-Decker, K., Strzoda, D., Schmitt, I., Chichelnitskiy, E., Ostertag, A., et al. (2010). Cyclooxygenase-2 controls energy homeostasis in mice by de novo recruitment of brown adipocytes. Science, 328, 1158–1161.PubMed Vegiopoulos, A., Müller-Decker, K., Strzoda, D., Schmitt, I., Chichelnitskiy, E., Ostertag, A., et al. (2010). Cyclooxygenase-2 controls energy homeostasis in mice by de novo recruitment of brown adipocytes. Science, 328, 1158–1161.PubMed
36.
go back to reference Wang, D., & DuBois, R. N. (2010). The role of COX-2 in intestinal inflammation and colorectal cancer. Oncogene, 29, 781–788.PubMed Wang, D., & DuBois, R. N. (2010). The role of COX-2 in intestinal inflammation and colorectal cancer. Oncogene, 29, 781–788.PubMed
37.
go back to reference Wang, D., & DuBois, R. N. (2010). Eicosanoids and cancer. Nature Reviews. Cancer, 10, 181–194.PubMed Wang, D., & DuBois, R. N. (2010). Eicosanoids and cancer. Nature Reviews. Cancer, 10, 181–194.PubMed
38.
go back to reference Wong, D., Wang, M., Cheng, Y., & FitzGerald, G. A. (2005). Cardiovascular hazard and non-steroidal anti-inflammatory drugs. Current Opinion in Pharmacology, 5, 204–210.PubMed Wong, D., Wang, M., Cheng, Y., & FitzGerald, G. A. (2005). Cardiovascular hazard and non-steroidal anti-inflammatory drugs. Current Opinion in Pharmacology, 5, 204–210.PubMed
39.
go back to reference Marks, F., Fürstenberger, G., Neufang, G., & Müller-Decker, K. (2003). Mouse skin as a model for cancer chemoprevention by nonsteroidal anti-inflammatory drugs. Recent Results in Cancer Research, 163, 46–57.PubMed Marks, F., Fürstenberger, G., Neufang, G., & Müller-Decker, K. (2003). Mouse skin as a model for cancer chemoprevention by nonsteroidal anti-inflammatory drugs. Recent Results in Cancer Research, 163, 46–57.PubMed
40.
go back to reference Tegeder, I., Pfeilschifter, J., & Geisslinger, G. (2001). Cyclooxygenase-independent actions ofcyclooxygenase inhibitors. The FASEB Journal, 15, 2057–2072.PubMed Tegeder, I., Pfeilschifter, J., & Geisslinger, G. (2001). Cyclooxygenase-independent actions ofcyclooxygenase inhibitors. The FASEB Journal, 15, 2057–2072.PubMed
41.
go back to reference Raz, A. (2002). Is inhibition of cyclooxygenase required for the anti-tumorigenic effects ofnon-steroidal, anti-inflammatory drugs (NSAIDs)? In vitro versus in vivo results and the relevance for the prevention and treatment of cancer. Biochemical Pharmacology, 63, 343–347.PubMed Raz, A. (2002). Is inhibition of cyclooxygenase required for the anti-tumorigenic effects ofnon-steroidal, anti-inflammatory drugs (NSAIDs)? In vitro versus in vivo results and the relevance for the prevention and treatment of cancer. Biochemical Pharmacology, 63, 343–347.PubMed
42.
go back to reference Goldyne, M. E. (2000). Cyclooxygenase isoforms in human skin. Prostaglandins and Other Lipid Mediators, 63, 15–23.PubMed Goldyne, M. E. (2000). Cyclooxygenase isoforms in human skin. Prostaglandins and Other Lipid Mediators, 63, 15–23.PubMed
43.
go back to reference Gledhill, K., Rhodes, L. E., Brownrigg, M., Haylett, A. K., Masoodi, M., Thody, A. J., et al. (2010). Prostaglandin-E2 is produced by adult human epidermal melanocytes in response to UVB in a melanogenesis-independent manner. Pigment and Melanoma Research, 23, 394–403. Gledhill, K., Rhodes, L. E., Brownrigg, M., Haylett, A. K., Masoodi, M., Thody, A. J., et al. (2010). Prostaglandin-E2 is produced by adult human epidermal melanocytes in response to UVB in a melanogenesis-independent manner. Pigment and Melanoma Research, 23, 394–403.
44.
go back to reference Maciejewski-Lenoir, D., Richman, J. G., Habak, Y., Gaidarov, I., Behan, D. P., & Connolly, D. T. (2006). Langerhans cells release prostaglandin D2 in response to nicotinic acid. Journal of Investigative Dermatology, 126, 2637–2646.PubMed Maciejewski-Lenoir, D., Richman, J. G., Habak, Y., Gaidarov, I., Behan, D. P., & Connolly, D. T. (2006). Langerhans cells release prostaglandin D2 in response to nicotinic acid. Journal of Investigative Dermatology, 126, 2637–2646.PubMed
45.
go back to reference Shimura, C., Satoh, T., Igawa, K., Aritake, K., Urade, Y., Nakamura, M., et al. (2010). Dendritic cells express hematopoietic prostaglandin D synthase and function as a source of prostaglandin D2 in the skin. American Journal of Pathology, 176, 227–237.PubMed Shimura, C., Satoh, T., Igawa, K., Aritake, K., Urade, Y., Nakamura, M., et al. (2010). Dendritic cells express hematopoietic prostaglandin D synthase and function as a source of prostaglandin D2 in the skin. American Journal of Pathology, 176, 227–237.PubMed
46.
go back to reference Ziboh, V. A. (1996). The significance of polyunsaturated fatty acids in cutaneous biology. Lipids, 31, 249–253. Ziboh, V. A. (1996). The significance of polyunsaturated fatty acids in cutaneous biology. Lipids, 31, 249–253.
47.
go back to reference Müller-Decker, K., Leder, C., Neumann, M., Neufang, G., Bayerl, C., Schweizer, J., et al. (2003). Expression of cyclooxygenase isozymes during morphogenesis and cycling of pelage hair follicles in mouse skin: precocious onset of the first catagen phase and alopecia upon cyclooxygenase-2 overexpression. Journal of Investigative Dermatology, 121, 661–668.PubMed Müller-Decker, K., Leder, C., Neumann, M., Neufang, G., Bayerl, C., Schweizer, J., et al. (2003). Expression of cyclooxygenase isozymes during morphogenesis and cycling of pelage hair follicles in mouse skin: precocious onset of the first catagen phase and alopecia upon cyclooxygenase-2 overexpression. Journal of Investigative Dermatology, 121, 661–668.PubMed
48.
go back to reference Müller-Decker, K., Scholz, K., Neufang, G., Marks, F., & Fürstenberger, G. (1998). Localization of prostaglandin-h synthase-1 and −2 in mouse skin: Implications for cutaneous function. Experimental Cell Research, 242, 84–91.PubMed Müller-Decker, K., Scholz, K., Neufang, G., Marks, F., & Fürstenberger, G. (1998). Localization of prostaglandin-h synthase-1 and −2 in mouse skin: Implications for cutaneous function. Experimental Cell Research, 242, 84–91.PubMed
49.
go back to reference Müller-Decker, K., Reinerth, G., Krieg, P., Zimmermann, R., Heise, H., Bayerl, C., et al. (1999). Prostaglandin-h-synthase isozyme expression in normal and neoplastic human skin. International Journal of Cancer, 82, 648–656. Müller-Decker, K., Reinerth, G., Krieg, P., Zimmermann, R., Heise, H., Bayerl, C., et al. (1999). Prostaglandin-h-synthase isozyme expression in normal and neoplastic human skin. International Journal of Cancer, 82, 648–656.
50.
go back to reference Alestas, T., Ganceviciene, R., Fimmel, S., Müller-Decker, K., & Zouboulis, C. C. (2006). Enzymes involved in the biosynthesis of leukotriene B4 and prostaglandin E2 are active in sebaceous glands. Journal of Molecular Medicine, 84, 75–87.PubMed Alestas, T., Ganceviciene, R., Fimmel, S., Müller-Decker, K., & Zouboulis, C. C. (2006). Enzymes involved in the biosynthesis of leukotriene B4 and prostaglandin E2 are active in sebaceous glands. Journal of Molecular Medicine, 84, 75–87.PubMed
51.
go back to reference Abd-El-Aleem, S. A., Ferguson, M. W. J., Appleton, I., Bhowmick, A., McCollum, C. N., & Ireland, G. W. (2001). Expression of cyclooxygenase isoforms in normal human skin and chronic venous ulcers. The Journal of Pathology, 195, 616–623.PubMed Abd-El-Aleem, S. A., Ferguson, M. W. J., Appleton, I., Bhowmick, A., McCollum, C. N., & Ireland, G. W. (2001). Expression of cyclooxygenase isoforms in normal human skin and chronic venous ulcers. The Journal of Pathology, 195, 616–623.PubMed
52.
go back to reference Kagoura, M., Toyoda, M., Matsui, C., & Morohashi, M. (2001). Immunohistochemical expression of cyclooxygenase-2 in skin cancers. Journal of Cutaneous Pathology, 28, 298–302.PubMed Kagoura, M., Toyoda, M., Matsui, C., & Morohashi, M. (2001). Immunohistochemical expression of cyclooxygenase-2 in skin cancers. Journal of Cutaneous Pathology, 28, 298–302.PubMed
53.
go back to reference Akunda, J. K., Lao, H. C., Lee, C. A., Sessoms, A. R., Slade, R. M., & Langenbach, R. (2004). Genetic deficiency or pharmacological inhibition of cyclooxygenase-1 or −2 induces mouse keratinocyte differentiation in vitro and in vivo. The FASEB Journal, 18, 185–187.PubMed Akunda, J. K., Lao, H. C., Lee, C. A., Sessoms, A. R., Slade, R. M., & Langenbach, R. (2004). Genetic deficiency or pharmacological inhibition of cyclooxygenase-1 or −2 induces mouse keratinocyte differentiation in vitro and in vivo. The FASEB Journal, 18, 185–187.PubMed
54.
go back to reference Leong, J., Hughes-Fulford, M., Rakhlin, N., Habib, A., Maclouf, J., & Goldyne, M. E. (1996). Cyclooxygenase in human and mouse skin and cultured human keratinocytes: association of COX-2 expression with human keratinocyte differentiation. Experimental Cell Research, 224, 79–87.PubMed Leong, J., Hughes-Fulford, M., Rakhlin, N., Habib, A., Maclouf, J., & Goldyne, M. E. (1996). Cyclooxygenase in human and mouse skin and cultured human keratinocytes: association of COX-2 expression with human keratinocyte differentiation. Experimental Cell Research, 224, 79–87.PubMed
55.
go back to reference Hruza, L. L., & Pentland, A. P. (1993). Mechanisms of UV-induced inflammation. Journal of Investigative Dermatology, 100, 35S–41S.PubMed Hruza, L. L., & Pentland, A. P. (1993). Mechanisms of UV-induced inflammation. Journal of Investigative Dermatology, 100, 35S–41S.PubMed
56.
go back to reference Williams, I. R., & Kupper, T. S. (1996). Immunity at the surface: homeostatic mechanisms of the skin immune system. Life Sciences, 58, 1485–1507.PubMed Williams, I. R., & Kupper, T. S. (1996). Immunity at the surface: homeostatic mechanisms of the skin immune system. Life Sciences, 58, 1485–1507.PubMed
57.
go back to reference Ruzicka, T., Walter, J. F., & Printz, M. P. (1983). Changes in arachidonic acid metabolism in UV-irradiated hairless mouse skin. Journal of Investigative Dermatology, 81, 300–303.PubMed Ruzicka, T., Walter, J. F., & Printz, M. P. (1983). Changes in arachidonic acid metabolism in UV-irradiated hairless mouse skin. Journal of Investigative Dermatology, 81, 300–303.PubMed
58.
go back to reference Pentland, A. P., & Jacobs, S. C. (1991). Bradykinin-induced prostaglandin synthesis is enhanced in keratinocytes and fibroblasts by UV injury. American Journal of Physiology, 261, R543–R547.PubMed Pentland, A. P., & Jacobs, S. C. (1991). Bradykinin-induced prostaglandin synthesis is enhanced in keratinocytes and fibroblasts by UV injury. American Journal of Physiology, 261, R543–R547.PubMed
59.
go back to reference Kuwamoto, K., Miyauchi-Hashimoto, H., Tanaka, K., Eguchi, N., Inui, T., Urade, Y., et al. (2000). Possible involvement of enhanced prostaglandin E2 production in the photosensitivity in xeroderma pigmentosum group A model mice. Journal of Investigative Dermatology, 114, 241–246.PubMed Kuwamoto, K., Miyauchi-Hashimoto, H., Tanaka, K., Eguchi, N., Inui, T., Urade, Y., et al. (2000). Possible involvement of enhanced prostaglandin E2 production in the photosensitivity in xeroderma pigmentosum group A model mice. Journal of Investigative Dermatology, 114, 241–246.PubMed
60.
go back to reference Goldyne, M. E., & Evans, C. B. (1994). 12-O-Tetradecanoylphorbol-13-acetate and the induction ofprostaglandin E2 generation by human keratinocytes: A re-evaluation. Carcinogenesis, 15, 141–143.PubMed Goldyne, M. E., & Evans, C. B. (1994). 12-O-Tetradecanoylphorbol-13-acetate and the induction ofprostaglandin E2 generation by human keratinocytes: A re-evaluation. Carcinogenesis, 15, 141–143.PubMed
61.
go back to reference Müller-Decker, K., Scholz, K., Marks, F., & Fürstenberger, G. (1995). Differential expression of prostaglandin h synthase isozymes during multistage carcinogenesis in mouse epidermis. Molecular Carcinogenesis, 12, 31–41.PubMed Müller-Decker, K., Scholz, K., Marks, F., & Fürstenberger, G. (1995). Differential expression of prostaglandin h synthase isozymes during multistage carcinogenesis in mouse epidermis. Molecular Carcinogenesis, 12, 31–41.PubMed
62.
go back to reference Black, A. K., Greaves, M. W., Hensby, C. N., & Pummer, N. A. (1978). Increased prostaglandins E2 and F2α in human skin at 6 and 24 h after ultraviolet B irradiation (290–320 nm). British Journal of Clinical Pharmacology, 5, 431–436.PubMed Black, A. K., Greaves, M. W., Hensby, C. N., & Pummer, N. A. (1978). Increased prostaglandins E2 and F2α in human skin at 6 and 24 h after ultraviolet B irradiation (290–320 nm). British Journal of Clinical Pharmacology, 5, 431–436.PubMed
63.
go back to reference Williams, T. J. (1979). Prostaglandin E2, prostaglandin I2, and the vascular changes of inflammation. British Journal of Pharmacology, 65, 517–524.PubMed Williams, T. J. (1979). Prostaglandin E2, prostaglandin I2, and the vascular changes of inflammation. British Journal of Pharmacology, 65, 517–524.PubMed
64.
go back to reference Williams, T. J., & Peck, M. J. (1977). Role of prostaglandin-mediated vasodilatation in inflammation. Nature, 270, 530–532.PubMed Williams, T. J., & Peck, M. J. (1977). Role of prostaglandin-mediated vasodilatation in inflammation. Nature, 270, 530–532.PubMed
65.
go back to reference Pentland, A. P., Mahoney, M., Jacobs, S., & Holtzmann, M. J. (1990). Enhanced prostaglandin synthesis after ultraviolet injury is mediated by endogenous histamine stimulation. Journal of Clinical Investigation, 86, 566–574.PubMed Pentland, A. P., Mahoney, M., Jacobs, S., & Holtzmann, M. J. (1990). Enhanced prostaglandin synthesis after ultraviolet injury is mediated by endogenous histamine stimulation. Journal of Clinical Investigation, 86, 566–574.PubMed
66.
go back to reference Rhodes, L. E., Belgi, G., Parslew, R., McLoughlin, L., Clough, G. F., & Friedman, P. S. (2001). Ultraviolet-B-induced erythema is mediated by nitric oxide and prostaglandin E2 in combination. Journal of Investigative Dermatology, 117, 880–885.PubMed Rhodes, L. E., Belgi, G., Parslew, R., McLoughlin, L., Clough, G. F., & Friedman, P. S. (2001). Ultraviolet-B-induced erythema is mediated by nitric oxide and prostaglandin E2 in combination. Journal of Investigative Dermatology, 117, 880–885.PubMed
67.
go back to reference Davis, P., Bailey, P. J., Goldenberg, M. M., & Ford-Hutchinson, A. W. (1984). The role of arachidonic acid oxygenation products in pain and inflammation. Annual Reviews of Immunology, 2, 335–357. Davis, P., Bailey, P. J., Goldenberg, M. M., & Ford-Hutchinson, A. W. (1984). The role of arachidonic acid oxygenation products in pain and inflammation. Annual Reviews of Immunology, 2, 335–357.
68.
go back to reference Murata, T., Ushikubi, F., Matsuoka, T., Hirata, M., Yamasaki, A., Sugimoto, Y., et al. (1997). Altered pain perception and inflammatory response in mice lacking prostacyclin receptor. Nature, 388, 678–682.PubMed Murata, T., Ushikubi, F., Matsuoka, T., Hirata, M., Yamasaki, A., Sugimoto, Y., et al. (1997). Altered pain perception and inflammatory response in mice lacking prostacyclin receptor. Nature, 388, 678–682.PubMed
69.
go back to reference Ferreira, S. H. (1981). Inflammatory pain, prostaglandin hyperalgesia and the development of peripheral analgesia. Trends in Pharmacological Sciences, 12, 183–186. Ferreira, S. H. (1981). Inflammatory pain, prostaglandin hyperalgesia and the development of peripheral analgesia. Trends in Pharmacological Sciences, 12, 183–186.
70.
go back to reference Balsinde, J., Balboa, M. A., Insel, P. A., & Dennis, E. A. (1999). Regulation and inhibition of phopholipase A2. Annual Reviews of Pharmacology and Toxicology, 39, 175–189. Balsinde, J., Balboa, M. A., Insel, P. A., & Dennis, E. A. (1999). Regulation and inhibition of phopholipase A2. Annual Reviews of Pharmacology and Toxicology, 39, 175–189.
71.
go back to reference Kast, R., Fürstenberger, G., & Marks, F. (1993). Phorbol-ester TPA- and bradykinin-induced arachidonic acid release from keratinocytes is catalyzed by a cytosolic phospholipase A2 (cPLA2). Journal of Investigative Dermatology, 101, 567–572.PubMed Kast, R., Fürstenberger, G., & Marks, F. (1993). Phorbol-ester TPA- and bradykinin-induced arachidonic acid release from keratinocytes is catalyzed by a cytosolic phospholipase A2 (cPLA2). Journal of Investigative Dermatology, 101, 567–572.PubMed
72.
go back to reference Gresham, A., Masferrer, J., Chen, X., Leal-Khouri, S., & Pentland, A. P. (1996). Increased synthesis of high- molecular-weight cPLA2 mediates early UV-induced PGE2 in human skin. American Journal ofPhysiology, 270, C1037–C1050. Gresham, A., Masferrer, J., Chen, X., Leal-Khouri, S., & Pentland, A. P. (1996). Increased synthesis of high- molecular-weight cPLA2 mediates early UV-induced PGE2 in human skin. American Journal ofPhysiology, 270, C1037–C1050.
73.
go back to reference Kang-Rotondo, C. H., Miller, C. C., Morrison, A. R., & Pentland, A. P. (1993). Enhanced keratinocyte prostaglandin synthesis after UV injury is due to increased phospholipase activity. American Journal of Physiology, 264, C396–C401.PubMed Kang-Rotondo, C. H., Miller, C. C., Morrison, A. R., & Pentland, A. P. (1993). Enhanced keratinocyte prostaglandin synthesis after UV injury is due to increased phospholipase activity. American Journal of Physiology, 264, C396–C401.PubMed
74.
go back to reference Scholz, K., Fürstenberger, G., Müller-Decker, K., & Marks, F. (1995). Differential expression of prostaglandin H-synthase isoenzymes in normal and activated keratinocytes in vivo and in vitro. Biochemical Journal, 306, 263–269. Scholz, K., Fürstenberger, G., Müller-Decker, K., & Marks, F. (1995). Differential expression of prostaglandin H-synthase isoenzymes in normal and activated keratinocytes in vivo and in vitro. Biochemical Journal, 306, 263–269.
75.
go back to reference Fürstenberger, G., & Marks, F. (1980). Early prostaglandin E synthesis is an obligatory event in the induction of cell proliferation in mouse epidermis in vivo by the phorbolester TPA. Biochemical and Biophysical Research Communication, 92, 749–756. Fürstenberger, G., & Marks, F. (1980). Early prostaglandin E synthesis is an obligatory event in the induction of cell proliferation in mouse epidermis in vivo by the phorbolester TPA. Biochemical and Biophysical Research Communication, 92, 749–756.
76.
go back to reference Buckman, S. Y., Gresham, A., Hale, P., Hruza, G., Anast, J., Masferrer, J., et al. (1998). COX-2 expression is induced by UVB exposure in human skin: Implications for the development of skin cancer. Carcinogenesis, 19, 723–729.PubMed Buckman, S. Y., Gresham, A., Hale, P., Hruza, G., Anast, J., Masferrer, J., et al. (1998). COX-2 expression is induced by UVB exposure in human skin: Implications for the development of skin cancer. Carcinogenesis, 19, 723–729.PubMed
77.
go back to reference Soriani, M., Luscher, P., & Tyrrell, R. M. (1999). Direct and indirect modulation of ornithine decarboxylase and cyclooxygenase by UVB radiation in human skin cells. Carcinogenesis, 20, 727–732.PubMed Soriani, M., Luscher, P., & Tyrrell, R. M. (1999). Direct and indirect modulation of ornithine decarboxylase and cyclooxygenase by UVB radiation in human skin cells. Carcinogenesis, 20, 727–732.PubMed
78.
go back to reference Athar, M., An, K. P., Morel, K. D., Kim, A. L., Aszterbaum, M., Longley, J., et al. (2001). Ultraviolet B (UVB)-induced COX-2 expression in murine skin: an immunohisto-chemical study. Biochemical and Biophysical Research Communication, 280, 1042–1047. Athar, M., An, K. P., Morel, K. D., Kim, A. L., Aszterbaum, M., Longley, J., et al. (2001). Ultraviolet B (UVB)-induced COX-2 expression in murine skin: an immunohisto-chemical study. Biochemical and Biophysical Research Communication, 280, 1042–1047.
79.
go back to reference An, K. P., Athar, M., Tang, X., Katiyar, S. K., Russo, J., Beech, J., et al. (2002). Cyclooxygenase-2 expression in murine and human nonmelanoma skin cancers: implications for therapeutic approaches. Photochemistry and Photobiology, 76, 73–80.PubMed An, K. P., Athar, M., Tang, X., Katiyar, S. K., Russo, J., Beech, J., et al. (2002). Cyclooxygenase-2 expression in murine and human nonmelanoma skin cancers: implications for therapeutic approaches. Photochemistry and Photobiology, 76, 73–80.PubMed
80.
go back to reference Tripp, C. S., Blomme, E. A. G., Chinn, K. S., Hardy, M. M., LaCelle, P., & Pentland, A. P. (2003). Epidermal COX-2 induction following ultraviolet irradiation: suggested mechanism for the role of COX-2 inhibition in photoprotection. Journal of Investigative Dermatology, 121, 1–9. Tripp, C. S., Blomme, E. A. G., Chinn, K. S., Hardy, M. M., LaCelle, P., & Pentland, A. P. (2003). Epidermal COX-2 induction following ultraviolet irradiation: suggested mechanism for the role of COX-2 inhibition in photoprotection. Journal of Investigative Dermatology, 121, 1–9.
81.
go back to reference Dazard, J. E., Gal, H., Amariglio, N., Rechavi, G., Domany, E., & Givol, D. (2003). Genome-wide comparison of human keratinocyte and squamous carcinoma responses to UVB irradiation: implication for skin and epithelial cancer. Oncogene, 22, 2993–3006.PubMed Dazard, J. E., Gal, H., Amariglio, N., Rechavi, G., Domany, E., & Givol, D. (2003). Genome-wide comparison of human keratinocyte and squamous carcinoma responses to UVB irradiation: implication for skin and epithelial cancer. Oncogene, 22, 2993–3006.PubMed
82.
go back to reference Akunda, J. K., Chun, K. S., Sessoms, A. R., Lao, H. C., Fischer, S. M., & Langenbach, R. (2007). Cyclooxygenase-2 deficiency increases epidermal apoptosis and impairs recovery following acute UVB exposure. Molecular Carcinogenesis, 46, 354–362.PubMed Akunda, J. K., Chun, K. S., Sessoms, A. R., Lao, H. C., Fischer, S. M., & Langenbach, R. (2007). Cyclooxygenase-2 deficiency increases epidermal apoptosis and impairs recovery following acute UVB exposure. Molecular Carcinogenesis, 46, 354–362.PubMed
83.
go back to reference Morham, S. G., Langenbach, R., Loftin, C. D., Tiano, H. F., Vouloumanos, N., Jennette, J. C., et al. (1995). Prostaglandin synthase 2 gene disruption causes severe renal pathology in the mouse. Cell, 83, 473–482.PubMed Morham, S. G., Langenbach, R., Loftin, C. D., Tiano, H. F., Vouloumanos, N., Jennette, J. C., et al. (1995). Prostaglandin synthase 2 gene disruption causes severe renal pathology in the mouse. Cell, 83, 473–482.PubMed
84.
go back to reference Langenbach, R., Morham, S. G., Tiano, H. F., Loftin, C. D., Ghanayem, B. I., Chulada, P. C., et al. (1995). Prostaglandin synthase 1 gene disruption in mice reduced arachidonic acid-induced inflammation and indomethacin-induced gastric ulceration. Cell, 83, 483–492.PubMed Langenbach, R., Morham, S. G., Tiano, H. F., Loftin, C. D., Ghanayem, B. I., Chulada, P. C., et al. (1995). Prostaglandin synthase 1 gene disruption in mice reduced arachidonic acid-induced inflammation and indomethacin-induced gastric ulceration. Cell, 83, 483–492.PubMed
85.
go back to reference Neufang, G., Fürstenberger, G., Heidt, M., Marks, F., & Müller-Decker, K. (2001). Abnormal differentiation of epidermis in transgenic mice constitutively expressing cyclooxygenase-2 in skin. Proceedings of the National Academy of Sciences of the United States of America, 98, 7629–7634.PubMed Neufang, G., Fürstenberger, G., Heidt, M., Marks, F., & Müller-Decker, K. (2001). Abnormal differentiation of epidermis in transgenic mice constitutively expressing cyclooxygenase-2 in skin. Proceedings of the National Academy of Sciences of the United States of America, 98, 7629–7634.PubMed
86.
go back to reference Neumann, M., Dülsner, E., Fürstenberger, G., & Müller-Decker, K. (2007). The expression pattern of prostaglandin E synthase and EP receptor isoforms in normal mouse skin and preinvasive neoplasms. Experimental Dermatology, 16, 445–453.PubMed Neumann, M., Dülsner, E., Fürstenberger, G., & Müller-Decker, K. (2007). The expression pattern of prostaglandin E synthase and EP receptor isoforms in normal mouse skin and preinvasive neoplasms. Experimental Dermatology, 16, 445–453.PubMed
87.
go back to reference Tiano, H. F., Loftin, C. D., Akunda, J., Lee, C. A., Spalding, J., Sessoms, A., et al. (2002). Deficiency of either cyclooxygenase (COX)-1 or COX-2 alters epidermal differentiation and reduces mouse skin tumorigenesis. Cancer Research, 62, 3395–3401.PubMed Tiano, H. F., Loftin, C. D., Akunda, J., Lee, C. A., Spalding, J., Sessoms, A., et al. (2002). Deficiency of either cyclooxygenase (COX)-1 or COX-2 alters epidermal differentiation and reduces mouse skin tumorigenesis. Cancer Research, 62, 3395–3401.PubMed
88.
go back to reference Pentland, A. P., Scott, G., VanBuskirk, J., Tranck, C., LaRossa, G., & Brouxhon, S. (2004). Cyclooxygenase-1 deletion enhances apoptosis but does not protect against ultraviolet light-induced tumors. Cancer Research, 64, 5587–5591.PubMed Pentland, A. P., Scott, G., VanBuskirk, J., Tranck, C., LaRossa, G., & Brouxhon, S. (2004). Cyclooxygenase-1 deletion enhances apoptosis but does not protect against ultraviolet light-induced tumors. Cancer Research, 64, 5587–5591.PubMed
89.
go back to reference Hoshino, T., Tsutsumi, S., Tomisato, W., Hwang, H. J., Tsuchiya, T., & Mizushima, T. (2003). Prostaglandin E2 protects gastric mucosal cells from apoptosis via EP2 and EP4 receptor activation. Journal of Biological Chemistry, 278, 12752–12758.PubMed Hoshino, T., Tsutsumi, S., Tomisato, W., Hwang, H. J., Tsuchiya, T., & Mizushima, T. (2003). Prostaglandin E2 protects gastric mucosal cells from apoptosis via EP2 and EP4 receptor activation. Journal of Biological Chemistry, 278, 12752–12758.PubMed
90.
go back to reference Houchen, C. W., Sturmoski, M. A., Anant, S., Breyer, R. M., & Stenson, W. F. (2003). Prosurvival and antiapoptotic effects of PGE2 in radiation injury are mediated by EP2 receptor in intestine. American Journal of Gastrointestinal and Liver Physiology, 284, G490–G498. Houchen, C. W., Sturmoski, M. A., Anant, S., Breyer, R. M., & Stenson, W. F. (2003). Prosurvival and antiapoptotic effects of PGE2 in radiation injury are mediated by EP2 receptor in intestine. American Journal of Gastrointestinal and Liver Physiology, 284, G490–G498.
91.
go back to reference Chun, K. S., Akunda, J. K., & Langenbach, R. (2007). Cyclooxygenase-2 inhibits UVB-induced apoptosis in mouse skin by activating the PGE2 receptors EP2 and EP4. Cancer Research, 67, 2015–2020.PubMed Chun, K. S., Akunda, J. K., & Langenbach, R. (2007). Cyclooxygenase-2 inhibits UVB-induced apoptosis in mouse skin by activating the PGE2 receptors EP2 and EP4. Cancer Research, 67, 2015–2020.PubMed
92.
go back to reference Chun, K. S., & Langenbach, R. (2007). A proposed COX-2 and PGE2 receptor interaction in UV-exposed mouse skin. Molecular Carcinogenesis, 46, 699–704.PubMed Chun, K. S., & Langenbach, R. (2007). A proposed COX-2 and PGE2 receptor interaction in UV-exposed mouse skin. Molecular Carcinogenesis, 46, 699–704.PubMed
93.
go back to reference Fischer, S. M., Pavone, A. P., Mikulec, C., Langenbach, R., & Rundhaug, J. E. (2007). Cyclooxygenase-2 expression is critical for UV-induced murine skin carcinogenesis. Molecular Carcinogenesis, 46, 363–371.PubMed Fischer, S. M., Pavone, A. P., Mikulec, C., Langenbach, R., & Rundhaug, J. E. (2007). Cyclooxygenase-2 expression is critical for UV-induced murine skin carcinogenesis. Molecular Carcinogenesis, 46, 363–371.PubMed
94.
go back to reference Wilgus, T. A., Ross, M., Parrett, M., & Oberyszyn, T. (2000). Topical application of a selective cyclooxygenase-2 inhibitor suppresses UVB mediated cutaneous inflammation. Prostaglandins & Other Lipid Mediators, 62, 367–384. Wilgus, T. A., Ross, M., Parrett, M., & Oberyszyn, T. (2000). Topical application of a selective cyclooxygenase-2 inhibitor suppresses UVB mediated cutaneous inflammation. Prostaglandins & Other Lipid Mediators, 62, 367–384.
95.
go back to reference Wilgus, T. A., Parrett, M. L., Ross, M. S., Tober, K. L., Robertson, F. M., & Oberyszyn, T. M. (2002). Inhibition of ultraviolet light B-induced cutaneous inflammation by a specific cyclooxygenase-2 inhibitor. Advances in Experimental Medicine and Biology, 507, 85–92.PubMed Wilgus, T. A., Parrett, M. L., Ross, M. S., Tober, K. L., Robertson, F. M., & Oberyszyn, T. M. (2002). Inhibition of ultraviolet light B-induced cutaneous inflammation by a specific cyclooxygenase-2 inhibitor. Advances in Experimental Medicine and Biology, 507, 85–92.PubMed
96.
go back to reference Wilgus, T. A., Koki, A. T., Zweifel, B. S., Kusewitt, D. F., Rubal, P. A., & Oberyszyn, T. M. (2003). Inhibition of cutaneous ultraviolet light-B-mediated inflammation and tumor formation with topical celecoxib treatment. Molecular Carcinogenesis, 38, 49–58.PubMed Wilgus, T. A., Koki, A. T., Zweifel, B. S., Kusewitt, D. F., Rubal, P. A., & Oberyszyn, T. M. (2003). Inhibition of cutaneous ultraviolet light-B-mediated inflammation and tumor formation with topical celecoxib treatment. Molecular Carcinogenesis, 38, 49–58.PubMed
97.
go back to reference Black, A. K., Greaves, M. W., & Hensby, C. N. (1980). The anti-inflammatory and pharmacological effects of topically applied flurbiprofen on human skin 24 hours after ultraviolet B irradiation. Prostaglandins and Medicine, 5, 405–413.PubMed Black, A. K., Greaves, M. W., & Hensby, C. N. (1980). The anti-inflammatory and pharmacological effects of topically applied flurbiprofen on human skin 24 hours after ultraviolet B irradiation. Prostaglandins and Medicine, 5, 405–413.PubMed
98.
go back to reference Snyder, D. S., & Eaglestein, W. H. (1974). Intradermal anti-prostaglandin agents and sunburn. Journal of Investigative Dermatology, 62, 47–50. Snyder, D. S., & Eaglestein, W. H. (1974). Intradermal anti-prostaglandin agents and sunburn. Journal of Investigative Dermatology, 62, 47–50.
99.
go back to reference Rodriguez-Burford, C., Tu, J. H., Mercurio, M. G., Carey, D., Han, R., Gordon, G., et al. (2005). Selective cyclooxygenase-2 inhibition produces heterogenous erythema response to ultraviolet irradiation. Journal of Investigative Dermatology, 125, 1317–1319.PubMed Rodriguez-Burford, C., Tu, J. H., Mercurio, M. G., Carey, D., Han, R., Gordon, G., et al. (2005). Selective cyclooxygenase-2 inhibition produces heterogenous erythema response to ultraviolet irradiation. Journal of Investigative Dermatology, 125, 1317–1319.PubMed
100.
go back to reference Moore, D. E. (2002). Drug-induced photosensitivity: incidence, mechanism, prevention and management. Drug Safety, 25, 345–372.PubMed Moore, D. E. (2002). Drug-induced photosensitivity: incidence, mechanism, prevention and management. Drug Safety, 25, 345–372.PubMed
101.
go back to reference Fürstenberger, G., Marks, F., & Müller-Decker, K. (2003). Cyclooxygenase-2 and skin carcinogenesis. In Dannenberg AJ, DuBois RN (eds): COX-2, Progress in Experimental Tumor Research, Basel, Karger 37, 72–89. Fürstenberger, G., Marks, F., & Müller-Decker, K. (2003). Cyclooxygenase-2 and skin carcinogenesis. In Dannenberg AJ, DuBois RN (eds): COX-2, Progress in Experimental Tumor Research, Basel, Karger 37, 72–89.
102.
go back to reference Lukiw, W. J., Pelaez, R. P., Martinez, J., & Bazan, N. G. (1998). Budesonide epimer R or dexa-methasone selectively inhibit platelet-activating factors and cyclooxygenase-2 gene ex-pression in human epidermal keratinocytes. Proceedings of the National Academy of Sciences of the United States of America, 95, 3914–3919.PubMed Lukiw, W. J., Pelaez, R. P., Martinez, J., & Bazan, N. G. (1998). Budesonide epimer R or dexa-methasone selectively inhibit platelet-activating factors and cyclooxygenase-2 gene ex-pression in human epidermal keratinocytes. Proceedings of the National Academy of Sciences of the United States of America, 95, 3914–3919.PubMed
103.
go back to reference Matsuura, H., Sakaue, M., Subbaramaiah, K., Kamitani, H., Eling, T. E., Dannenberg, A. J., et al. (1999). Regulation of cyclooxygenase-2 by interferon γ and transforming growth factor α in normal human epidermal keratinocytes and squamous carcinoma cells. Journal of Biological Chemistry, 274, 29138–29148.PubMed Matsuura, H., Sakaue, M., Subbaramaiah, K., Kamitani, H., Eling, T. E., Dannenberg, A. J., et al. (1999). Regulation of cyclooxygenase-2 by interferon γ and transforming growth factor α in normal human epidermal keratinocytes and squamous carcinoma cells. Journal of Biological Chemistry, 274, 29138–29148.PubMed
104.
go back to reference Fairly, J. A., Weiss, J., & Marcelo, C. L. (1986). Increased prostaglandin synthesis by low calcium-regulated keratinocytes. Journal of Investigative Dermatology, 86, 173–176. Fairly, J. A., Weiss, J., & Marcelo, C. L. (1986). Increased prostaglandin synthesis by low calcium-regulated keratinocytes. Journal of Investigative Dermatology, 86, 173–176.
105.
go back to reference Kanekura, T., Laulederkind, S. J., Kirtikara, K., Goorha, S., & Ballou, L. R. (1998). Cholecalciferol induces prostaglandin E2 biosynthesis and transglutaminase activity in human keratinocytes. Journal of Investigative Dermatology, 111, 634–639.PubMed Kanekura, T., Laulederkind, S. J., Kirtikara, K., Goorha, S., & Ballou, L. R. (1998). Cholecalciferol induces prostaglandin E2 biosynthesis and transglutaminase activity in human keratinocytes. Journal of Investigative Dermatology, 111, 634–639.PubMed
106.
go back to reference Scott, G., Leopardi, S., Printup, S., Malhi, N., Seiberg, M., & Lapoint, R. (2004). Proteinase-activated receptor-2 stimulates prostaglandin production in keratinocytes: analysis of prostaglandin receptors on human melanocytes and effects of PGE2 and PGF2alpha on melanocyte dendricity. Journal of Investigative Dermatology, 122, 1214–1224.PubMed Scott, G., Leopardi, S., Printup, S., Malhi, N., Seiberg, M., & Lapoint, R. (2004). Proteinase-activated receptor-2 stimulates prostaglandin production in keratinocytes: analysis of prostaglandin receptors on human melanocytes and effects of PGE2 and PGF2alpha on melanocyte dendricity. Journal of Investigative Dermatology, 122, 1214–1224.PubMed
107.
go back to reference Masoodi, M., Nicolaou, A., Gledhill, K., Rhodes, L. E., Tobin, D. J., & Thody, A. J. (2010). Prostaglandin D production in FM melanoma cells is regulated by alpha-melanocyte-stimulating hormone and is not related to melanin production. Experimental Dermatology, 19, 751–753.PubMed Masoodi, M., Nicolaou, A., Gledhill, K., Rhodes, L. E., Tobin, D. J., & Thody, A. J. (2010). Prostaglandin D production in FM melanoma cells is regulated by alpha-melanocyte-stimulating hormone and is not related to melanin production. Experimental Dermatology, 19, 751–753.PubMed
108.
go back to reference Wang, H. S., Cao, H. J., Winn, V. D., Rezanka, L. J., Frobert, Y., Evans, C. H., et al. (1996). Leukoregulin induction of prostaglandin-endoperoxide H synthase-2 in human orbital fibroblasts. An in vitro model for connective tissue inflammation. Journal of Biological Chemistry, 271, 22718–22728.PubMed Wang, H. S., Cao, H. J., Winn, V. D., Rezanka, L. J., Frobert, Y., Evans, C. H., et al. (1996). Leukoregulin induction of prostaglandin-endoperoxide H synthase-2 in human orbital fibroblasts. An in vitro model for connective tissue inflammation. Journal of Biological Chemistry, 271, 22718–22728.PubMed
109.
go back to reference Müller-Decker, K. (1999). Cyclooxygenases. In F. Marks & G. Fürstenberger (Eds.), Postaglandins, leukotrienes and other eicosanoids (pp. 65–88). Weinheim, Germany: Wiley-VCH. Müller-Decker, K. (1999). Cyclooxygenases. In F. Marks & G. Fürstenberger (Eds.), Postaglandins, leukotrienes and other eicosanoids (pp. 65–88). Weinheim, Germany: Wiley-VCH.
110.
go back to reference Hla, T., & Neilson, K. (1992). Human cyclooxygenase-2 cDNA. Proceedings of the National Academy of Sciences of the United States of America, 89, 7384–7388.PubMed Hla, T., & Neilson, K. (1992). Human cyclooxygenase-2 cDNA. Proceedings of the National Academy of Sciences of the United States of America, 89, 7384–7388.PubMed
111.
go back to reference Schäfer, M., & Werner, S. (2008). Cancer as an overhealing wound: an old hypothesis revisited. Nature Reviews of Molecular and Cellular Biology, 9, 629–638. Schäfer, M., & Werner, S. (2008). Cancer as an overhealing wound: an old hypothesis revisited. Nature Reviews of Molecular and Cellular Biology, 9, 629–638.
112.
go back to reference Futagami, A., Ishizaki, M., Fukuda, Y., Kawana, S., & Yamanaka, N. (2002). Wound healing involves induction of cyclooxygenase-2 expression in rat skin. Laboratory Investigation, 82, 1503–1513.PubMed Futagami, A., Ishizaki, M., Fukuda, Y., Kawana, S., & Yamanaka, N. (2002). Wound healing involves induction of cyclooxygenase-2 expression in rat skin. Laboratory Investigation, 82, 1503–1513.PubMed
113.
go back to reference Müller-Decker, K., Hirschner, W., Marks, F., & Fürstenberger, G. (2002). The effects of cyclooxygenase isozyme inhibition on incisional wound healing in mouse skin. Journal of Invstigative Dermatology, 119, 1189–1195. Müller-Decker, K., Hirschner, W., Marks, F., & Fürstenberger, G. (2002). The effects of cyclooxygenase isozyme inhibition on incisional wound healing in mouse skin. Journal of Invstigative Dermatology, 119, 1189–1195.
114.
go back to reference Blomme, E. A., Chinn, K. S., Hardy, M. M., Casler, J. J., Kim, S. H., Opsahl, A. C., et al. (2003). Selective cyclooxygenase-2 inhibition does not affect the healing of cutaneous full-thickness incisional wounds in SKH-1 mice. Britisch Journal of Dermatology, 148, 211–223. Blomme, E. A., Chinn, K. S., Hardy, M. M., Casler, J. J., Kim, S. H., Opsahl, A. C., et al. (2003). Selective cyclooxygenase-2 inhibition does not affect the healing of cutaneous full-thickness incisional wounds in SKH-1 mice. Britisch Journal of Dermatology, 148, 211–223.
115.
go back to reference Kämpfer, H., Bräutigam, L., Geisslinger, G., Pfeilschifter, J., & Frank, S. (2003). Cyclooxygenase-1-coupled prostaglandin biosynthesis constitutes an essential prerequisite for skin repair. Journal of Investigative Dermatology, 120, 880–890.PubMed Kämpfer, H., Bräutigam, L., Geisslinger, G., Pfeilschifter, J., & Frank, S. (2003). Cyclooxygenase-1-coupled prostaglandin biosynthesis constitutes an essential prerequisite for skin repair. Journal of Investigative Dermatology, 120, 880–890.PubMed
116.
go back to reference Wilgus, T. A., Vodovotz, Y., Vittadini, E., Clubbs, E. A., & Oberyszyn, T. M. (2003). Reduction of scar formation in full-thickness wounds with topical celecoxib treatment. Wound Repair and Regeneration, 11, 25–34.PubMed Wilgus, T. A., Vodovotz, Y., Vittadini, E., Clubbs, E. A., & Oberyszyn, T. M. (2003). Reduction of scar formation in full-thickness wounds with topical celecoxib treatment. Wound Repair and Regeneration, 11, 25–34.PubMed
117.
go back to reference Laulederkind, S. J., Thompson-Jaeger, S., Goorha, S., Chen, Q., Fu, A., Rho, J. Y., et al. (2002). Both constitutive and inducible prostaglandin H synthase affect dermal wound healing in mice. Laboratory Investigation, 82, 919–927.PubMed Laulederkind, S. J., Thompson-Jaeger, S., Goorha, S., Chen, Q., Fu, A., Rho, J. Y., et al. (2002). Both constitutive and inducible prostaglandin H synthase affect dermal wound healing in mice. Laboratory Investigation, 82, 919–927.PubMed
118.
go back to reference Gasparini, G., Longo, R., Sarmiento, R., & Morabito, A. (2003). Inhibitors of cyclo-oxygenase 2: a new class of anticancer agents? The Lancet Oncology, 4, 605–615.PubMed Gasparini, G., Longo, R., Sarmiento, R., & Morabito, A. (2003). Inhibitors of cyclo-oxygenase 2: a new class of anticancer agents? The Lancet Oncology, 4, 605–615.PubMed
119.
go back to reference Dannenberg, A. J., Altorki, N. K., Boyle, J. O., Dang, C., Howe, L. R., Weksler, B. B., et al. (2001). Cyclooxygenase-2: a pharmacological target for the prevention of cancer. The Lancet Oncology, 2, 544–551.PubMed Dannenberg, A. J., Altorki, N. K., Boyle, J. O., Dang, C., Howe, L. R., Weksler, B. B., et al. (2001). Cyclooxygenase-2: a pharmacological target for the prevention of cancer. The Lancet Oncology, 2, 544–551.PubMed
120.
go back to reference Lemos, B., & Nghiem, P. (2007). Merkel cell carcinoma: more deaths but still no pathway to blame. Journal of Investigative Dermatology, 127, 2100–2102.PubMed Lemos, B., & Nghiem, P. (2007). Merkel cell carcinoma: more deaths but still no pathway to blame. Journal of Investigative Dermatology, 127, 2100–2102.PubMed
121.
go back to reference Koljonen, V., Lassus, P., Tukiainen, E., Ristimäki, A., Haglund, C., & Böhling, T. (2005). Cyclooxygenase-2 expression in primary Merkel cell carcinoma. Journal of Cutaneous Pathology, 32, 55–58.PubMed Koljonen, V., Lassus, P., Tukiainen, E., Ristimäki, A., Haglund, C., & Böhling, T. (2005). Cyclooxygenase-2 expression in primary Merkel cell carcinoma. Journal of Cutaneous Pathology, 32, 55–58.PubMed
122.
go back to reference Joachims, Z., Feinmesser, R., Purim, O., Halpern, M., Brenner, B., Fenig, E., et al. (2008). Cyclooxygenase-2 expression in primary and metastatic Merkel cell carcinoma. Applied Immunohistochemistry & Molecular Morphology, 16, 442–446. Joachims, Z., Feinmesser, R., Purim, O., Halpern, M., Brenner, B., Fenig, E., et al. (2008). Cyclooxygenase-2 expression in primary and metastatic Merkel cell carcinoma. Applied Immunohistochemistry & Molecular Morphology, 16, 442–446.
123.
go back to reference Gilchrest, B. A., Eller, M. S., Geller, A. C., & Yaar, M. (1999). The pathogenesis of melanoma induced by ultraviolet irradiation. The New England Journal of Medicine, 340, 1341–1348.PubMed Gilchrest, B. A., Eller, M. S., Geller, A. C., & Yaar, M. (1999). The pathogenesis of melanoma induced by ultraviolet irradiation. The New England Journal of Medicine, 340, 1341–1348.PubMed
124.
go back to reference Armstrong, B. K., & Kricker, A. (2001). The epidemiology of UV induced skin cancer. Journal of Photochemistry and Photobiology B: Biology, 63, 8–18. Armstrong, B. K., & Kricker, A. (2001). The epidemiology of UV induced skin cancer. Journal of Photochemistry and Photobiology B: Biology, 63, 8–18.
125.
go back to reference Ibrahim, N., & Haluska, F. G. (2009). Molecular pathogenesis of cutaneous melanocytic neoplasms. Annual Review of Pathology: Mechanisms of Disease, 4, 551–579. Ibrahim, N., & Haluska, F. G. (2009). Molecular pathogenesis of cutaneous melanocytic neoplasms. Annual Review of Pathology: Mechanisms of Disease, 4, 551–579.
126.
go back to reference Denkert, C., Köbel, M., Berger, S., Siegert, A., Leclere, A., Trefzer, U., et al. (2001). Expression of cyclooxygenase 2 in human malignant melanoma. Cancer Research, 61, 303–308.PubMed Denkert, C., Köbel, M., Berger, S., Siegert, A., Leclere, A., Trefzer, U., et al. (2001). Expression of cyclooxygenase 2 in human malignant melanoma. Cancer Research, 61, 303–308.PubMed
127.
go back to reference Vogt, T., McClelland, M., Jung, B., Popova, S., Bogenrieder, T., Becker, B., et al. (2001). Progression and NSAID-induced apoptosis in malignant melanomas are independent of cyclooxygenase II. Melanoma Research, 11, 587–599.PubMed Vogt, T., McClelland, M., Jung, B., Popova, S., Bogenrieder, T., Becker, B., et al. (2001). Progression and NSAID-induced apoptosis in malignant melanomas are independent of cyclooxygenase II. Melanoma Research, 11, 587–599.PubMed
128.
go back to reference Goulet, A. C., Einspahr, J. G., Alberts, D. S., Beas, A., Burk, C., Bhattacharyya, A., et al. (2003). Analysis of cyclooxygenase-2 (COX-2) expression during malignant melanoma progression. Cancer Biology & Therapy, 2, 713–718. Goulet, A. C., Einspahr, J. G., Alberts, D. S., Beas, A., Burk, C., Bhattacharyya, A., et al. (2003). Analysis of cyclooxygenase-2 (COX-2) expression during malignant melanoma progression. Cancer Biology & Therapy, 2, 713–718.
129.
go back to reference Kuzbicki, L., Sarnecka, A., & Chwirot, B. W. (2006). Expression of cyclooxygenase-2 in benign naevi and during human cutaneous melanoma progression. Melanoma Research, 16, 29–36.PubMed Kuzbicki, L., Sarnecka, A., & Chwirot, B. W. (2006). Expression of cyclooxygenase-2 in benign naevi and during human cutaneous melanoma progression. Melanoma Research, 16, 29–36.PubMed
130.
go back to reference Chwirot, B. W., & Kuzbicki, L. (2007). Cyclooxygenase 2 (COX-2): first immunohistochemical marker distinguishing early cutaneous melanomas from benign melanocytic skin tumors. Melanoma Research, 17, 139–145.PubMed Chwirot, B. W., & Kuzbicki, L. (2007). Cyclooxygenase 2 (COX-2): first immunohistochemical marker distinguishing early cutaneous melanomas from benign melanocytic skin tumors. Melanoma Research, 17, 139–145.PubMed
131.
go back to reference Lee, C., Ramirez, J. A., Guitart, J., & Diaz, L. K. (2008). Expression of cyclooxygenase-2 and peroxisome proliferator-activated receptor gamma during malignant melanoma progression. Journal of Cutaneous Pathology, 35, 989–994.PubMed Lee, C., Ramirez, J. A., Guitart, J., & Diaz, L. K. (2008). Expression of cyclooxygenase-2 and peroxisome proliferator-activated receptor gamma during malignant melanoma progression. Journal of Cutaneous Pathology, 35, 989–994.PubMed
132.
go back to reference Diepgen, T. L., & Mahler, V. (2002). The epidemiology of skin cancer. British Journal of Dermatology, 146(Suppl. 61), 1–6.PubMed Diepgen, T. L., & Mahler, V. (2002). The epidemiology of skin cancer. British Journal of Dermatology, 146(Suppl. 61), 1–6.PubMed
133.
go back to reference DiGiovanna, J. J. (1998). Post transplantation skin cancer: scope of the problem, management, and role of systemic retinoid chemoprevention. Transplantation Proceedings, 30, 2771–2778.PubMed DiGiovanna, J. J. (1998). Post transplantation skin cancer: scope of the problem, management, and role of systemic retinoid chemoprevention. Transplantation Proceedings, 30, 2771–2778.PubMed
134.
go back to reference Zur Hausen, H. (2000). Papilloma virus causing cancer: evasion from host-cell control in early events in carcinogenesis. Journal of the National Cancer Institute, 92, 690–698.PubMed Zur Hausen, H. (2000). Papilloma virus causing cancer: evasion from host-cell control in early events in carcinogenesis. Journal of the National Cancer Institute, 92, 690–698.PubMed
135.
go back to reference De Gruijl, F. R., Van Kranen, H. J., & Mullenders, L. H. F. (2001). UV-induced DNA damage, repair, mutations and oncogenic pathways in skin cancer. Journal of Photochemistry and Photobiology B: Biology, 63, 19–27. De Gruijl, F. R., Van Kranen, H. J., & Mullenders, L. H. F. (2001). UV-induced DNA damage, repair, mutations and oncogenic pathways in skin cancer. Journal of Photochemistry and Photobiology B: Biology, 63, 19–27.
136.
go back to reference Vogelstein, B., Lane, D., & Levine, A. J. (2000). Surfing the p53 network. Nature, 408, 307–310.PubMed Vogelstein, B., Lane, D., & Levine, A. J. (2000). Surfing the p53 network. Nature, 408, 307–310.PubMed
137.
go back to reference Randle, H. W. (1996). Basal cell carcinoma. Identification and treatment of the high-risk patients. Dermatological Surgery, 22, 255–261. Randle, H. W. (1996). Basal cell carcinoma. Identification and treatment of the high-risk patients. Dermatological Surgery, 22, 255–261.
138.
go back to reference Stratton, S. P., Dorr, R. T., & Alberts, D. S. (2000). The state-of-the-art in chemoprevention of skin cancer. European Journal of Cancer, 36, 1292–1297.PubMed Stratton, S. P., Dorr, R. T., & Alberts, D. S. (2000). The state-of-the-art in chemoprevention of skin cancer. European Journal of Cancer, 36, 1292–1297.PubMed
139.
go back to reference Epstein, E. H. (2008). Basal cell carcinomas: attack of the hedgehog. Nature Reviews Cancer, 8, 743–754.PubMed Epstein, E. H. (2008). Basal cell carcinomas: attack of the hedgehog. Nature Reviews Cancer, 8, 743–754.PubMed
140.
go back to reference Breuninger, H., Schaumburg-Lever, G., Holzschuh, J., & Horny, H. P. (1997). Desmoplastic squamous cell carcinoma of skin and vermilion surface: a highly malignant subtype of skin cancer. Cancer, 79, 915–919.PubMed Breuninger, H., Schaumburg-Lever, G., Holzschuh, J., & Horny, H. P. (1997). Desmoplastic squamous cell carcinoma of skin and vermilion surface: a highly malignant subtype of skin cancer. Cancer, 79, 915–919.PubMed
141.
go back to reference Akita, Y., Kozaki, K., Nakagawa, A., Saito, T., Ito, S., Tamada, Y., et al. (2004). Cyclooxygenase-2 is a possible target of treatment approach in conjunction with photodynamic therapy for various disorders in skin and oral cavity. British Journal of Dermatology, 151, 472–480.PubMed Akita, Y., Kozaki, K., Nakagawa, A., Saito, T., Ito, S., Tamada, Y., et al. (2004). Cyclooxygenase-2 is a possible target of treatment approach in conjunction with photodynamic therapy for various disorders in skin and oral cavity. British Journal of Dermatology, 151, 472–480.PubMed
142.
go back to reference O’Grady, A., O’Kelly, P., Murphy, G. M., Leader, M., & Kay, E. (2004). COX-2 expression correlates with microvessel density in non-melanoma skin cancer from renal transplant recipients and immunocompetent individuals (2004). Human Pathology, 35, 1549–1555.PubMed O’Grady, A., O’Kelly, P., Murphy, G. M., Leader, M., & Kay, E. (2004). COX-2 expression correlates with microvessel density in non-melanoma skin cancer from renal transplant recipients and immunocompetent individuals (2004). Human Pathology, 35, 1549–1555.PubMed
143.
go back to reference Nijsten, T., Colpaert, C. G., Vermeulen, P. B., Harris, A. L., Van Marck, E., & Lambert, J. (2004). Cyclooxygenase-2 expression and angiogenesis in squamous cell carcinoma of the skin and its precursors: a paired immunohistochemical study of 35 cases. British Journal of Dermatology, 151, 837–845.PubMed Nijsten, T., Colpaert, C. G., Vermeulen, P. B., Harris, A. L., Van Marck, E., & Lambert, J. (2004). Cyclooxygenase-2 expression and angiogenesis in squamous cell carcinoma of the skin and its precursors: a paired immunohistochemical study of 35 cases. British Journal of Dermatology, 151, 837–845.PubMed
144.
go back to reference Wang, D., & DuBois, R. N. (2004). Cyclooxygenase-2-derived prostaglandin E2 regulates the angiogenic switch. Proceedings of the National Academy of Sciences of the United States of America, 101, 415–416.PubMed Wang, D., & DuBois, R. N. (2004). Cyclooxygenase-2-derived prostaglandin E2 regulates the angiogenic switch. Proceedings of the National Academy of Sciences of the United States of America, 101, 415–416.PubMed
145.
go back to reference Seo, J. Y., Kim, E. K., Lee, S. H., Park, K. C., Kim, K. H., Eun, H. C., et al. (2003). Enhanced expression of cyclooxygenase-2 by UV in aged human skin in vivo. Mechanisms of Ageing and Development, 124, 903–910.PubMed Seo, J. Y., Kim, E. K., Lee, S. H., Park, K. C., Kim, K. H., Eun, H. C., et al. (2003). Enhanced expression of cyclooxygenase-2 by UV in aged human skin in vivo. Mechanisms of Ageing and Development, 124, 903–910.PubMed
146.
go back to reference Stratton, S. P. (2001). Prevention of non-melanoma skin cancer. Current Oncology Reports, 3, 295–300.PubMed Stratton, S. P. (2001). Prevention of non-melanoma skin cancer. Current Oncology Reports, 3, 295–300.PubMed
147.
go back to reference Lippman, S. M., & Hawk, E. T. (2009). Cancer prevention: from 1727 to milestones of the past 100 years. Cancer Research, 69, 5269–5284.PubMed Lippman, S. M., & Hawk, E. T. (2009). Cancer prevention: from 1727 to milestones of the past 100 years. Cancer Research, 69, 5269–5284.PubMed
148.
go back to reference Bowden, G. T. (2004). Prevention of non-melanoma skin cancer by targeting ultraviolet-B-light signalling. Nature Review Cancer, 4, 23–35. Bowden, G. T. (2004). Prevention of non-melanoma skin cancer by targeting ultraviolet-B-light signalling. Nature Review Cancer, 4, 23–35.
149.
go back to reference Kutchera, W., Jones, D. A., Matsunami, N., Groden, J., MyIntyre, T. M., Zimmermann, G. A., et al. (1996). Prostaglandin H synthase 2 is expressed abnormally in human coloncancer: evidence for a transcriptional effect. Proceedings of the National Academy of Sciences of the United States of America, 93, 4816–4820.PubMed Kutchera, W., Jones, D. A., Matsunami, N., Groden, J., MyIntyre, T. M., Zimmermann, G. A., et al. (1996). Prostaglandin H synthase 2 is expressed abnormally in human coloncancer: evidence for a transcriptional effect. Proceedings of the National Academy of Sciences of the United States of America, 93, 4816–4820.PubMed
150.
go back to reference Kim, Y., & Fischer, S. M. (1998). Transcriptional regulation of cyclooxygenase-2 in mouse skin carcinoma cells. Journal of Biological Chemistry, 273, 27686–27694.PubMed Kim, Y., & Fischer, S. M. (1998). Transcriptional regulation of cyclooxygenase-2 in mouse skin carcinoma cells. Journal of Biological Chemistry, 273, 27686–27694.PubMed
151.
go back to reference Ristimäki, A., Garfinkel, S., Wessendorf, J., Maciag, T., & Hla, T. (1994). Induction of cyclo-oxygenase-2 by interleukin-1 alpha. Evidence for posttranscriptional regulation. Journal of Biological Chemistry, 269, 11769–11775.PubMed Ristimäki, A., Garfinkel, S., Wessendorf, J., Maciag, T., & Hla, T. (1994). Induction of cyclo-oxygenase-2 by interleukin-1 alpha. Evidence for posttranscriptional regulation. Journal of Biological Chemistry, 269, 11769–11775.PubMed
152.
go back to reference Dixon, D. A., Tolley, N. D., King, P. H., Nabors, L. B., McIntyre, T. M., Zimmermann, G. A., et al. (2001). Altered expression of the mRNA stability factor HuR promotes cyclooxygenase-2 expression in colon cancer cells. Journal of Clinical Investigation, 108, 1657–1665.PubMed Dixon, D. A., Tolley, N. D., King, P. H., Nabors, L. B., McIntyre, T. M., Zimmermann, G. A., et al. (2001). Altered expression of the mRNA stability factor HuR promotes cyclooxygenase-2 expression in colon cancer cells. Journal of Clinical Investigation, 108, 1657–1665.PubMed
153.
go back to reference Fernau, N. S., Fugmann, D., Leyendecker, M., Reimann, K., Grether-Beck, S., Galban, S., et al. (2010). Role of HuR and p38MAPK in ultraviolet B-induced post-transcriptional regulation of COX-2 expression in the human keratinocyte cell line HaCaT. Journal of Biological Chemistry, 285, 3896–3904.PubMed Fernau, N. S., Fugmann, D., Leyendecker, M., Reimann, K., Grether-Beck, S., Galban, S., et al. (2010). Role of HuR and p38MAPK in ultraviolet B-induced post-transcriptional regulation of COX-2 expression in the human keratinocyte cell line HaCaT. Journal of Biological Chemistry, 285, 3896–3904.PubMed
154.
go back to reference Miller, C. C., Hale, P., & Pentland, A. P. (1994). Ultraviolett B injury increases prostaglandin synthesis through a tyrosine kinase-dependent pathway. Journal of Biological Chemistry, 264, 3529–3533. Miller, C. C., Hale, P., & Pentland, A. P. (1994). Ultraviolett B injury increases prostaglandin synthesis through a tyrosine kinase-dependent pathway. Journal of Biological Chemistry, 264, 3529–3533.
155.
go back to reference Ashida, M., Bito, T., Budiyanto, A., Ichihashi, M., & Ueda, M. (2003). Involvement of EGF receptor activation in the induction of cyclooxygenase-2 in HaCaT keratinocytes after UVB. Experimental Dermatology, 12, 445–452.PubMed Ashida, M., Bito, T., Budiyanto, A., Ichihashi, M., & Ueda, M. (2003). Involvement of EGF receptor activation in the induction of cyclooxygenase-2 in HaCaT keratinocytes after UVB. Experimental Dermatology, 12, 445–452.PubMed
156.
go back to reference Maldve, R. E., Kim, Y., Muga, S. J., & Fischer, S. M. (2000). Prostaglandin E2 regulation of cyclooxygenase expression in keratinocytes is mediated via cyclic nucleotide-linked prostaglandin receptors. Journal of Lipid Research, 41, 873–881.PubMed Maldve, R. E., Kim, Y., Muga, S. J., & Fischer, S. M. (2000). Prostaglandin E2 regulation of cyclooxygenase expression in keratinocytes is mediated via cyclic nucleotide-linked prostaglandin receptors. Journal of Lipid Research, 41, 873–881.PubMed
157.
go back to reference Wang, H. Q., & Smart, R. C. (1999). Overexpression of protein kinase C-α in the epidermis of trans-genic mice results in striking alterations in phorbol-ester induced inflammation and COX-2, MIP-2, and TNF-α expression but not tumor promotion. Journal of Cell Science, 112, 3497–3506.PubMed Wang, H. Q., & Smart, R. C. (1999). Overexpression of protein kinase C-α in the epidermis of trans-genic mice results in striking alterations in phorbol-ester induced inflammation and COX-2, MIP-2, and TNF-α expression but not tumor promotion. Journal of Cell Science, 112, 3497–3506.PubMed
158.
go back to reference Wang, H. Q., Kim, M. P., Tiano, H. F., Langenbach, R., & Smart, R. C. (2001). Protein kinase C-α coordinately regulates cytosolic phospholipase A2 activity and expression of cyclooxygenase-2 through different mechanisms in mouse keratinocytes. Molecular Pharmacology, 59, 860–866.PubMed Wang, H. Q., Kim, M. P., Tiano, H. F., Langenbach, R., & Smart, R. C. (2001). Protein kinase C-α coordinately regulates cytosolic phospholipase A2 activity and expression of cyclooxygenase-2 through different mechanisms in mouse keratinocytes. Molecular Pharmacology, 59, 860–866.PubMed
159.
go back to reference Chen, W., Tang, Q., Gonzales, M. S., & Bowden, G. T. (2001). Role of p38 MAP kinases and ERK in mediating ultraviolet-B induced cyclooxygenase-2 gene expression in human keratinocytes. Oncogene, 20, 3921–3926.PubMed Chen, W., Tang, Q., Gonzales, M. S., & Bowden, G. T. (2001). Role of p38 MAP kinases and ERK in mediating ultraviolet-B induced cyclooxygenase-2 gene expression in human keratinocytes. Oncogene, 20, 3921–3926.PubMed
160.
go back to reference Bachelor, M. A., Silvers, A. L., & Bowden, G. T. (2002). The role of p38 in UVA-induced cyclooxygenase-2 expression in the human keratinocyte cell line, HaCaT. Oncogene, 21, 7092–7099.PubMed Bachelor, M. A., Silvers, A. L., & Bowden, G. T. (2002). The role of p38 in UVA-induced cyclooxygenase-2 expression in the human keratinocyte cell line, HaCaT. Oncogene, 21, 7092–7099.PubMed
161.
go back to reference Dickinson, S. E., Olson, E. R., Zhang, J., Cooper, S. J., Melton, T., Criswell, P. J., et al. (2011). P38 MAP kinase plays a functional role in UVB-induced mouse skin carcinogenesis. Molecular Carcinogenesis, 50, 469–478.PubMed Dickinson, S. E., Olson, E. R., Zhang, J., Cooper, S. J., Melton, T., Criswell, P. J., et al. (2011). P38 MAP kinase plays a functional role in UVB-induced mouse skin carcinogenesis. Molecular Carcinogenesis, 50, 469–478.PubMed
162.
go back to reference Tang, Q., Chen, W., Gonzales, M. S., Finch, J., Inoue, H., & Bowden, G. T. (2001). Role of cyclic AMP responsive element in the UVB induction of cyclooxygenase-2 transcription in human keratinocytes. Oncogene, 20, 5164–5172.PubMed Tang, Q., Chen, W., Gonzales, M. S., Finch, J., Inoue, H., & Bowden, G. T. (2001). Role of cyclic AMP responsive element in the UVB induction of cyclooxygenase-2 transcription in human keratinocytes. Oncogene, 20, 5164–5172.PubMed
163.
go back to reference Tang, Q., Gonzales, M., Inoue, H., & Bowden, G. T. (2001). Roles of Akt and glycogen synthase kinase 3 beta in the ultraviolet B induction of cyclooxygenase-2 transcription in human keratinocytes. Cancer Research, 61, 4329–4332.PubMed Tang, Q., Gonzales, M., Inoue, H., & Bowden, G. T. (2001). Roles of Akt and glycogen synthase kinase 3 beta in the ultraviolet B induction of cyclooxygenase-2 transcription in human keratinocytes. Cancer Research, 61, 4329–4332.PubMed
164.
go back to reference Kosaka, T., Miyata, A., Ihara, H., Hara, S., Sugimoto, T., Takeda, O., et al. (1994). Characterization of the human gene (PTGS2) encoding prostaglandin-endoperoxide synthase 2. European Journal of Biochemistry, 221, 889–897.PubMed Kosaka, T., Miyata, A., Ihara, H., Hara, S., Sugimoto, T., Takeda, O., et al. (1994). Characterization of the human gene (PTGS2) encoding prostaglandin-endoperoxide synthase 2. European Journal of Biochemistry, 221, 889–897.PubMed
165.
go back to reference Fletscher, B. S., Kujubu, D. A., Perrin, D. M., & Herschman, H. R. (1992). Structure of the mitogen-inducible TIS 10 gene and demonstration that the TIS-10-encoded protein is a functional prostaglandin G/H synthase. Journal of Biological Chemistry, 267, 4338–4344. Fletscher, B. S., Kujubu, D. A., Perrin, D. M., & Herschman, H. R. (1992). Structure of the mitogen-inducible TIS 10 gene and demonstration that the TIS-10-encoded protein is a functional prostaglandin G/H synthase. Journal of Biological Chemistry, 267, 4338–4344.
166.
go back to reference Kraemer, S. A., Meade, E. A., & DeWitt, D. L. (1992). Prostaglandin endoperoxide synthase gene structure: identification of the transcriptional start site and 5’ flanking regulatory sequences. Archives of Biochemistry and Biophysics, 293, 391–400.PubMed Kraemer, S. A., Meade, E. A., & DeWitt, D. L. (1992). Prostaglandin endoperoxide synthase gene structure: identification of the transcriptional start site and 5’ flanking regulatory sequences. Archives of Biochemistry and Biophysics, 293, 391–400.PubMed
167.
go back to reference Fritsche, E., Schäfer, C., Calles, C., Bernsmann, T., Bernshausen, T., Wurm, M., et al. (2007). Lightening up the UV response by identification of the arylhydrocarbon receptor as a cytoplasmatic target for ultraviolet B radiation. Proceedings of the National Academy of Sciences of the United States of America, 104, 8851–8856.PubMed Fritsche, E., Schäfer, C., Calles, C., Bernsmann, T., Bernshausen, T., Wurm, M., et al. (2007). Lightening up the UV response by identification of the arylhydrocarbon receptor as a cytoplasmatic target for ultraviolet B radiation. Proceedings of the National Academy of Sciences of the United States of America, 104, 8851–8856.PubMed
168.
go back to reference Zhang, J., & Bowden, G. T. (2008). UVB irradiation regulates COX-2 mRNA stability through AMPK and HuR in human keratinocytes. Molecular Carcinogenesis, 47, 974–983.PubMed Zhang, J., & Bowden, G. T. (2008). UVB irradiation regulates COX-2 mRNA stability through AMPK and HuR in human keratinocytes. Molecular Carcinogenesis, 47, 974–983.PubMed
169.
go back to reference Bachelor, M. A., & Bowden, G. T. (2004). UVA-mediated activation of signalling pathways involved in skin tumor promotion and progression. Seminars in Cancer Biology, 14, 131–138.PubMed Bachelor, M. A., & Bowden, G. T. (2004). UVA-mediated activation of signalling pathways involved in skin tumor promotion and progression. Seminars in Cancer Biology, 14, 131–138.PubMed
170.
go back to reference Thun, M. J., Henley, S. J., & Patrono, C. (2002). Nonsteroidal anti-inflammatory drugs as anticancer agents: mechanistic, pharmacologic, and clinical issues. Journal of the National Cancer Institute, 94, 252–266.PubMed Thun, M. J., Henley, S. J., & Patrono, C. (2002). Nonsteroidal anti-inflammatory drugs as anticancer agents: mechanistic, pharmacologic, and clinical issues. Journal of the National Cancer Institute, 94, 252–266.PubMed
171.
go back to reference Steinbach, G., Lynch, P. M., Phillips, R. K., Wallace, M. H., Hawk, E., Gordon, G. B., et al. (2000). The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. The New England Journal of Medicine, 342, 1946–1952.PubMed Steinbach, G., Lynch, P. M., Phillips, R. K., Wallace, M. H., Hawk, E., Gordon, G. B., et al. (2000). The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. The New England Journal of Medicine, 342, 1946–1952.PubMed
172.
go back to reference Rothwell, P. M., Wilson, M., Elwin, C. E., Norrving, B., Algra, A., Warlow, C. P., et al. (2010). Long-term effect of aspirin on colorectal cancer incidence and mortality: 20-year follow-up of five randomised trials. Lancet, 376, 1741–1750.PubMed Rothwell, P. M., Wilson, M., Elwin, C. E., Norrving, B., Algra, A., Warlow, C. P., et al. (2010). Long-term effect of aspirin on colorectal cancer incidence and mortality: 20-year follow-up of five randomised trials. Lancet, 376, 1741–1750.PubMed
173.
go back to reference Rothwell, P. M., Fowkes, F. G. R., Belch, J. F. F., Ogawa, H., Warlow, C. P., & Meade, T. W. (2011). Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials. Lancet, 377, 31–41.PubMed Rothwell, P. M., Fowkes, F. G. R., Belch, J. F. F., Ogawa, H., Warlow, C. P., & Meade, T. W. (2011). Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials. Lancet, 377, 31–41.PubMed
174.
go back to reference Coghill, A. E., Newcomb, P. A., Campbell, P. T., Burnett-Hartman, A. N., Adams, S. V., Poole, E. M., et al. (2011). Prediagnostic non-steroidal anti-inflammatory drug use and survival after diagnosis of colorectal cancer. Gut, 60, 491–498.PubMed Coghill, A. E., Newcomb, P. A., Campbell, P. T., Burnett-Hartman, A. N., Adams, S. V., Poole, E. M., et al. (2011). Prediagnostic non-steroidal anti-inflammatory drug use and survival after diagnosis of colorectal cancer. Gut, 60, 491–498.PubMed
175.
go back to reference Smalley, W. E., & Dubois, R. N. (1997). Colorectal cancer and nonsteroidal anti-inflammatory drugs. Advances in Pharmacology, 39, 1–20.PubMed Smalley, W. E., & Dubois, R. N. (1997). Colorectal cancer and nonsteroidal anti-inflammatory drugs. Advances in Pharmacology, 39, 1–20.PubMed
176.
go back to reference Marks, F., & Fürstenberger, G. (2000). Cancer prevention through interruption of multistage carcinogenesis: the lessons learnt by comparing mouse skin carcinogenesis and human large bowel cancer. European Journal of Cancer, 36, 314–329.PubMed Marks, F., & Fürstenberger, G. (2000). Cancer prevention through interruption of multistage carcinogenesis: the lessons learnt by comparing mouse skin carcinogenesis and human large bowel cancer. European Journal of Cancer, 36, 314–329.PubMed
177.
go back to reference Abel, E. L., Angel, J. M., Kiguchi, K., & DiGiovanni, J. (2009). Multi-stage chemical carcinogenesis in mouse skin: fundamentals and applications. Nature Protocols, 9, 1350–1362. Abel, E. L., Angel, J. M., Kiguchi, K., & DiGiovanni, J. (2009). Multi-stage chemical carcinogenesis in mouse skin: fundamentals and applications. Nature Protocols, 9, 1350–1362.
178.
go back to reference Marks, F., & Fürstenberger, G. (1995). Tumor promotion in skin. In C. E. Arcos, M. F. Arcos, & Y. T. Woo (Eds.), Chemical induction of cancer (pp. 125–160). Boston: Birkhäuser. Marks, F., & Fürstenberger, G. (1995). Tumor promotion in skin. In C. E. Arcos, M. F. Arcos, & Y. T. Woo (Eds.), Chemical induction of cancer (pp. 125–160). Boston: Birkhäuser.
179.
go back to reference Malanchi, I., Peinado, H., Kassen, D., Hussenet, T., Metzger, D., Chambon, P., et al. (2008). Cutaneous cancer stem cell maintenance is dependent on b-catenin signalling. Nature, 452, 650–653.PubMed Malanchi, I., Peinado, H., Kassen, D., Hussenet, T., Metzger, D., Chambon, P., et al. (2008). Cutaneous cancer stem cell maintenance is dependent on b-catenin signalling. Nature, 452, 650–653.PubMed
180.
go back to reference Fraga, M. F., Herranz, M., Espada, J., Ballestar, E., Paz, M. F., Ropero, S., et al. (2004). A mouse skin multi stage carcinogenesis model reflects the aberrant DNA methylation patterns of human tumors. Cancer Research, 64, 5527–5534.PubMed Fraga, M. F., Herranz, M., Espada, J., Ballestar, E., Paz, M. F., Ropero, S., et al. (2004). A mouse skin multi stage carcinogenesis model reflects the aberrant DNA methylation patterns of human tumors. Cancer Research, 64, 5527–5534.PubMed
181.
go back to reference Müller-Decker, K., Kopp-Schneider, A., Marks, F., Seibert, K., & Fürstenberger, G. (1998). Localization of prostaglandin h synthase isozymes in murine epidermal tumors:suppression of skin tumor promotion by inibition of prostaglandin h synthase 2. Molecular Carcinogenesis, 23, 36–44.PubMed Müller-Decker, K., Kopp-Schneider, A., Marks, F., Seibert, K., & Fürstenberger, G. (1998). Localization of prostaglandin h synthase isozymes in murine epidermal tumors:suppression of skin tumor promotion by inibition of prostaglandin h synthase 2. Molecular Carcinogenesis, 23, 36–44.PubMed
182.
go back to reference Müller-Decker, K., Neufang, G., Berger, I., Neumann, M., Marks, F., & Fürstenberger, G. (2002). Transgenic cyclooxygenase-2 overexpression sensitizes mouse skin for carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America, 99, 12483–12488.PubMed Müller-Decker, K., Neufang, G., Berger, I., Neumann, M., Marks, F., & Fürstenberger, G. (2002). Transgenic cyclooxygenase-2 overexpression sensitizes mouse skin for carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America, 99, 12483–12488.PubMed
183.
go back to reference Fürstenberger, G., Gross, M., & Marks, F. (1998). Eicosanoids and multistage carcinogenesis in NMRI mouse skin: role of prostaglandin E and F in conversion (first stage of tumor pro-motion) and promotion (second stage of tumor promotion). Carcinogenesis, 10, 91–96. Fürstenberger, G., Gross, M., & Marks, F. (1998). Eicosanoids and multistage carcinogenesis in NMRI mouse skin: role of prostaglandin E and F in conversion (first stage of tumor pro-motion) and promotion (second stage of tumor promotion). Carcinogenesis, 10, 91–96.
184.
go back to reference Müller, K., Krieg, P., Marks, F., & Fürstenberger, G. (2000). Expression of PGF2α mRNA in normal, hyperplastic and neoplastic skin. Carcinogenesis, 21, 1063–1066.PubMed Müller, K., Krieg, P., Marks, F., & Fürstenberger, G. (2000). Expression of PGF2α mRNA in normal, hyperplastic and neoplastic skin. Carcinogenesis, 21, 1063–1066.PubMed
185.
go back to reference Fischer, S. M., Lo, H. H., Gordon, G. B., Seibert, K., Kelloff, G., Lubet, R. A., et al. (1999). Chemopreventive activity of celecoxib, a specific cyclooxygenase-2 inhibitor, and indo-methacin against ultraviolet-induced skin carcinogenesis. Molecular Carcinogenesis, 25, 231–240.PubMed Fischer, S. M., Lo, H. H., Gordon, G. B., Seibert, K., Kelloff, G., Lubet, R. A., et al. (1999). Chemopreventive activity of celecoxib, a specific cyclooxygenase-2 inhibitor, and indo-methacin against ultraviolet-induced skin carcinogenesis. Molecular Carcinogenesis, 25, 231–240.PubMed
186.
go back to reference Pentland, A. P., Schoggins, J. W., Scott, G. A., Khan, K. N., & Han, R. (1999). Reduction of UV-induced skin tumors in hairless mice by selective COX-2 inhibition. Carcinogenesis, 20, 1939–1944.PubMed Pentland, A. P., Schoggins, J. W., Scott, G. A., Khan, K. N., & Han, R. (1999). Reduction of UV-induced skin tumors in hairless mice by selective COX-2 inhibition. Carcinogenesis, 20, 1939–1944.PubMed
187.
go back to reference Orengo, I. F., Gerguis, J., Phillips, R., Guevara, A., Lewis, A. T., & Black, H. S. (2002). Celecoxib, a cyclooxygenase 2 inhibitor as potential chemopreventive to UV-induced skin cancer: a study in the hairless mouse model. Archives of Dermatology, 138, 751–755.PubMed Orengo, I. F., Gerguis, J., Phillips, R., Guevara, A., Lewis, A. T., & Black, H. S. (2002). Celecoxib, a cyclooxygenase 2 inhibitor as potential chemopreventive to UV-induced skin cancer: a study in the hairless mouse model. Archives of Dermatology, 138, 751–755.PubMed
188.
go back to reference Fischer, S. M., Conti, C. J., Viner, J., Marcelo Aldaz, C., & Lubet, R. A. (2003). Celecoxib and difluoromethylornithine in combination have strong therapeutic activity against UV-induced skin tumors in mice. Carcinogenesis, 24, 945–952.PubMed Fischer, S. M., Conti, C. J., Viner, J., Marcelo Aldaz, C., & Lubet, R. A. (2003). Celecoxib and difluoromethylornithine in combination have strong therapeutic activity against UV-induced skin tumors in mice. Carcinogenesis, 24, 945–952.PubMed
189.
go back to reference Wilgus, T. A., Koki, A. T., Zweifel, B. S., Rubal, P. A., & Oberyszyn, T. M. (2003). Chemotherapeutic efficacy of topical celecoxib in a murine model of ultraviolet light B-induced skin cancer. Molecular Carcinogenesis, 38, 33–39.PubMed Wilgus, T. A., Koki, A. T., Zweifel, B. S., Rubal, P. A., & Oberyszyn, T. M. (2003). Chemotherapeutic efficacy of topical celecoxib in a murine model of ultraviolet light B-induced skin cancer. Molecular Carcinogenesis, 38, 33–39.PubMed
190.
go back to reference Wilgus, T. A., Breza, T. S., Tober, K. L., & Oberyszyn, T. M. (2004). Treatment with 5-fluorouracil and celecoxib displays synergistic regression of ultraviolet light B-induced skin tumors. Journal of Investigative Dermatology, 122, 1488–1494.PubMed Wilgus, T. A., Breza, T. S., Tober, K. L., & Oberyszyn, T. M. (2004). Treatment with 5-fluorouracil and celecoxib displays synergistic regression of ultraviolet light B-induced skin tumors. Journal of Investigative Dermatology, 122, 1488–1494.PubMed
191.
go back to reference Soontrapa, K., Honda, T., Sakata, D., Yao, C., Hirata, T., Hori, S., et al. (2011). Prostaglandin E2-prostaglandin E receptor subtype 4 (EP4) signaling mediates UV irradiation-induced systemic immunosuppression. Proceedings of the National Academy of Sciences of the United States of America, 108, 6668–6673.PubMed Soontrapa, K., Honda, T., Sakata, D., Yao, C., Hirata, T., Hori, S., et al. (2011). Prostaglandin E2-prostaglandin E receptor subtype 4 (EP4) signaling mediates UV irradiation-induced systemic immunosuppression. Proceedings of the National Academy of Sciences of the United States of America, 108, 6668–6673.PubMed
192.
go back to reference Elmets, C. A., Viner, J. L., Pentland, A. P., Cantrell, W., Lin, H. Y., Bailey, H., et al. (2010). Chemoprevention of nonmelanoma skin cancer with celecoxib: a randomized, double-blind, placebo-controlled trial. Journal of the National Cancer Institute, 102, 1835–1844.PubMed Elmets, C. A., Viner, J. L., Pentland, A. P., Cantrell, W., Lin, H. Y., Bailey, H., et al. (2010). Chemoprevention of nonmelanoma skin cancer with celecoxib: a randomized, double-blind, placebo-controlled trial. Journal of the National Cancer Institute, 102, 1835–1844.PubMed
193.
go back to reference Oshima, M., Dinchuk, J. E., Kargman, S. L., Oshima, H., Hancock, B., Kwong, E., et al. (1996). Suppression of intestinal polyposis in APC716 knockout mice by inhibition of cyclooxygenase-2 (COX-2). Cell, 87, 803–809.PubMed Oshima, M., Dinchuk, J. E., Kargman, S. L., Oshima, H., Hancock, B., Kwong, E., et al. (1996). Suppression of intestinal polyposis in APC716 knockout mice by inhibition of cyclooxygenase-2 (COX-2). Cell, 87, 803–809.PubMed
194.
go back to reference Chulada, P. C., Thompson, M. B., Mahler, J. F., Doyle, C. M., Gaul, B. W., Lee, C., et al. (2000). Genetic disruption of Ptgs-1, as well as of Ptgs-2, reduces intestinal tumorigenesis in min mice. Cancer Research, 60, 4705–4708.PubMed Chulada, P. C., Thompson, M. B., Mahler, J. F., Doyle, C. M., Gaul, B. W., Lee, C., et al. (2000). Genetic disruption of Ptgs-1, as well as of Ptgs-2, reduces intestinal tumorigenesis in min mice. Cancer Research, 60, 4705–4708.PubMed
195.
go back to reference Wiese, F. W., Thompson, P. A., & Kadlubar, F. F. (2001). Carcinogen substrate specificity of human COX-1 and COX-2. Carcinogenesis, 21, 5–10. Wiese, F. W., Thompson, P. A., & Kadlubar, F. F. (2001). Carcinogen substrate specificity of human COX-1 and COX-2. Carcinogenesis, 21, 5–10.
196.
go back to reference Fuchs, E. (1995). Keratins and the skin. Annual Reviews of Cellular and Devlopmental Biology, 11, 123–153. Fuchs, E. (1995). Keratins and the skin. Annual Reviews of Cellular and Devlopmental Biology, 11, 123–153.
197.
go back to reference Pentland, A. P., Scott, G., VanBuskirk, J. A., Tanck, C., LaRossa, G., & Brouxhon, S. (2004). Cyclooxygenase-1 deletion enhances apoptosis but does not protect against ultraviolet light-induced tumors. Cancer Research, 64, 5587–5591.PubMed Pentland, A. P., Scott, G., VanBuskirk, J. A., Tanck, C., LaRossa, G., & Brouxhon, S. (2004). Cyclooxygenase-1 deletion enhances apoptosis but does not protect against ultraviolet light-induced tumors. Cancer Research, 64, 5587–5591.PubMed
198.
go back to reference Rundhaug, J. E., Pavone, A., Kim, E., & Fischer, S. M. (2007). The effect of cyclooxygenase-2 overexpression on skin carcinogenesis is context dependent. Molecular Carcinogenesis, 46, 981–992.PubMed Rundhaug, J. E., Pavone, A., Kim, E., & Fischer, S. M. (2007). The effect of cyclooxygenase-2 overexpression on skin carcinogenesis is context dependent. Molecular Carcinogenesis, 46, 981–992.PubMed
199.
go back to reference Bol, D. K., Rowley, R. B., Ho, C. P., Pilz, B., Dell, J., Swerdel, M., et al. (2002). Cyclooxygenase-2 overexpression in the skin of transgenic mice results in suppression of tumor development. Cancer Research, 62, 2516–2521.PubMed Bol, D. K., Rowley, R. B., Ho, C. P., Pilz, B., Dell, J., Swerdel, M., et al. (2002). Cyclooxygenase-2 overexpression in the skin of transgenic mice results in suppression of tumor development. Cancer Research, 62, 2516–2521.PubMed
200.
go back to reference Tjiu, J. W., Liao, Y. H., Lin, S. J., Huang, Y. L., Tsai, W. L., Chu, C., et al. (2006). Cyclooxygenase-2 overexpression in human basal cell carcinoma cell line increases antiapoptosis, angiogenesis, and tumorigenesis. Journal of Investigative Dermatology, 126, 1143–1151.PubMed Tjiu, J. W., Liao, Y. H., Lin, S. J., Huang, Y. L., Tsai, W. L., Chu, C., et al. (2006). Cyclooxygenase-2 overexpression in human basal cell carcinoma cell line increases antiapoptosis, angiogenesis, and tumorigenesis. Journal of Investigative Dermatology, 126, 1143–1151.PubMed
201.
go back to reference Tjiu, J. W., Chen, J. S., Shun, C. T., Lin, S. J., Liao, Y. H., Chu, C. Y., et al. (2009). Tumor-associated macrophage-induced invasion and angiogenesis of human basal cell carcinoma cells by cyclooxygenase-2 induction. Journal of Investigative Dermatology, 129, 1016–1025.PubMed Tjiu, J. W., Chen, J. S., Shun, C. T., Lin, S. J., Liao, Y. H., Chu, C. Y., et al. (2009). Tumor-associated macrophage-induced invasion and angiogenesis of human basal cell carcinoma cells by cyclooxygenase-2 induction. Journal of Investigative Dermatology, 129, 1016–1025.PubMed
202.
go back to reference Tang, J. Y., Aszterbaum, M., Athar, M., Barsanti, F., Cappola, C., Estevez, N., et al. (2010). Basal cell carcinoma chemoprevention with nonsteroidal anti-inflammatory drugs in genetically predisposed PTCH1+/− humans and mice. Cancer Prevention Research, 3, 25–34.PubMed Tang, J. Y., Aszterbaum, M., Athar, M., Barsanti, F., Cappola, C., Estevez, N., et al. (2010). Basal cell carcinoma chemoprevention with nonsteroidal anti-inflammatory drugs in genetically predisposed PTCH1+/− humans and mice. Cancer Prevention Research, 3, 25–34.PubMed
203.
go back to reference Grau, M. V., Baron, J. A., Langholz, B., Karagas, M., Greenberg, E. R., Stukel, T. A., et al. (2006). Effect of NSAIDs on the recurrence of non-melanoma skin cancer. International Journal of Cancer, 119, 682–686. Grau, M. V., Baron, J. A., Langholz, B., Karagas, M., Greenberg, E. R., Stukel, T. A., et al. (2006). Effect of NSAIDs on the recurrence of non-melanoma skin cancer. International Journal of Cancer, 119, 682–686.
204.
go back to reference Vogel, U., Christensen, J., Wallin, H., Friis, S., Nexo, B. A., & Tjonneland, A. (2007). Polymorphisms in COX-2, NSAID use and risk of basal cell carcinoma in a prospective study of Danes. Mutation Research, 617, 138–146.PubMed Vogel, U., Christensen, J., Wallin, H., Friis, S., Nexo, B. A., & Tjonneland, A. (2007). Polymorphisms in COX-2, NSAID use and risk of basal cell carcinoma in a prospective study of Danes. Mutation Research, 617, 138–146.PubMed
205.
go back to reference Clouser, M. C., Roe, D. J., Foote, J. A., & Harris, R. B. (2009). Effect of non-steroidal anti-inflammatory drugs on non-melanoma skin cancer incidence in the SKICAP AK trial. Pharmacoepidemiology and Drug Safety, 18, 276–283.PubMed Clouser, M. C., Roe, D. J., Foote, J. A., & Harris, R. B. (2009). Effect of non-steroidal anti-inflammatory drugs on non-melanoma skin cancer incidence in the SKICAP AK trial. Pharmacoepidemiology and Drug Safety, 18, 276–283.PubMed
206.
go back to reference Butler, G. J., Neale, R., Green, A. C., Pandeya, N., & Whiteman, D. C. (2005). Nonsteroidal anti-inflammatory drugs and the risk of actinic keratoses and squamous cell cancers of the skin. Journal of the American Academy of Dermatology, 53, 966–972.PubMed Butler, G. J., Neale, R., Green, A. C., Pandeya, N., & Whiteman, D. C. (2005). Nonsteroidal anti-inflammatory drugs and the risk of actinic keratoses and squamous cell cancers of the skin. Journal of the American Academy of Dermatology, 53, 966–972.PubMed
207.
go back to reference Curiel-Lewandrowski, C., Nijsten, T., Gomez, M. L., Hollestein, L. M., Atkins, M. B., & Stern, R. S. (2011). Long-term use of non-steroidal anti-inflammatory drugs decreases the risk of cutaneous melanoma: results of a united states case–control study. Journal of Investigative Dermatology, 131, 1460–1468.PubMed Curiel-Lewandrowski, C., Nijsten, T., Gomez, M. L., Hollestein, L. M., Atkins, M. B., & Stern, R. S. (2011). Long-term use of non-steroidal anti-inflammatory drugs decreases the risk of cutaneous melanoma: results of a united states case–control study. Journal of Investigative Dermatology, 131, 1460–1468.PubMed
208.
go back to reference Asgari, M., White, E., & Chren, M. M. (2004). Nonsteroidal anti-inflammatory drug use in the prevention and treatment of squamous cell carcinoma. Dermatological Surgery, 30, 1335–1342. Asgari, M., White, E., & Chren, M. M. (2004). Nonsteroidal anti-inflammatory drug use in the prevention and treatment of squamous cell carcinoma. Dermatological Surgery, 30, 1335–1342.
209.
go back to reference Van Der Geer, S., & Krekels, G. A. M. (2009). Treatment of actinic keratoses on the dorsum of the hands: ALA-PDT versus diclofenac 3% gel followed by ALA-PDT. A placebo-controlled, double-blind, pilot study. Journal of Dermatology and Treatment, 20, 259–265. Van Der Geer, S., & Krekels, G. A. M. (2009). Treatment of actinic keratoses on the dorsum of the hands: ALA-PDT versus diclofenac 3% gel followed by ALA-PDT. A placebo-controlled, double-blind, pilot study. Journal of Dermatology and Treatment, 20, 259–265.
210.
go back to reference Fecker, L. F., Stockfleth, E., Braun, F. K., Rodust, P. M., Schwarz, C., Köhler, A., et al. (2010). Enhanced death ligand-induced apoptosis in cutaneous SCC cells by treatment with diclofenac/Hyaluronic acid correlates with downregulation of c-FLIP. Journal of Investigative Dermatology, 130, 2098–2109.PubMed Fecker, L. F., Stockfleth, E., Braun, F. K., Rodust, P. M., Schwarz, C., Köhler, A., et al. (2010). Enhanced death ligand-induced apoptosis in cutaneous SCC cells by treatment with diclofenac/Hyaluronic acid correlates with downregulation of c-FLIP. Journal of Investigative Dermatology, 130, 2098–2109.PubMed
211.
go back to reference Solomon, S. D., McMurray, J. J. V., Pfeffer, M. A., Wittes, J., Fowler, R., Finn, P., et al. (2005). Cardiovascular adverse effects associated with celecoxib in a clinical trial for colorectal adenoma prevention. The New England Journal of Medicine, 352, 1071–1080.PubMed Solomon, S. D., McMurray, J. J. V., Pfeffer, M. A., Wittes, J., Fowler, R., Finn, P., et al. (2005). Cardiovascular adverse effects associated with celecoxib in a clinical trial for colorectal adenoma prevention. The New England Journal of Medicine, 352, 1071–1080.PubMed
212.
go back to reference Solomon, S. D., Wittes, J., Finn, P. V., Fowler, R., Viner, J., Bertagnolli, M. M., et al. (2008). Cardiovascular risk of celecoxib in 6 randomized placebo-controlled trials: The cross trial safety analysis. Circulation, 117, 2104–2113.PubMed Solomon, S. D., Wittes, J., Finn, P. V., Fowler, R., Viner, J., Bertagnolli, M. M., et al. (2008). Cardiovascular risk of celecoxib in 6 randomized placebo-controlled trials: The cross trial safety analysis. Circulation, 117, 2104–2113.PubMed
Metadata
Title
Cyclooxygenase-dependent signaling is causally linked to non-melanoma skin carcinogenesis: pharmacological, genetic, and clinical evidence
Author
Karin Müller-Decker
Publication date
01-12-2011
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 3-4/2011
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-011-9306-z

Other articles of this Issue 3-4/2011

Cancer and Metastasis Reviews 3-4/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine