Skip to main content
Top
Published in: Cancer and Metastasis Reviews 1-2/2009

01-06-2009

Tissue architecture and function: dynamic reciprocity via extra- and intra-cellular matrices

Authors: Ren Xu, Aaron Boudreau, Mina J. Bissell

Published in: Cancer and Metastasis Reviews | Issue 1-2/2009

Login to get access

Abstract

Mammary gland development, functional differentiation, and homeostasis are orchestrated and sustained by a balance of biochemical and biophysical cues from the organ’s microenvironment. The three-dimensional microenvironment of the mammary gland, predominantly ‘encoded’ by a collaboration between the extracellular matrix (ECM), hormones, and growth factors, sends signals from ECM receptors through the cytoskeletal intracellular matrix to nuclear and chromatin structures resulting in gene expression; the ECM in turn is regulated and remodeled by signals from the nucleus. In this chapter, we discuss how coordinated ECM deposition and remodeling is necessary for mammary gland development, how the ECM provides structural and biochemical cues necessary for tissue-specific function, and the role of the cytoskeleton in mediating the extra—to intracellular dialogue occurring between the nucleus and the microenvironment. When operating normally, the cytoskeletal-mediated dynamic and reciprocal integration of tissue architecture and function directs mammary gland development, tissue polarity, and ultimately, tissue-specific gene expression. Cancer occurs when these dynamic interactions go awry for an extended time.
Literature
1.
go back to reference Nelson, C. M., & Bissell, M. J. (2006). Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annual review of cell and developmental biology, 22, 287–309.PubMedCrossRef Nelson, C. M., & Bissell, M. J. (2006). Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annual review of cell and developmental biology, 22, 287–309.PubMedCrossRef
2.
go back to reference Bissell, M. J., Hall, H. G., & Parry, G. (1982). How does the extracellular matrix direct gene expression? Journal of theoretical biology, 99, 31–68.PubMedCrossRef Bissell, M. J., Hall, H. G., & Parry, G. (1982). How does the extracellular matrix direct gene expression? Journal of theoretical biology, 99, 31–68.PubMedCrossRef
3.
go back to reference Hynes, R. O. (2002). Integrins: bidirectional, allosteric signaling machines. Cell, 110, 673–687.PubMedCrossRef Hynes, R. O. (2002). Integrins: bidirectional, allosteric signaling machines. Cell, 110, 673–687.PubMedCrossRef
4.
go back to reference Maxwell, C. A., McCarthy, J., & Turley, E. (2008). Cell-surface and mitotic-spindle RHAMM: moonlighting or dual oncogenic functions? Journal of Cell Science, 121, 925–932.PubMedCrossRef Maxwell, C. A., McCarthy, J., & Turley, E. (2008). Cell-surface and mitotic-spindle RHAMM: moonlighting or dual oncogenic functions? Journal of Cell Science, 121, 925–932.PubMedCrossRef
5.
go back to reference Sanderson, R. D., Yang, Y., Suva, L. J., & Kelly, T. (2004). Heparan sulfate proteoglycans and heparanase–partners in osteolytic tumor growth and metastasis. Matrix biol, 23, 341–352.PubMedCrossRef Sanderson, R. D., Yang, Y., Suva, L. J., & Kelly, T. (2004). Heparan sulfate proteoglycans and heparanase–partners in osteolytic tumor growth and metastasis. Matrix biol, 23, 341–352.PubMedCrossRef
6.
go back to reference Yurchenco, P. D., & Wadsworth, W. G. (2004). Assembly and tissue functions of early embryonic laminins and netrins. Current opinion in cell biology, 16, 572–579.PubMedCrossRef Yurchenco, P. D., & Wadsworth, W. G. (2004). Assembly and tissue functions of early embryonic laminins and netrins. Current opinion in cell biology, 16, 572–579.PubMedCrossRef
7.
go back to reference Fata, J. E., Werb, Z., & Bissell, M. J. (2004). Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes. Breast cancer research, 6, 1–11.PubMed Fata, J. E., Werb, Z., & Bissell, M. J. (2004). Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes. Breast cancer research, 6, 1–11.PubMed
8.
go back to reference Keely, P. J., Wu, J. E., & Santoro, S. A. (1995). The spatial and temporal expression of the alpha 2 beta 1 integrin and its ligands, collagen I, collagen IV, and laminin, suggest important roles in mouse mammary morphogenesis. Differentiation, 59, 1–13.PubMedCrossRef Keely, P. J., Wu, J. E., & Santoro, S. A. (1995). The spatial and temporal expression of the alpha 2 beta 1 integrin and its ligands, collagen I, collagen IV, and laminin, suggest important roles in mouse mammary morphogenesis. Differentiation, 59, 1–13.PubMedCrossRef
9.
go back to reference Talhouk, R. S., Chin, J. R., Unemori, E. N., Werb, Z., & Bissell, M. J. (1991). Proteinases of the mammary gland: developmental regulation in vivo and vectorial secretion in culture. Development, 112, 439–449.PubMed Talhouk, R. S., Chin, J. R., Unemori, E. N., Werb, Z., & Bissell, M. J. (1991). Proteinases of the mammary gland: developmental regulation in vivo and vectorial secretion in culture. Development, 112, 439–449.PubMed
10.
go back to reference Schedin, P., Mitrenga, T., McDaniel, S., & Kaeck, M. (2004). Mammary ECM composition and function are altered by reproductive state. Molecular carcinogenesis, 41, 207–220.PubMedCrossRef Schedin, P., Mitrenga, T., McDaniel, S., & Kaeck, M. (2004). Mammary ECM composition and function are altered by reproductive state. Molecular carcinogenesis, 41, 207–220.PubMedCrossRef
11.
go back to reference Wicha, M. S., Liotta, L. A., Vonderhaar, B. K., & Kidwell, W. R. (1980). Effects of inhibition of basement membrane collagen deposition on rat mammary gland development. Developments in biologicals, 80, 253–256.CrossRef Wicha, M. S., Liotta, L. A., Vonderhaar, B. K., & Kidwell, W. R. (1980). Effects of inhibition of basement membrane collagen deposition on rat mammary gland development. Developments in biologicals, 80, 253–256.CrossRef
12.
go back to reference Silberstein, G. B., & Daniel, C. W. (1982). Glycosaminoglycans in the basal lamina and extracellular matrix of the developing mouse mammary duct. Developmental biology, 90, 215–222.PubMedCrossRef Silberstein, G. B., & Daniel, C. W. (1982). Glycosaminoglycans in the basal lamina and extracellular matrix of the developing mouse mammary duct. Developmental biology, 90, 215–222.PubMedCrossRef
13.
go back to reference Turley, E. A., Veiseh, M., Radisky, D. C., & Bissell, M. J. (2008). Mechanisms of disease: epithelial-mesenchymal transition–does cellular plasticity fuel neoplastic progression? Nat Clin Pract Oncol, 5, 280–290.PubMedCrossRef Turley, E. A., Veiseh, M., Radisky, D. C., & Bissell, M. J. (2008). Mechanisms of disease: epithelial-mesenchymal transition–does cellular plasticity fuel neoplastic progression? Nat Clin Pract Oncol, 5, 280–290.PubMedCrossRef
14.
go back to reference Taddei, I., Deugnier, M. A., Faraldo, M. M., Petit, V., Bouvard, D., Medina, D., et al. (2008). Beta1 integrin deletion from the basal compartment of the mammary epithelium affects stem cells. Nature cell biology, 10, 716–722.PubMedCrossRef Taddei, I., Deugnier, M. A., Faraldo, M. M., Petit, V., Bouvard, D., Medina, D., et al. (2008). Beta1 integrin deletion from the basal compartment of the mammary epithelium affects stem cells. Nature cell biology, 10, 716–722.PubMedCrossRef
15.
go back to reference Woodward, T. L., Mienaltowski, A. S., Modi, R. R., Bennett, J. M., & Haslam, S. Z. (2001). Fibronectin and the alpha(5)beta(1) integrin are under developmental and ovarian steroid regulation in the normal mouse mammary gland. Endocrinology, 142, 3214–3222.PubMedCrossRef Woodward, T. L., Mienaltowski, A. S., Modi, R. R., Bennett, J. M., & Haslam, S. Z. (2001). Fibronectin and the alpha(5)beta(1) integrin are under developmental and ovarian steroid regulation in the normal mouse mammary gland. Endocrinology, 142, 3214–3222.PubMedCrossRef
16.
go back to reference Williams, C. M., Engler, A. J., Slone, R. D., Galante, L. L., & Schwarzbauer, J. E. (2008). Fibronectin expression modulates mammary epithelial cell proliferation during acinar differentiation. Cancer research, 68, 3185–3192.PubMedCrossRef Williams, C. M., Engler, A. J., Slone, R. D., Galante, L. L., & Schwarzbauer, J. E. (2008). Fibronectin expression modulates mammary epithelial cell proliferation during acinar differentiation. Cancer research, 68, 3185–3192.PubMedCrossRef
17.
go back to reference Sandal, T., Valyi-Nagy, K., Spencer, V. A., Folberg, R., Bissell, M. J., & Maniotis, A. J. (2007). Epigenetic reversion of breast carcinoma phenotype is accompanied by changes in DNA sequestration as measured by AluI restriction enzyme. American journal of pathology, 170, 1739–1749.PubMedCrossRef Sandal, T., Valyi-Nagy, K., Spencer, V. A., Folberg, R., Bissell, M. J., & Maniotis, A. J. (2007). Epigenetic reversion of breast carcinoma phenotype is accompanied by changes in DNA sequestration as measured by AluI restriction enzyme. American journal of pathology, 170, 1739–1749.PubMedCrossRef
18.
go back to reference Werb, Z., & Chin, J. R. (1998). Extracellular matrix remodeling during morphogenesis. Ann N Y Acad Sci, 857, 110–118.PubMedCrossRef Werb, Z., & Chin, J. R. (1998). Extracellular matrix remodeling during morphogenesis. Ann N Y Acad Sci, 857, 110–118.PubMedCrossRef
19.
go back to reference Lochter, A., Sternlicht, M. D., Werb, Z., & Bissell, M. J. (1998). The significance of matrix metalloproteinases during early stages of tumor progression. Ann N Y Acad Sci, 857, 180–193.PubMedCrossRef Lochter, A., Sternlicht, M. D., Werb, Z., & Bissell, M. J. (1998). The significance of matrix metalloproteinases during early stages of tumor progression. Ann N Y Acad Sci, 857, 180–193.PubMedCrossRef
20.
go back to reference Talhouk, R. S., Bissell, M. J., & Werb, Z. (1992). Coordinated expression of extracellular matrix-degrading proteinases and their inhibitors regulates mammary epithelial function during involution. Journal of cell biology, 118, 1271–1282.PubMedCrossRef Talhouk, R. S., Bissell, M. J., & Werb, Z. (1992). Coordinated expression of extracellular matrix-degrading proteinases and their inhibitors regulates mammary epithelial function during involution. Journal of cell biology, 118, 1271–1282.PubMedCrossRef
21.
go back to reference Witty, J. P., Wright, J. H., & Matrisian, L. M. (1995). Matrix metalloproteinases are expressed during ductal and alveolar mammary morphogenesis, and misregulation of stromelysin-1 in transgenic mice induces unscheduled alveolar development. Molecular biology of the cell, 6, 1287–1303.PubMed Witty, J. P., Wright, J. H., & Matrisian, L. M. (1995). Matrix metalloproteinases are expressed during ductal and alveolar mammary morphogenesis, and misregulation of stromelysin-1 in transgenic mice induces unscheduled alveolar development. Molecular biology of the cell, 6, 1287–1303.PubMed
22.
go back to reference Thomasset, N., Lochter, A., Sympson, C. J., Lund, L. R., Williams, D. R., Behrendtsen, O., et al. (1998). Expression of autoactivated stromelysin-1 in mammary glands of transgenic mice leads to a reactive stroma during early development. American journal of pathology, 153, 457–467.PubMed Thomasset, N., Lochter, A., Sympson, C. J., Lund, L. R., Williams, D. R., Behrendtsen, O., et al. (1998). Expression of autoactivated stromelysin-1 in mammary glands of transgenic mice leads to a reactive stroma during early development. American journal of pathology, 153, 457–467.PubMed
23.
go back to reference Wiseman, B. S., Sternlicht, M. D., Lund, L. R., Alexander, C. M., Mott, J., Bissell, M. J., et al. (2003). Site-specific inductive and inhibitory activities of MMP-2 and MMP-3 orchestrate mammary gland branching morphogenesis. Journal of cell biology, 162, 1123–1133.PubMedCrossRef Wiseman, B. S., Sternlicht, M. D., Lund, L. R., Alexander, C. M., Mott, J., Bissell, M. J., et al. (2003). Site-specific inductive and inhibitory activities of MMP-2 and MMP-3 orchestrate mammary gland branching morphogenesis. Journal of cell biology, 162, 1123–1133.PubMedCrossRef
24.
go back to reference Mori, H., Nelson, C. M., Alcaraz, J., Chen, C. S., Lo, A. T., Fata, J. E., et al. (Submitted). The catalytic and non-catalytic domains of MMP14 and stromal collagen density regulate signaling loops that direct invasion and branching of mammary epithelial cells. Mori, H., Nelson, C. M., Alcaraz, J., Chen, C. S., Lo, A. T., Fata, J. E., et al. (Submitted). The catalytic and non-catalytic domains of MMP14 and stromal collagen density regulate signaling loops that direct invasion and branching of mammary epithelial cells.
25.
go back to reference Sympson, C. J., Talhouk, R. S., Alexander, C. M., Chin, J. R., Clift, S. M., Bissell, M. J., et al. (1994). Targeted expression of stromelysin-1 in mammary gland provides evidence for a role of proteinases in branching morphogenesis and the requirement for an intact basement membrane for tissue-specific gene expression. Journal of cell biology, 125, 681–693.PubMedCrossRef Sympson, C. J., Talhouk, R. S., Alexander, C. M., Chin, J. R., Clift, S. M., Bissell, M. J., et al. (1994). Targeted expression of stromelysin-1 in mammary gland provides evidence for a role of proteinases in branching morphogenesis and the requirement for an intact basement membrane for tissue-specific gene expression. Journal of cell biology, 125, 681–693.PubMedCrossRef
26.
go back to reference Koshikawa, N., Minegishi, T., Sharabi, A., Quaranta, V., & Seiki, M. (2005). Membrane-type matrix metalloproteinase-1 (MT1-MMP) is a processing enzyme for human laminin gamma 2 chain. Journal of biological chemistry, 280, 88–93.PubMed Koshikawa, N., Minegishi, T., Sharabi, A., Quaranta, V., & Seiki, M. (2005). Membrane-type matrix metalloproteinase-1 (MT1-MMP) is a processing enzyme for human laminin gamma 2 chain. Journal of biological chemistry, 280, 88–93.PubMed
27.
go back to reference Koshikawa, N., Schenk, S., Moeckel, G., Sharabi, A., Miyazaki, K., Gardner, H., et al. (2004). Proteolytic processing of laminin-5 by MT1-MMP in tissues and its effects on epithelial cell morphology. FASEB journal, 18, 364–366.PubMed Koshikawa, N., Schenk, S., Moeckel, G., Sharabi, A., Miyazaki, K., Gardner, H., et al. (2004). Proteolytic processing of laminin-5 by MT1-MMP in tissues and its effects on epithelial cell morphology. FASEB journal, 18, 364–366.PubMed
28.
go back to reference Bissell, M. J., Rizki, A., & Mian, I. S. (2003). Tissue architecture: the ultimate regulator of breast epithelial function. Current opinion in cell biology, 15, 753–762.PubMedCrossRef Bissell, M. J., Rizki, A., & Mian, I. S. (2003). Tissue architecture: the ultimate regulator of breast epithelial function. Current opinion in cell biology, 15, 753–762.PubMedCrossRef
29.
go back to reference Hagios, C., Lochter, A., & Bissell, M. J. (1998). Tissue architecture: the ultimate regulator of epithelial function? Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 353, 857–870.PubMedCrossRef Hagios, C., Lochter, A., & Bissell, M. J. (1998). Tissue architecture: the ultimate regulator of epithelial function? Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 353, 857–870.PubMedCrossRef
30.
go back to reference Emerman, J. T., & Pitelka, D. R. (1977). Maintenance and induction of morphological differentiation in dissociated mammary epithelium on floating collagen membranes. In Vitro, 13, 316–328.PubMedCrossRef Emerman, J. T., & Pitelka, D. R. (1977). Maintenance and induction of morphological differentiation in dissociated mammary epithelium on floating collagen membranes. In Vitro, 13, 316–328.PubMedCrossRef
31.
go back to reference Kleinman, H. K., McGarvey, M. L., Liotta, L. A., Robey, P. G., Tryggvason, K., & Martin, G. R. (1982). Isolation and characterization of type IV procollagen, laminin, and heparan sulfate proteoglycan from the EHS sarcoma. Biochemistry, 21, 6188–6193.PubMedCrossRef Kleinman, H. K., McGarvey, M. L., Liotta, L. A., Robey, P. G., Tryggvason, K., & Martin, G. R. (1982). Isolation and characterization of type IV procollagen, laminin, and heparan sulfate proteoglycan from the EHS sarcoma. Biochemistry, 21, 6188–6193.PubMedCrossRef
32.
go back to reference Li, M. L., Aggeler, J., Farson, D. A., Hatier, C., Hassell, J., & Bissell, M. J. (1987). Influence of a reconstituted basement membrane and its components on casein gene expression and secretion in mouse mammary epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 84, 136–140.PubMedCrossRef Li, M. L., Aggeler, J., Farson, D. A., Hatier, C., Hassell, J., & Bissell, M. J. (1987). Influence of a reconstituted basement membrane and its components on casein gene expression and secretion in mouse mammary epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 84, 136–140.PubMedCrossRef
33.
go back to reference Barcellos-Hoff, M. H., Aggeler, J., Ram, T. G., & Bissell, M. J. (1989). Functional differentiation and alveolar morphogenesis of primary mammary cultures on reconstituted basement membrane. Development, 105, 223–235.PubMed Barcellos-Hoff, M. H., Aggeler, J., Ram, T. G., & Bissell, M. J. (1989). Functional differentiation and alveolar morphogenesis of primary mammary cultures on reconstituted basement membrane. Development, 105, 223–235.PubMed
34.
go back to reference Bissell, M. J., Kenny, P. A., & Radisky, D. C. (2005). Microenvironmental regulators of tissue structure and function also regulate tumor induction and progression: the role of extracellular matrix and its degrading enzymes. Cold Spring Harbor Symposia on Quantitative Biology, 70, 343–356.PubMedCrossRef Bissell, M. J., Kenny, P. A., & Radisky, D. C. (2005). Microenvironmental regulators of tissue structure and function also regulate tumor induction and progression: the role of extracellular matrix and its degrading enzymes. Cold Spring Harbor Symposia on Quantitative Biology, 70, 343–356.PubMedCrossRef
35.
go back to reference Bissell, M. J., & Bilder, D. (2003). Polarity determination in breast tissue: desmosomal adhesion, myoepithelial cells, and laminin 1. Breast cancer research, 5, 117–119.PubMedCrossRef Bissell, M. J., & Bilder, D. (2003). Polarity determination in breast tissue: desmosomal adhesion, myoepithelial cells, and laminin 1. Breast cancer research, 5, 117–119.PubMedCrossRef
36.
go back to reference Gudjonsson, T., Ronnov-Jessen, L., Villadsen, R., Rank, F., Bissell, M. J., & Petersen, O. W. (2002). Normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for polarity and basement membrane deposition. Journal of Cell Science, 115, 39–50.PubMed Gudjonsson, T., Ronnov-Jessen, L., Villadsen, R., Rank, F., Bissell, M. J., & Petersen, O. W. (2002). Normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for polarity and basement membrane deposition. Journal of Cell Science, 115, 39–50.PubMed
37.
go back to reference Streuli, C. H., Bailey, N., & Bissell, M. J. (1991). Control of mammary epithelial differentiation: basement membrane induces tissue-specific gene expression in the absence of cell-cell interaction and morphological polarity. Journal of cell biology, 115, 1383–1395.PubMedCrossRef Streuli, C. H., Bailey, N., & Bissell, M. J. (1991). Control of mammary epithelial differentiation: basement membrane induces tissue-specific gene expression in the absence of cell-cell interaction and morphological polarity. Journal of cell biology, 115, 1383–1395.PubMedCrossRef
38.
go back to reference Weir, M. L., Oppizzi, M. L., Henry, M. D., Onishi, A., Campbell, K. P., Bissell, M. J., et al. (2006). Dystroglycan loss disrupts polarity and beta-casein induction in mammary epithelial cells by perturbing laminin anchoring. Journal of Cell Science, 119, 4047–4058.PubMedCrossRef Weir, M. L., Oppizzi, M. L., Henry, M. D., Onishi, A., Campbell, K. P., Bissell, M. J., et al. (2006). Dystroglycan loss disrupts polarity and beta-casein induction in mammary epithelial cells by perturbing laminin anchoring. Journal of Cell Science, 119, 4047–4058.PubMedCrossRef
39.
go back to reference Naylor, M. J., Li, N., Cheung, J., Lowe, E. T., Lambert, E., Marlow, R., et al. (2005). Ablation of beta1 integrin in mammary epithelium reveals a key role for integrin in glandular morphogenesis and differentiation. Journal of cell biology, 171, 717–728.PubMedCrossRef Naylor, M. J., Li, N., Cheung, J., Lowe, E. T., Lambert, E., Marlow, R., et al. (2005). Ablation of beta1 integrin in mammary epithelium reveals a key role for integrin in glandular morphogenesis and differentiation. Journal of cell biology, 171, 717–728.PubMedCrossRef
40.
go back to reference Xu, R., Nelson, C. M., Muschler, J., Veiseh, M., Vonderhaar, B. K., Bissell, M. J. (2008). Sustained activation of STAT5 is essential for chromatin remodeling and maintenance of mammary-specific function. Journal of cell biology, In press. Xu, R., Nelson, C. M., Muschler, J., Veiseh, M., Vonderhaar, B. K., Bissell, M. J. (2008). Sustained activation of STAT5 is essential for chromatin remodeling and maintenance of mammary-specific function. Journal of cell biology, In press.
41.
go back to reference Ben-Jonathan, N., Mershon, J. L., Allen, D. L., & Steinmetz, R. W. (1996). Extrapituitary prolactin: distribution, regulation, functions, and clinical aspects. Endocrine reviews, 17, 639–669.PubMed Ben-Jonathan, N., Mershon, J. L., Allen, D. L., & Steinmetz, R. W. (1996). Extrapituitary prolactin: distribution, regulation, functions, and clinical aspects. Endocrine reviews, 17, 639–669.PubMed
42.
go back to reference Lin, C. Q., Dempsey, P. J., Coffey, R. J., & Bissell, M. J. (1995). Extracellular matrix regulates whey acidic protein gene expression by suppression of TGF-alpha in mouse mammary epithelial cells: studies in culture and in transgenic mice. Journal of cell biology, 129, 1115–1126.PubMedCrossRef Lin, C. Q., Dempsey, P. J., Coffey, R. J., & Bissell, M. J. (1995). Extracellular matrix regulates whey acidic protein gene expression by suppression of TGF-alpha in mouse mammary epithelial cells: studies in culture and in transgenic mice. Journal of cell biology, 129, 1115–1126.PubMedCrossRef
43.
go back to reference Chen, L. H., & Bissell, M. J. (1989). A novel regulatory mechanism for whey acidic protein gene expression. Cell regulation, 1, 45–54.PubMed Chen, L. H., & Bissell, M. J. (1989). A novel regulatory mechanism for whey acidic protein gene expression. Cell regulation, 1, 45–54.PubMed
44.
go back to reference Vermeer, P. D., Einwalter, L. A., Moninger, T. O., Rokhlina, T., Kern, J. A., Zabner, J., et al. (2003). Segregation of receptor and ligand regulates activation of epithelial growth factor receptor. Nature, 422, 322–326.PubMedCrossRef Vermeer, P. D., Einwalter, L. A., Moninger, T. O., Rokhlina, T., Kern, J. A., Zabner, J., et al. (2003). Segregation of receptor and ligand regulates activation of epithelial growth factor receptor. Nature, 422, 322–326.PubMedCrossRef
45.
go back to reference Liu, H., Radisky, D. C., Wang, F., & Bissell, M. J. (2004). Polarity and proliferation are controlled by distinct signaling pathways downstream of PI3-kinase in breast epithelial tumor cells. Journal of cell biology, 164, 603–612.PubMedCrossRef Liu, H., Radisky, D. C., Wang, F., & Bissell, M. J. (2004). Polarity and proliferation are controlled by distinct signaling pathways downstream of PI3-kinase in breast epithelial tumor cells. Journal of cell biology, 164, 603–612.PubMedCrossRef
46.
go back to reference Xu, R., Spencer, V. A., & Bissell, M. J. (2007). Extracellular matrix-regulated gene expression requires cooperation of SWI/SNF and transcription factors. Journal of biological chemistry, 282, 14992–14999.PubMedCrossRef Xu, R., Spencer, V. A., & Bissell, M. J. (2007). Extracellular matrix-regulated gene expression requires cooperation of SWI/SNF and transcription factors. Journal of biological chemistry, 282, 14992–14999.PubMedCrossRef
47.
go back to reference Streuli, C. H., Schmidhauser, C., Bailey, N., Yurchenco, P., Skubitz, A. P., Roskelley, C., et al. (1995). Laminin mediates tissue-specific gene expression in mammary epithelia. Journal of cell biology, 129, 591–603.PubMedCrossRef Streuli, C. H., Schmidhauser, C., Bailey, N., Yurchenco, P., Skubitz, A. P., Roskelley, C., et al. (1995). Laminin mediates tissue-specific gene expression in mammary epithelia. Journal of cell biology, 129, 591–603.PubMedCrossRef
48.
go back to reference Schmidhauser, C., Casperson, G. F., Myers, C. A., Sanzo, K. T., Bolten, S., & Bissell, M. J. (1992). A novel transcriptional enhancer is involved in the prolactin—and extracellular matrix-dependent regulation of beta-casein gene expression. Molecular biology of the cell, 3, 699–709.PubMed Schmidhauser, C., Casperson, G. F., Myers, C. A., Sanzo, K. T., Bolten, S., & Bissell, M. J. (1992). A novel transcriptional enhancer is involved in the prolactin—and extracellular matrix-dependent regulation of beta-casein gene expression. Molecular biology of the cell, 3, 699–709.PubMed
49.
go back to reference Myers, C. A., Schmidhauser, C., Mellentin-Michelotti, J., Fragoso, G., Roskelley, C. D., Casperson, G., et al. (1998). Characterization of BCE-1, a transcriptional enhancer regulated by prolactin and extracellular matrix and modulated by the state of histone acetylation. Molecular and cellular biology, 18, 2184–2195.PubMed Myers, C. A., Schmidhauser, C., Mellentin-Michelotti, J., Fragoso, G., Roskelley, C. D., Casperson, G., et al. (1998). Characterization of BCE-1, a transcriptional enhancer regulated by prolactin and extracellular matrix and modulated by the state of histone acetylation. Molecular and cellular biology, 18, 2184–2195.PubMed
50.
go back to reference Clayton, D. F., Harrelson, A. L., & Darnell Jr., J. E. (1985). Dependence of liver-specific transcription on tissue organization. Molecular and cellular biology, 5, 2623–2632.PubMed Clayton, D. F., Harrelson, A. L., & Darnell Jr., J. E. (1985). Dependence of liver-specific transcription on tissue organization. Molecular and cellular biology, 5, 2623–2632.PubMed
51.
go back to reference Streuli, C. H., Edwards, G. M., Delcommenne, M., Whitelaw, C. B., Burdon, T. G., Schindler, C., et al. (1995). Stat5 as a target for regulation by extracellular matrix. Journal of biological chemistry, 270, 21639–21644.PubMedCrossRef Streuli, C. H., Edwards, G. M., Delcommenne, M., Whitelaw, C. B., Burdon, T. G., Schindler, C., et al. (1995). Stat5 as a target for regulation by extracellular matrix. Journal of biological chemistry, 270, 21639–21644.PubMedCrossRef
52.
go back to reference Lelievre, S. A., Weaver, V. M., Nickerson, J. A., Larabell, C. A., Bhaumik, A., Petersen, O. W., et al. (1998). Tissue phenotype depends on reciprocal interactions between the extracellular matrix and the structural organization of the nucleus. Proceedings of the National Academy of Sciences of the United States of America, 95, 14711–14716.PubMedCrossRef Lelievre, S. A., Weaver, V. M., Nickerson, J. A., Larabell, C. A., Bhaumik, A., Petersen, O. W., et al. (1998). Tissue phenotype depends on reciprocal interactions between the extracellular matrix and the structural organization of the nucleus. Proceedings of the National Academy of Sciences of the United States of America, 95, 14711–14716.PubMedCrossRef
53.
go back to reference Weaver, V. M., Lelievre, S., Lakins, J. N., Chrenek, M. A., Jones, J. C., Giancotti, F., et al. (2002). beta4 integrin-dependent formation of polarized three-dimensional architecture confers resistance to apoptosis in normal and malignant mammary epithelium. Cancer Cell, 2, 205–216.PubMedCrossRef Weaver, V. M., Lelievre, S., Lakins, J. N., Chrenek, M. A., Jones, J. C., Giancotti, F., et al. (2002). beta4 integrin-dependent formation of polarized three-dimensional architecture confers resistance to apoptosis in normal and malignant mammary epithelium. Cancer Cell, 2, 205–216.PubMedCrossRef
54.
go back to reference Kaminker, P., Plachot, C., Kim, S. H., Chung, P., Crippen, D., Petersen, O. W., et al. (2005). Higher-order nuclear organization in growth arrest of human mammary epithelial cells: a novel role for telomere-associated protein TIN2. Journal of Cell Science, 118, 1321–1330.PubMedCrossRef Kaminker, P., Plachot, C., Kim, S. H., Chung, P., Crippen, D., Petersen, O. W., et al. (2005). Higher-order nuclear organization in growth arrest of human mammary epithelial cells: a novel role for telomere-associated protein TIN2. Journal of Cell Science, 118, 1321–1330.PubMedCrossRef
55.
go back to reference Berrier, A. L., & Yamada, K. M. (2007). Cell-matrix adhesion. Journal of cellular physiology, 213, 565–573.PubMedCrossRef Berrier, A. L., & Yamada, K. M. (2007). Cell-matrix adhesion. Journal of cellular physiology, 213, 565–573.PubMedCrossRef
56.
go back to reference Zhang, Q., Skepper, J. N., Yang, F., Davies, J. D., Hegyi, L., Roberts, R. G., et al. (2001). Nesprins: a novel family of spectrin-repeat-containing proteins that localize to the nuclear membrane in multiple tissues. Journal of Cell Science, 114, 4485–4498.PubMed Zhang, Q., Skepper, J. N., Yang, F., Davies, J. D., Hegyi, L., Roberts, R. G., et al. (2001). Nesprins: a novel family of spectrin-repeat-containing proteins that localize to the nuclear membrane in multiple tissues. Journal of Cell Science, 114, 4485–4498.PubMed
57.
go back to reference Hetzer, M. W., Walther, T. C., & Mattaj, I. W. (2005). Pushing the envelope: structure, function, and dynamics of the nuclear periphery. Annual review of cell and developmental biology, 21, 347–380.PubMedCrossRef Hetzer, M. W., Walther, T. C., & Mattaj, I. W. (2005). Pushing the envelope: structure, function, and dynamics of the nuclear periphery. Annual review of cell and developmental biology, 21, 347–380.PubMedCrossRef
58.
go back to reference Maniotis, A. J., Chen, C. S., & Ingber, D. E. (1997). Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proceedings of the National Academy of Sciences of the United States of America, 94, 849–854.PubMedCrossRef Maniotis, A. J., Chen, C. S., & Ingber, D. E. (1997). Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proceedings of the National Academy of Sciences of the United States of America, 94, 849–854.PubMedCrossRef
59.
go back to reference Le Beyec, J., Xu, R., Lee, S. Y., Nelson, C. M., Rizki, A., Alcaraz, J., et al. (2007). Cell shape regulates global histone acetylation in human mammary epithelial cells. Experimental cell research, 313, 3066–3075.PubMedCrossRef Le Beyec, J., Xu, R., Lee, S. Y., Nelson, C. M., Rizki, A., Alcaraz, J., et al. (2007). Cell shape regulates global histone acetylation in human mammary epithelial cells. Experimental cell research, 313, 3066–3075.PubMedCrossRef
60.
go back to reference Muschler, J., Lochter, A., Roskelley, C. D., Yurchenco, P., & Bissell, M. J. (1999). Division of labor among the alpha6beta4 integrin, beta1 integrins, and an E3 laminin receptor to signal morphogenesis and beta-casein expression in mammary epithelial cells. Molecular biology of the cell, 10, 2817–2828.PubMed Muschler, J., Lochter, A., Roskelley, C. D., Yurchenco, P., & Bissell, M. J. (1999). Division of labor among the alpha6beta4 integrin, beta1 integrins, and an E3 laminin receptor to signal morphogenesis and beta-casein expression in mammary epithelial cells. Molecular biology of the cell, 10, 2817–2828.PubMed
61.
go back to reference Roskelley, C. D., Desprez, P. Y., & Bissell, M. J. (1994). Extracellular matrix-dependent tissue-specific gene expression in mammary epithelial cells requires both physical and biochemical signal transduction. Proceedings of the National Academy of Sciences of the United States of America, 91, 12378–12382.PubMedCrossRef Roskelley, C. D., Desprez, P. Y., & Bissell, M. J. (1994). Extracellular matrix-dependent tissue-specific gene expression in mammary epithelial cells requires both physical and biochemical signal transduction. Proceedings of the National Academy of Sciences of the United States of America, 91, 12378–12382.PubMedCrossRef
62.
go back to reference McNally, J. G., Muller, W. G., Walker, D., Wolford, R., & Hager, G. L. (2000). The glucocorticoid receptor: rapid exchange with regulatory sites in living cells. Science, 287, 1262–1265.PubMedCrossRef McNally, J. G., Muller, W. G., Walker, D., Wolford, R., & Hager, G. L. (2000). The glucocorticoid receptor: rapid exchange with regulatory sites in living cells. Science, 287, 1262–1265.PubMedCrossRef
63.
go back to reference Metivier, R., Penot, G., Hubner, M. R., Reid, G., Brand, H., Kos, M., et al. (2003). Estrogen receptor-alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell, 115, 751–763.PubMedCrossRef Metivier, R., Penot, G., Hubner, M. R., Reid, G., Brand, H., Kos, M., et al. (2003). Estrogen receptor-alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell, 115, 751–763.PubMedCrossRef
64.
go back to reference Zoubiane, G. S., Valentijn, A., Lowe, E. T., Akhtar, N., Bagley, S., Gilmore, A. P., et al. (2004). A role for the cytoskeleton in prolactin-dependent mammary epithelial cell differentiation. Journal of Cell Science, 117, 271–280.PubMedCrossRef Zoubiane, G. S., Valentijn, A., Lowe, E. T., Akhtar, N., Bagley, S., Gilmore, A. P., et al. (2004). A role for the cytoskeleton in prolactin-dependent mammary epithelial cell differentiation. Journal of Cell Science, 117, 271–280.PubMedCrossRef
65.
go back to reference Akhtar, N., & Streuli, C. H. (2006). Rac1 links integrin-mediated adhesion to the control of lactational differentiation in mammary epithelia. Journal of Cell Biology, 173, 781–793.PubMedCrossRef Akhtar, N., & Streuli, C. H. (2006). Rac1 links integrin-mediated adhesion to the control of lactational differentiation in mammary epithelia. Journal of Cell Biology, 173, 781–793.PubMedCrossRef
66.
go back to reference Jou, T. S., & Nelson, W. J. (1998). Effects of regulated expression of mutant RhoA and Rac1 small GTPases on the development of epithelial (MDCK) cell polarity. Journal of Cell Biology, 142, 85–100.PubMedCrossRef Jou, T. S., & Nelson, W. J. (1998). Effects of regulated expression of mutant RhoA and Rac1 small GTPases on the development of epithelial (MDCK) cell polarity. Journal of Cell Biology, 142, 85–100.PubMedCrossRef
67.
go back to reference Jaffe, A. B., & Hall, A. (2005). Rho GTPases: biochemistry and biology. Annual review of cell and developmental biology, 21, 247–269.PubMedCrossRef Jaffe, A. B., & Hall, A. (2005). Rho GTPases: biochemistry and biology. Annual review of cell and developmental biology, 21, 247–269.PubMedCrossRef
68.
go back to reference Kheradmand, F., Werner, E., Tremble, P., Symons, M., & Werb, Z. (1998). Role of Rac1 and oxygen radicals in collagenase-1 expression induced by cell shape change. Science, 280, 898–902.PubMedCrossRef Kheradmand, F., Werner, E., Tremble, P., Symons, M., & Werb, Z. (1998). Role of Rac1 and oxygen radicals in collagenase-1 expression induced by cell shape change. Science, 280, 898–902.PubMedCrossRef
69.
go back to reference Engler, A. J., Sen, S., Sweeney, H. L., & Discher, D. E. (2006). Matrix elasticity directs stem cell lineage specification. Cell, 126, 677–689.PubMedCrossRef Engler, A. J., Sen, S., Sweeney, H. L., & Discher, D. E. (2006). Matrix elasticity directs stem cell lineage specification. Cell, 126, 677–689.PubMedCrossRef
70.
go back to reference Paszek, M. J., Zahir, N., Johnson, K. R., Lakins, J. N., Rozenberg, G. I., Gefen, A., et al. (2005). Tensional homeostasis and the malignant phenotype. Cancer Cell, 8, 241–254.PubMedCrossRef Paszek, M. J., Zahir, N., Johnson, K. R., Lakins, J. N., Rozenberg, G. I., Gefen, A., et al. (2005). Tensional homeostasis and the malignant phenotype. Cancer Cell, 8, 241–254.PubMedCrossRef
71.
go back to reference Lee, E. Y., Parry, G., & Bissell, M. J. (1984). Modulation of secreted proteins of mouse mammary epithelial cells by the collagenous substrata. Journal of Cell Biology, 98, 146–155.PubMedCrossRef Lee, E. Y., Parry, G., & Bissell, M. J. (1984). Modulation of secreted proteins of mouse mammary epithelial cells by the collagenous substrata. Journal of Cell Biology, 98, 146–155.PubMedCrossRef
72.
go back to reference Alcaraz, J., Xu, R., Mori, H., Nelson, C. M., Mroue, R., Spencer, V. A., et al. (2008). Laminin and biomimetic extracellular elasticity enhance functional differentiation in mammary epithelia. EMBO journal, 27, 2829–2838.PubMedCrossRef Alcaraz, J., Xu, R., Mori, H., Nelson, C. M., Mroue, R., Spencer, V. A., et al. (2008). Laminin and biomimetic extracellular elasticity enhance functional differentiation in mammary epithelia. EMBO journal, 27, 2829–2838.PubMedCrossRef
73.
go back to reference Wozniak, M. A., Desai, R., Solski, P. A., Der, C. J., & Keely, P. J. (2003). ROCK-generated contractility regulates breast epithelial cell differentiation in response to the physical properties of a three-dimensional collagen matrix. Journal of Cell Biology, 163, 583–595.PubMedCrossRef Wozniak, M. A., Desai, R., Solski, P. A., Der, C. J., & Keely, P. J. (2003). ROCK-generated contractility regulates breast epithelial cell differentiation in response to the physical properties of a three-dimensional collagen matrix. Journal of Cell Biology, 163, 583–595.PubMedCrossRef
74.
go back to reference Alcaraz, J., Nelson, C. M., & Bissell, M. J. (2004). Biomechanical approaches for studying integration of tissue structure and function in mammary epithelia. Journal of mammary gland biology and neoplasia, 9, 361–374.PubMedCrossRef Alcaraz, J., Nelson, C. M., & Bissell, M. J. (2004). Biomechanical approaches for studying integration of tissue structure and function in mammary epithelia. Journal of mammary gland biology and neoplasia, 9, 361–374.PubMedCrossRef
75.
go back to reference Baneyx, G., Baugh, L., & Vogel, V. (2002). Fibronectin extension and unfolding within cell matrix fibrils controlled by cytoskeletal tension. Proceedings of the National Academy of Sciences of the United States of America, 99, 5139–5143.PubMedCrossRef Baneyx, G., Baugh, L., & Vogel, V. (2002). Fibronectin extension and unfolding within cell matrix fibrils controlled by cytoskeletal tension. Proceedings of the National Academy of Sciences of the United States of America, 99, 5139–5143.PubMedCrossRef
76.
go back to reference Feral, C. C., Zijlstra, A., Tkachenko, E., Prager, G., Gardel, M. L., Slepak, M., et al. (2007). CD98hc (SLC3A2) participates in fibronectin matrix assembly by mediating integrin signaling. Journal of Cell Biology, 178, 701–711.PubMedCrossRef Feral, C. C., Zijlstra, A., Tkachenko, E., Prager, G., Gardel, M. L., Slepak, M., et al. (2007). CD98hc (SLC3A2) participates in fibronectin matrix assembly by mediating integrin signaling. Journal of Cell Biology, 178, 701–711.PubMedCrossRef
77.
go back to reference Lambert, C. A., Colige, A. C., Munaut, C., Lapiere, C. M., & Nusgens, B. V. (2001). Distinct pathways in the over-expression of matrix metalloproteinases in human fibroblasts by relaxation of mechanical tension. Matrix Biol, 20, 397–408.PubMedCrossRef Lambert, C. A., Colige, A. C., Munaut, C., Lapiere, C. M., & Nusgens, B. V. (2001). Distinct pathways in the over-expression of matrix metalloproteinases in human fibroblasts by relaxation of mechanical tension. Matrix Biol, 20, 397–408.PubMedCrossRef
78.
go back to reference Chang, H. Y., Chi, J. T., Dudoit, S., Bondre, C., van de Rijn, M., Botstein, D., et al. (2002). Diversity, topographic differentiation, and positional memory in human fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 99, 12877–12882.PubMedCrossRef Chang, H. Y., Chi, J. T., Dudoit, S., Bondre, C., van de Rijn, M., Botstein, D., et al. (2002). Diversity, topographic differentiation, and positional memory in human fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 99, 12877–12882.PubMedCrossRef
79.
go back to reference Boulanger, C. A., Mack, D. L., Booth, B. W., & Smith, G. H. (2007). Interaction with the mammary microenvironment redirects spermatogenic cell fate in vivo. Proceedings of the National Academy of Sciences of the United States of America, 104, 3871–3876.PubMedCrossRef Boulanger, C. A., Mack, D. L., Booth, B. W., & Smith, G. H. (2007). Interaction with the mammary microenvironment redirects spermatogenic cell fate in vivo. Proceedings of the National Academy of Sciences of the United States of America, 104, 3871–3876.PubMedCrossRef
80.
go back to reference Booth, B. W., Mack, D. L., Androutsellis-Theotokis, A., McKay, R. D., Boulanger, C. A., & Smith, G. H. (2008). The mammary microenvironment alters the differentiation repertoire of neural stem cells. Proceedings of the National Academy of Sciences of the United States of America, 105, 14891–14896.PubMedCrossRef Booth, B. W., Mack, D. L., Androutsellis-Theotokis, A., McKay, R. D., Boulanger, C. A., & Smith, G. H. (2008). The mammary microenvironment alters the differentiation repertoire of neural stem cells. Proceedings of the National Academy of Sciences of the United States of America, 105, 14891–14896.PubMedCrossRef
81.
go back to reference Bissell, M. J., & Inman, J. (2008). Reprogramming stem cells is a microenvironmental task. Proceedings of the National Academy of Sciences of the United States of America, 105, 15637–15638.PubMedCrossRef Bissell, M. J., & Inman, J. (2008). Reprogramming stem cells is a microenvironmental task. Proceedings of the National Academy of Sciences of the United States of America, 105, 15637–15638.PubMedCrossRef
82.
go back to reference Sternlicht, M. D., Lochter, A., Sympson, C. J., Huey, B., Rougier, J. P., Gray, J. W., Pinkel, D., et al. (1999). The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell, 98, 137–146.PubMedCrossRef Sternlicht, M. D., Lochter, A., Sympson, C. J., Huey, B., Rougier, J. P., Gray, J. W., Pinkel, D., et al. (1999). The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell, 98, 137–146.PubMedCrossRef
83.
go back to reference Ha, H. Y., Moon, H. B., Nam, M. S., Lee, J. W., Ryoo, Z. Y., Lee, T. H., et al. (2001). Overexpression of membrane-type matrix me0talloproteinase-1 gene induces mammary gland abnormalities and adenocarcinoma in transgenic mice. Cancer research, 61, 984–990.PubMed Ha, H. Y., Moon, H. B., Nam, M. S., Lee, J. W., Ryoo, Z. Y., Lee, T. H., et al. (2001). Overexpression of membrane-type matrix me0talloproteinase-1 gene induces mammary gland abnormalities and adenocarcinoma in transgenic mice. Cancer research, 61, 984–990.PubMed
84.
go back to reference Radisky, D. C., Levy, D. D., Littlepage, L. E., Liu, H., Nelson, C. M., Fata, J. E., et al. (2005). Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature, 436, 123–127.PubMedCrossRef Radisky, D. C., Levy, D. D., Littlepage, L. E., Liu, H., Nelson, C. M., Fata, J. E., et al. (2005). Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature, 436, 123–127.PubMedCrossRef
85.
go back to reference McCawley, L. J., Wright, J., LaFleur, B. J., Crawford, H. C., & Matrisian, L. M. (2008). Keratinocyte expression of MMP3 enhances differentiation and prevents tumor establishment. American journal of pathology, 173, 1528–1539.PubMedCrossRef McCawley, L. J., Wright, J., LaFleur, B. J., Crawford, H. C., & Matrisian, L. M. (2008). Keratinocyte expression of MMP3 enhances differentiation and prevents tumor establishment. American journal of pathology, 173, 1528–1539.PubMedCrossRef
Metadata
Title
Tissue architecture and function: dynamic reciprocity via extra- and intra-cellular matrices
Authors
Ren Xu
Aaron Boudreau
Mina J. Bissell
Publication date
01-06-2009
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 1-2/2009
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-008-9178-z

Other articles of this Issue 1-2/2009

Cancer and Metastasis Reviews 1-2/2009 Go to the issue

EditorialNotes

Preface

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine