Skip to main content
Top
Published in: Cancer and Metastasis Reviews 1-2/2009

01-06-2009

Invadopodia: specialized tumor cell structures for the focal degradation of the extracellular matrix

Authors: Roberto Buccione, Giusi Caldieri, Inmaculada Ayala

Published in: Cancer and Metastasis Reviews | Issue 1-2/2009

Login to get access

Abstract

Invasive tumor–derived or transformed cells, cultured on a flat extracellular matrix substratum, extend specialized proteolytically active plasma membrane protrusions. These structures, termed invadopodia, are responsible for the focal degradation of the underlying substrate. Considerable progress has been made in recent years towards understanding the basic molecular components and regulatory circuits and the ultrastructural features of invadopodia. This has generated substantial interest in invadopodia as a paradigm to study the complex interactions between the intracellular trafficking, signal transduction and cytoskeleton regulation machineries; hopes are high that they may also represent valid biological targets to help advance the anti–cancer drug discovery process. Current knowledge will be reviewed here with an emphasis on the many open questions in invadopodia biology.
Literature
1.
go back to reference Adams, J. C. (2001). Cell-matrix contact structures. Cell Mol Life Sci, 58, 371–392.PubMed Adams, J. C. (2001). Cell-matrix contact structures. Cell Mol Life Sci, 58, 371–392.PubMed
2.
go back to reference Adams, J. C. (2002). Regulation of protrusive and contractile cell-matrix contacts. J Cell Sci, 115, 257–265.PubMed Adams, J. C. (2002). Regulation of protrusive and contractile cell-matrix contacts. J Cell Sci, 115, 257–265.PubMed
3.
go back to reference Litjens, S. H., de Pereda, J. M., & Sonnenberg, A. (2006). Current insights into the formation and breakdown of hemidesmosomes. Trends in cell biology, 16, 376–383.PubMed Litjens, S. H., de Pereda, J. M., & Sonnenberg, A. (2006). Current insights into the formation and breakdown of hemidesmosomes. Trends in cell biology, 16, 376–383.PubMed
4.
go back to reference Wehrle-Haller, B., & Imhof, B. (2002). The inner lives of focal adhesions. Trends in cell biology, 12, 382–389.PubMed Wehrle-Haller, B., & Imhof, B. (2002). The inner lives of focal adhesions. Trends in cell biology, 12, 382–389.PubMed
5.
go back to reference Zaidel-Bar, R., Cohen, M., Addadi, L., & Geiger, B. (2004). Hierarchical assembly of cell-matrix adhesion complexes. Biochemical Society transactions, 32, 416–420.PubMed Zaidel-Bar, R., Cohen, M., Addadi, L., & Geiger, B. (2004). Hierarchical assembly of cell-matrix adhesion complexes. Biochemical Society transactions, 32, 416–420.PubMed
6.
go back to reference Friedl, P., Entschladen, F., Conrad, C., Niggemann, B., & Zanker, K. S. (1998). CD4+ T lymphocytes migrating in three-dimensional collagen lattices lack focal adhesions and utilize beta1 integrin-independent strategies for polarization, interaction with collagen fibers and locomotion. European Journal of Immunology, 28, 2331–2343.PubMed Friedl, P., Entschladen, F., Conrad, C., Niggemann, B., & Zanker, K. S. (1998). CD4+ T lymphocytes migrating in three-dimensional collagen lattices lack focal adhesions and utilize beta1 integrin-independent strategies for polarization, interaction with collagen fibers and locomotion. European Journal of Immunology, 28, 2331–2343.PubMed
7.
go back to reference Kelly, T., Mueller, S. C., Yeh, Y., & Chen, W. T. (1994). Invadopodia promote proteolysis of a wide variety of extracellular matrix proteins. J Cell Physiol, 158, 299–308.PubMed Kelly, T., Mueller, S. C., Yeh, Y., & Chen, W. T. (1994). Invadopodia promote proteolysis of a wide variety of extracellular matrix proteins. J Cell Physiol, 158, 299–308.PubMed
8.
go back to reference Mueller, S. C., & Chen, W. T. (1991). Cellular invasion into matrix beads: localization of beta 1 integrins and fibronectin to the invadopodia. J Cell Sci, 99, 213–225.PubMed Mueller, S. C., & Chen, W. T. (1991). Cellular invasion into matrix beads: localization of beta 1 integrins and fibronectin to the invadopodia. J Cell Sci, 99, 213–225.PubMed
9.
go back to reference Chen, W. T. (1989). Proteolytic activity of specialized surface protrusions formed at rosette contact sites of transformed cells. J Exp Zool, 251, 167–185.PubMed Chen, W. T. (1989). Proteolytic activity of specialized surface protrusions formed at rosette contact sites of transformed cells. J Exp Zool, 251, 167–185.PubMed
10.
go back to reference Bowden, E. T., Barth, M., Thomas, D., Glazer, R. I., & Mueller, S. C. (1999). An invasion-related complex of cortactin, paxillin and PKCmu associates with invadopodia at sites of extracellular matrix degradation. Oncogene, 18, 4440–4449.PubMed Bowden, E. T., Barth, M., Thomas, D., Glazer, R. I., & Mueller, S. C. (1999). An invasion-related complex of cortactin, paxillin and PKCmu associates with invadopodia at sites of extracellular matrix degradation. Oncogene, 18, 4440–4449.PubMed
11.
go back to reference Nakahara, H., Mueller, S. C., Nomizu, M., Yamada, Y., Yeh, Y., & Chen, W. T. (1997). Activation of beta1 integrin signaling stimulates tyrosine phosphorylation of p190RhoGAP and membrane-protrusive activities at invadopodia. J Biol Chem, 273, 9–12. Nakahara, H., Mueller, S. C., Nomizu, M., Yamada, Y., Yeh, Y., & Chen, W. T. (1997). Activation of beta1 integrin signaling stimulates tyrosine phosphorylation of p190RhoGAP and membrane-protrusive activities at invadopodia. J Biol Chem, 273, 9–12.
12.
go back to reference Mueller, S. C., Yeh, Y., & Chen, W. T. (1992). Tyrosine phosphorylation of membrane proteins mediates cellular invasion by transformed cells. J Cell Biol, 119, 1309–1325.PubMed Mueller, S. C., Yeh, Y., & Chen, W. T. (1992). Tyrosine phosphorylation of membrane proteins mediates cellular invasion by transformed cells. J Cell Biol, 119, 1309–1325.PubMed
13.
go back to reference Monsky, W. L., Lin, C. Y., Aoyama, A., Kelly, T., Akiyama, S. K., Mueller, S. C., et al. (1994). A potential marker protease of invasiveness, seprase, is localized on invadopodia of human malignant melanoma cells. Cancer research, 54, 5702–5710.PubMed Monsky, W. L., Lin, C. Y., Aoyama, A., Kelly, T., Akiyama, S. K., Mueller, S. C., et al. (1994). A potential marker protease of invasiveness, seprase, is localized on invadopodia of human malignant melanoma cells. Cancer research, 54, 5702–5710.PubMed
14.
go back to reference Chen, W. T. (1996). Proteases associated with invadopodia, and their role in degradation of extracellular matrix. EnzymeProtein, 49, 59–71. Chen, W. T. (1996). Proteases associated with invadopodia, and their role in degradation of extracellular matrix. EnzymeProtein, 49, 59–71.
15.
go back to reference Baldassarre, M., Pompeo, A., Beznoussenko, G., Castaldi, C., Cortellino, S., McNiven, M. A., et al. (2003). Dynamin participates in focal extracellular matrix degradation by invasive cells. Mol Biol Cell, 14, 1074–1084.PubMed Baldassarre, M., Pompeo, A., Beznoussenko, G., Castaldi, C., Cortellino, S., McNiven, M. A., et al. (2003). Dynamin participates in focal extracellular matrix degradation by invasive cells. Mol Biol Cell, 14, 1074–1084.PubMed
16.
go back to reference Mizutani, K., Miki, H., He, H., Maruta, H., & Takenawa, T. (2002). Essential role of neural Wiskott-Aldrich syndrome protein in podosome formation and degradation of extracellular matrix in src-transformed fibroblasts. Cancer research, 62, 669–674.PubMed Mizutani, K., Miki, H., He, H., Maruta, H., & Takenawa, T. (2002). Essential role of neural Wiskott-Aldrich syndrome protein in podosome formation and degradation of extracellular matrix in src-transformed fibroblasts. Cancer research, 62, 669–674.PubMed
17.
go back to reference Yamaguchi, H., Lorenz, M., Kempiak, S., Sarmiento, C., Coniglio, S., Symons, M., et al. (2005). Molecular mechanisms of invadopodium formation: the role of the N-WASP-Arp2/3 complex pathway and cofilin. J Cell Biol, 168, 441–452.PubMed Yamaguchi, H., Lorenz, M., Kempiak, S., Sarmiento, C., Coniglio, S., Symons, M., et al. (2005). Molecular mechanisms of invadopodium formation: the role of the N-WASP-Arp2/3 complex pathway and cofilin. J Cell Biol, 168, 441–452.PubMed
18.
go back to reference Ayala, I., Baldassarre, M., Caldieri, G., & Buccione, R. (2006). Invadopodia: A guided tour. Eur J Cell Biol, 85, 159–164.PubMed Ayala, I., Baldassarre, M., Caldieri, G., & Buccione, R. (2006). Invadopodia: A guided tour. Eur J Cell Biol, 85, 159–164.PubMed
19.
go back to reference Bowden, E. T., Onikoyi, E., Slack, R., Myoui, A., Yoneda, T., Yamada, K. M., et al. (2006). Co-localization of cortactin and phosphotyrosine identifies active invadopodia in human breast cancer cells. Exp Cell Res, 312, 1240–1253.PubMed Bowden, E. T., Onikoyi, E., Slack, R., Myoui, A., Yoneda, T., Yamada, K. M., et al. (2006). Co-localization of cortactin and phosphotyrosine identifies active invadopodia in human breast cancer cells. Exp Cell Res, 312, 1240–1253.PubMed
20.
go back to reference Baldassarre, M., Ayala, I., Beznoussenko, G., Giacchetti, G., Machesky, L. M., Luini, A., et al. (2006). Actin dynamics at sites of extracellular matrix degradation. Eur J Cell Biol, 85, 1217–1231.PubMed Baldassarre, M., Ayala, I., Beznoussenko, G., Giacchetti, G., Machesky, L. M., Luini, A., et al. (2006). Actin dynamics at sites of extracellular matrix degradation. Eur J Cell Biol, 85, 1217–1231.PubMed
21.
go back to reference Nakahara, H., Nomizu, M., Akiyama, S. K., Yamada, Y., Yeh, Y., & Chen, W. T. (1996). A mechanism for regulation of melanoma invasion. Ligation of alpha6beta1 integrin by laminin G peptides. J Biol Chem, 271, 27221–27224.PubMed Nakahara, H., Nomizu, M., Akiyama, S. K., Yamada, Y., Yeh, Y., & Chen, W. T. (1996). A mechanism for regulation of melanoma invasion. Ligation of alpha6beta1 integrin by laminin G peptides. J Biol Chem, 271, 27221–27224.PubMed
22.
go back to reference Mueller, S. C., Ghersi, G., Akiyama, S. K., Sang, Q. X., Howard, L., Pineiro-Sanchez, M., et al. (1999). A novel protease-docking function of integrin at invadopodia. J Biol Chem, 274, 24947–24952.PubMed Mueller, S. C., Ghersi, G., Akiyama, S. K., Sang, Q. X., Howard, L., Pineiro-Sanchez, M., et al. (1999). A novel protease-docking function of integrin at invadopodia. J Biol Chem, 274, 24947–24952.PubMed
23.
go back to reference Artym, V. V., Kindzelskii, A. L., Chen, W. T., & Petty, H. R. (2002). Molecular proximity of seprase and the urokinase-type plasminogen activator receptor on malignant melanoma cell membranes: dependence on beta1 integrins and the cytoskeleton. Carcinogenesis, 23, 1593–1601.PubMed Artym, V. V., Kindzelskii, A. L., Chen, W. T., & Petty, H. R. (2002). Molecular proximity of seprase and the urokinase-type plasminogen activator receptor on malignant melanoma cell membranes: dependence on beta1 integrins and the cytoskeleton. Carcinogenesis, 23, 1593–1601.PubMed
24.
go back to reference Deryugina, E. I., Ratnikov, B., Monosov, E., Postnova, T. I., DiScipio, R., Smith, J. W., et al. (2001). MT1-MMP initiates activation of pro-MMP-2 and integrin alphavbeta3 promotes maturation of MMP-2 in breast carcinoma cells. Exp Cell Res, 263, 209–223.PubMed Deryugina, E. I., Ratnikov, B., Monosov, E., Postnova, T. I., DiScipio, R., Smith, J. W., et al. (2001). MT1-MMP initiates activation of pro-MMP-2 and integrin alphavbeta3 promotes maturation of MMP-2 in breast carcinoma cells. Exp Cell Res, 263, 209–223.PubMed
25.
go back to reference Coopman, P. J., Do, M. T., Thompson, E. W., & Mueller, S. C. (1998). Phagocytosis of cross-linked gelatin matrix by human breast carcinoma cells correlates with their invasive capacity. ClinCancer research, 4, 507–515. Coopman, P. J., Do, M. T., Thompson, E. W., & Mueller, S. C. (1998). Phagocytosis of cross-linked gelatin matrix by human breast carcinoma cells correlates with their invasive capacity. ClinCancer research, 4, 507–515.
26.
go back to reference Wyckoff, J., Wang, W., Lin, E. Y., Wang, Y., Pixley, F., Stanley, E. R., et al. (2004). A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer research, 64, 7022–7029.PubMed Wyckoff, J., Wang, W., Lin, E. Y., Wang, Y., Pixley, F., Stanley, E. R., et al. (2004). A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer research, 64, 7022–7029.PubMed
27.
go back to reference Yamaguchi, H., Pixley, F., & Condeelis, J. (2006). Invadopodia and podosomes in tumor invasion. Eur J Cell Biol, 85, 213–218.PubMed Yamaguchi, H., Pixley, F., & Condeelis, J. (2006). Invadopodia and podosomes in tumor invasion. Eur J Cell Biol, 85, 213–218.PubMed
28.
go back to reference Hauck, C. R., Hsia, D. A., Ilic, D., & Schlaepfer, D. D. (2002). v-Src SH3-enhanced interaction with focal adhesion kinase at beta 1 integrin-containing invadopodia promotes cell invasion. J Biol Chem, 277, 12487–12490.PubMed Hauck, C. R., Hsia, D. A., Ilic, D., & Schlaepfer, D. D. (2002). v-Src SH3-enhanced interaction with focal adhesion kinase at beta 1 integrin-containing invadopodia promotes cell invasion. J Biol Chem, 277, 12487–12490.PubMed
29.
go back to reference Rykx, A., De Kimpe, L., Mikhalap, S., Vantus, T., Seufferlein, T., Vandenheede, J. R., et al. (2003). Protein kinase D: a family affair. FEBS Lett, 546, 81–86.PubMed Rykx, A., De Kimpe, L., Mikhalap, S., Vantus, T., Seufferlein, T., Vandenheede, J. R., et al. (2003). Protein kinase D: a family affair. FEBS Lett, 546, 81–86.PubMed
30.
go back to reference Wang, Q. J. (2006). PKD at the crossroads of DAG and PKC signaling. Trends Pharmacol Sci, 27, 317–323.PubMed Wang, Q. J. (2006). PKD at the crossroads of DAG and PKC signaling. Trends Pharmacol Sci, 27, 317–323.PubMed
31.
go back to reference Tague, S. E., Muralidharan, V., & D'Souza-Schorey, C. (2004). ADP-ribosylation factor 6 regulates tumor cell invasion through the activation of the MEK/ERK signaling pathway. Proc Natl Acad Sci U S A, 101, 9671–9676.PubMed Tague, S. E., Muralidharan, V., & D'Souza-Schorey, C. (2004). ADP-ribosylation factor 6 regulates tumor cell invasion through the activation of the MEK/ERK signaling pathway. Proc Natl Acad Sci U S A, 101, 9671–9676.PubMed
32.
go back to reference Ayala, I., Baldassarre, M., Giacchetti, G., Caldieri, G., Tete, S., Luini, A. et al. (2008). Multiple regulatory inputs converge on cortactin to control invadopodia biogenesis and extracellular matrix degradation. J Cell Sci. Ayala, I., Baldassarre, M., Giacchetti, G., Caldieri, G., Tete, S., Luini, A. et al. (2008). Multiple regulatory inputs converge on cortactin to control invadopodia biogenesis and extracellular matrix degradation. J Cell Sci.
33.
go back to reference Kolch, W. (2005). Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat Rev Mol Cell Biol, 6, 827–837.PubMed Kolch, W. (2005). Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat Rev Mol Cell Biol, 6, 827–837.PubMed
34.
go back to reference Bokoch, G. M. (2003). Biology of the p21-activated kinases. Annual review of biochemistry, 72, 743–781.PubMed Bokoch, G. M. (2003). Biology of the p21-activated kinases. Annual review of biochemistry, 72, 743–781.PubMed
35.
go back to reference Kumar, R., Gururaj, A. E., & Barnes, C. J. (2006). p21-activated kinases in cancer. Nat Rev Cancer, 6, 459–471.PubMed Kumar, R., Gururaj, A. E., & Barnes, C. J. (2006). p21-activated kinases in cancer. Nat Rev Cancer, 6, 459–471.PubMed
36.
go back to reference Zhao, Z. S., & Manser, E. (2005). PAK and other Rho-associated kinases-effectors with surprisingly diverse mechanisms of regulation. Biochem J, 386, 201–214.PubMed Zhao, Z. S., & Manser, E. (2005). PAK and other Rho-associated kinases-effectors with surprisingly diverse mechanisms of regulation. Biochem J, 386, 201–214.PubMed
37.
go back to reference Hall, A. (2005). Rho GTPases and the control of cell behaviour. Biochemical Society transactions, 33, 891–895.PubMed Hall, A. (2005). Rho GTPases and the control of cell behaviour. Biochemical Society transactions, 33, 891–895.PubMed
38.
go back to reference Heasman, S. J., & Ridley, A. J. (2008). Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat Rev Mol Cell Biol, 9, 690–701.PubMed Heasman, S. J., & Ridley, A. J. (2008). Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat Rev Mol Cell Biol, 9, 690–701.PubMed
39.
go back to reference Nobes, C. D., & Hall, A. (1995). Rho, rac and cdc42 GTPases: regulators of actin structures, cell adhesion and motility. Biochemical Society transactions, 23, 456–459.PubMed Nobes, C. D., & Hall, A. (1995). Rho, rac and cdc42 GTPases: regulators of actin structures, cell adhesion and motility. Biochemical Society transactions, 23, 456–459.PubMed
40.
go back to reference Etienne-Manneville, S. (2004). Cdc42-the centre of polarity. J Cell Sci, 117, 1291–1300.PubMed Etienne-Manneville, S. (2004). Cdc42-the centre of polarity. J Cell Sci, 117, 1291–1300.PubMed
41.
go back to reference Nakahara, H., Otani, T., Sasaki, T., Miura, Y., Takai, Y., & Kogo, M. (2003). Involvement of Cdc42 and Rac small G proteins in invadopodia formation of RPMI7951 cells. Genes Cells, 8, 1019–1027.PubMed Nakahara, H., Otani, T., Sasaki, T., Miura, Y., Takai, Y., & Kogo, M. (2003). Involvement of Cdc42 and Rac small G proteins in invadopodia formation of RPMI7951 cells. Genes Cells, 8, 1019–1027.PubMed
42.
go back to reference Sakurai-Yageta, M., Recchi, C., Le Dez, G., Sibarita, J. B., Daviet, L., Camonis, J., et al. (2008). The interaction of IQGAP1 with the exocyst complex is required for tumor cell invasion downstream of Cdc42 and RhoA. J Cell Biol, 181(6), 985–988.PubMed Sakurai-Yageta, M., Recchi, C., Le Dez, G., Sibarita, J. B., Daviet, L., Camonis, J., et al. (2008). The interaction of IQGAP1 with the exocyst complex is required for tumor cell invasion downstream of Cdc42 and RhoA. J Cell Biol, 181(6), 985–988.PubMed
43.
go back to reference Schmidt, A., & Hall, A. (2002). Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev, 16, 1587–1609.PubMed Schmidt, A., & Hall, A. (2002). Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev, 16, 1587–1609.PubMed
44.
go back to reference Zhou, K., Wang, Y., Gorski, J. L., Nomura, N., Collard, J., & Bokoch, G. M. (1998). Guanine nucleotide exchange factors regulate specificity of downstream signaling from Rac and Cdc42. J Biol Chem, 273, 16782–16786.PubMed Zhou, K., Wang, Y., Gorski, J. L., Nomura, N., Collard, J., & Bokoch, G. M. (1998). Guanine nucleotide exchange factors regulate specificity of downstream signaling from Rac and Cdc42. J Biol Chem, 273, 16782–16786.PubMed
45.
go back to reference Olson, M. F. (1996). Guanine nucleotide exchange factors for the Rho GTPases: a role in human disease? Journal of molecular medicine (Berlin, Germany), 74, 563–571. Olson, M. F. (1996). Guanine nucleotide exchange factors for the Rho GTPases: a role in human disease? Journal of molecular medicine (Berlin, Germany), 74, 563–571.
46.
go back to reference Donaldson, J. G., & Honda, A. (2005). Localization and function of Arf family GTPases. Biochemical Society transactions, 33, 639–642.PubMed Donaldson, J. G., & Honda, A. (2005). Localization and function of Arf family GTPases. Biochemical Society transactions, 33, 639–642.PubMed
47.
go back to reference Palacios, F., Price, L., Schweitzer, J., Collard, J. G., & D'Souza-Schorey, C. (2001). An essential role for ARF6-regulated membrane traffic in adherens junction turnover and epithelial cell migration. Embo J, 20, 4973–4986.PubMed Palacios, F., Price, L., Schweitzer, J., Collard, J. G., & D'Souza-Schorey, C. (2001). An essential role for ARF6-regulated membrane traffic in adherens junction turnover and epithelial cell migration. Embo J, 20, 4973–4986.PubMed
48.
go back to reference Hashimoto, S., Onodera, Y., Hashimoto, A., Tanaka, M., Hamaguchi, M., Yamada, A., et al. (2004). Requirement for Arf6 in breast cancer invasive activities. Proc Natl Acad Sci U S A, 101, 6647–6652.PubMed Hashimoto, S., Onodera, Y., Hashimoto, A., Tanaka, M., Hamaguchi, M., Yamada, A., et al. (2004). Requirement for Arf6 in breast cancer invasive activities. Proc Natl Acad Sci U S A, 101, 6647–6652.PubMed
49.
go back to reference Buccione, R., Orth, J. D., & McNiven, M. A. (2004). Foot and mouth: podosomes, invadopodia and circular dorsal ruffles. Nat Rev Mol Cell Biol, 5, 647–657.PubMed Buccione, R., Orth, J. D., & McNiven, M. A. (2004). Foot and mouth: podosomes, invadopodia and circular dorsal ruffles. Nat Rev Mol Cell Biol, 5, 647–657.PubMed
50.
go back to reference Gimona, M., Buccione, R., Courtneidge, S. A., & Linder, S. (2008). Assembly and biological role of podosomes and invadopodia. Curr Opin Cell Biol, 20(2), 235–241.PubMed Gimona, M., Buccione, R., Courtneidge, S. A., & Linder, S. (2008). Assembly and biological role of podosomes and invadopodia. Curr Opin Cell Biol, 20(2), 235–241.PubMed
51.
go back to reference Linder, S. (2007). The matrix corroded: podosomes and invadopodia in extracellular matrix degradation. Trends in cell biology, 17, 107–117.PubMed Linder, S. (2007). The matrix corroded: podosomes and invadopodia in extracellular matrix degradation. Trends in cell biology, 17, 107–117.PubMed
52.
go back to reference Stylli, S. S., Kaye, A. H., & Lock, P. (2008). Invadopodia: at the cutting edge of tumour invasion. J Clin Neurosci, 15, 725–737.PubMed Stylli, S. S., Kaye, A. H., & Lock, P. (2008). Invadopodia: at the cutting edge of tumour invasion. J Clin Neurosci, 15, 725–737.PubMed
53.
go back to reference Cao, H., Weller, S., Orth, J. D., Chen, J., Huang, B., Chen, J. L., et al. (2005). Actin and Arf1-dependent recruitment of a cortactin-dynamin complex to the Golgi regulates post-Golgi transport. Nature cell biology, 7, 483–492.PubMed Cao, H., Weller, S., Orth, J. D., Chen, J., Huang, B., Chen, J. L., et al. (2005). Actin and Arf1-dependent recruitment of a cortactin-dynamin complex to the Golgi regulates post-Golgi transport. Nature cell biology, 7, 483–492.PubMed
54.
go back to reference Weed, S. A., & Parsons, J. T. (2001). Cortactin: coupling membrane dynamics to cortical actin assembly. Oncogene, 20, 6418–6434.PubMed Weed, S. A., & Parsons, J. T. (2001). Cortactin: coupling membrane dynamics to cortical actin assembly. Oncogene, 20, 6418–6434.PubMed
55.
go back to reference McNiven, M. A., Kim, L., Krueger, E. W., Orth, J. D., Cao, H., & Wong, T. W. (2000). Regulated interactions between dynamin and the actin-binding protein cortactin modulate cell shape. J Cell Biol, 151, 187–198.PubMed McNiven, M. A., Kim, L., Krueger, E. W., Orth, J. D., Cao, H., & Wong, T. W. (2000). Regulated interactions between dynamin and the actin-binding protein cortactin modulate cell shape. J Cell Biol, 151, 187–198.PubMed
56.
go back to reference Patel, A. S., Schechter, G. L., Wasilenko, W. J., & Somers, K. D. (1998). Overexpression of EMS1/cortactin in NIH3T3 fibroblasts causes increased cell motility and invasion in vitro. Oncogene, 16, 3227–3232.PubMed Patel, A. S., Schechter, G. L., Wasilenko, W. J., & Somers, K. D. (1998). Overexpression of EMS1/cortactin in NIH3T3 fibroblasts causes increased cell motility and invasion in vitro. Oncogene, 16, 3227–3232.PubMed
57.
go back to reference Bringuier, P. P., Tamimi, Y., Schuuring, E., & Schalken, J. (1996). Expression of cyclin D1 and EMS1 in bladder tumours; relationship with chromosome 11q13 amplification. Oncogene, 12, 1747–1753.PubMed Bringuier, P. P., Tamimi, Y., Schuuring, E., & Schalken, J. (1996). Expression of cyclin D1 and EMS1 in bladder tumours; relationship with chromosome 11q13 amplification. Oncogene, 12, 1747–1753.PubMed
58.
go back to reference Schuuring, E. (1995). The involvement of the chromosome 11q13 region in human malignancies: cyclin D1 and EMS1 are two new candidate oncogenes—a review. Gene, 159, 83–96.PubMed Schuuring, E. (1995). The involvement of the chromosome 11q13 region in human malignancies: cyclin D1 and EMS1 are two new candidate oncogenes—a review. Gene, 159, 83–96.PubMed
59.
go back to reference Hui, R., Ball, J. R., Macmillan, R. D., Kenny, F. S., Prall, O. W., Campbell, D. H., et al. (1998). EMS1 gene expression in primary breast cancer: relationship to cyclin D1 and oestrogen receptor expression and patient survival. Oncogene, 17, 1053–1059.PubMed Hui, R., Ball, J. R., Macmillan, R. D., Kenny, F. S., Prall, O. W., Campbell, D. H., et al. (1998). EMS1 gene expression in primary breast cancer: relationship to cyclin D1 and oestrogen receptor expression and patient survival. Oncogene, 17, 1053–1059.PubMed
60.
go back to reference Uruno, T., Liu, J., Zhang, P., Fan, Y., Egile, C., Li, R., et al. (2001). Activation of Arp2/3 complex-mediated actin polymerization by cortactin. Nature cell biology, 3, 259–266.PubMed Uruno, T., Liu, J., Zhang, P., Fan, Y., Egile, C., Li, R., et al. (2001). Activation of Arp2/3 complex-mediated actin polymerization by cortactin. Nature cell biology, 3, 259–266.PubMed
61.
go back to reference van Rossum, A. G., de Graaf, J. H., Schuuring-Scholtes, E., Kluin, P. M., Fan, Y. X., Zhan, X., et al. (2003). Alternative splicing of the actin binding domain of human cortactin affects cell migration. J Biol Chem, 278, 45672–45679.PubMed van Rossum, A. G., de Graaf, J. H., Schuuring-Scholtes, E., Kluin, P. M., Fan, Y. X., Zhan, X., et al. (2003). Alternative splicing of the actin binding domain of human cortactin affects cell migration. J Biol Chem, 278, 45672–45679.PubMed
62.
go back to reference Weaver, A. M., Karginov, A. V., Kinley, A. W., Weed, S. A., Li, Y., Parsons, J. T., et al. (2001). Cortactin promotes and stabilizes Arp2/3-induced actin filament network formation. Curr Biol, 11, 370–374.PubMed Weaver, A. M., Karginov, A. V., Kinley, A. W., Weed, S. A., Li, Y., Parsons, J. T., et al. (2001). Cortactin promotes and stabilizes Arp2/3-induced actin filament network formation. Curr Biol, 11, 370–374.PubMed
63.
go back to reference Weaver, A. M., Young, M. E., Lee, W. L., & Cooper, J. A. (2003). Integration of signals to the Arp2/3 complex. Curr Opin Cell Biol, 15, 23–30.PubMed Weaver, A. M., Young, M. E., Lee, W. L., & Cooper, J. A. (2003). Integration of signals to the Arp2/3 complex. Curr Opin Cell Biol, 15, 23–30.PubMed
64.
go back to reference Martinez-Quiles, N., Ho, H. Y., Kirschner, M. W., Ramesh, N., & Geha, R. S. (2004). Erk/Src phosphorylation of cortactin acts as a switch on-switch off mechanism that controls its ability to activate N-WASP. Molecular and cellular biology, 24, 5269–5280.PubMed Martinez-Quiles, N., Ho, H. Y., Kirschner, M. W., Ramesh, N., & Geha, R. S. (2004). Erk/Src phosphorylation of cortactin acts as a switch on-switch off mechanism that controls its ability to activate N-WASP. Molecular and cellular biology, 24, 5269–5280.PubMed
65.
go back to reference Li, Y., Tondravi, M., Liu, J., Smith, E., Haudenschild, C. C., Kaczmarek, M., & Zhan, X. (2001). Cortactin potentiates bone metastasis of breast cancer cells. Cancer research, 61, 6906–6911.PubMed Li, Y., Tondravi, M., Liu, J., Smith, E., Haudenschild, C. C., Kaczmarek, M., & Zhan, X. (2001). Cortactin potentiates bone metastasis of breast cancer cells. Cancer research, 61, 6906–6911.PubMed
66.
go back to reference Wu, H., Reynolds, A. B., Kanner, S. B., Vines, R. R., & Parsons, J. T. (1991). Identification and characterization of a novel cytoskeleton-associated pp60src substrate. Molecular and cellular biology, 11, 5113–5124.PubMed Wu, H., Reynolds, A. B., Kanner, S. B., Vines, R. R., & Parsons, J. T. (1991). Identification and characterization of a novel cytoskeleton-associated pp60src substrate. Molecular and cellular biology, 11, 5113–5124.PubMed
67.
go back to reference Vuori, K., & Ruoslahti, E. (1995). Tyrosine phosphorylation of p130Cas and cortactin accompanies integrin-mediated cell adhesion to extracellular matrix. J Biol Chem, 270, 22259–22262.PubMed Vuori, K., & Ruoslahti, E. (1995). Tyrosine phosphorylation of p130Cas and cortactin accompanies integrin-mediated cell adhesion to extracellular matrix. J Biol Chem, 270, 22259–22262.PubMed
68.
go back to reference Zhan, X., Hu, X., Hampton, B., Burgess, W. H., Friesel, R., & Maciag, T. (1993). Murine cortactin is phosphorylated in response to fibroblast growth factor-1 on tyrosine residues late in the G1 phase of the BALB/c 3T3 cell cycle. J Biol Chem, 268, 24427–24431.PubMed Zhan, X., Hu, X., Hampton, B., Burgess, W. H., Friesel, R., & Maciag, T. (1993). Murine cortactin is phosphorylated in response to fibroblast growth factor-1 on tyrosine residues late in the G1 phase of the BALB/c 3T3 cell cycle. J Biol Chem, 268, 24427–24431.PubMed
69.
go back to reference Huang, C., Liu, J., Haudenschild, C. C., & Zhan, X. (1998). The role of tyrosine phosphorylation of cortactin in the locomotion of endothelial cells. J Biol Chem, 273, 25770–25776.PubMed Huang, C., Liu, J., Haudenschild, C. C., & Zhan, X. (1998). The role of tyrosine phosphorylation of cortactin in the locomotion of endothelial cells. J Biol Chem, 273, 25770–25776.PubMed
70.
go back to reference Huang, C., Ni, Y., Wang, T., Gao, Y., Haudenschild, C. C., & Zhan, X. (1997). Down-regulation of the filamentous actin cross-linking activity of cortactin by Src-mediated tyrosine phosphorylation. J Biol Chem, 272, 13911–13915.PubMed Huang, C., Ni, Y., Wang, T., Gao, Y., Haudenschild, C. C., & Zhan, X. (1997). Down-regulation of the filamentous actin cross-linking activity of cortactin by Src-mediated tyrosine phosphorylation. J Biol Chem, 272, 13911–13915.PubMed
71.
go back to reference Campbell, D. H., Sutherland, R. L., & Daly, R. J. (1999). Signaling pathways and structural domains required for phosphorylation of EMS1/cortactin. Cancer research, 59, 5376–5385.PubMed Campbell, D. H., Sutherland, R. L., & Daly, R. J. (1999). Signaling pathways and structural domains required for phosphorylation of EMS1/cortactin. Cancer research, 59, 5376–5385.PubMed
72.
go back to reference Wu, H., & Parsons, J. T. (1993). Cortactin, an 80/85-kilodalton pp60src substrate, is a filamentous actin-binding protein enriched in the cell cortex. J Cell Biol, 120, 1417–1426.PubMed Wu, H., & Parsons, J. T. (1993). Cortactin, an 80/85-kilodalton pp60src substrate, is a filamentous actin-binding protein enriched in the cell cortex. J Cell Biol, 120, 1417–1426.PubMed
73.
go back to reference Artym, V. V., Zhang, Y., Seillier-Moiseiwitsch, F., Yamada, K. M., & Mueller, S. C. (2006). Dynamic interactions of cortactin and membrane type 1 matrix metalloproteinase at invadopodia: defining the stages of invadopodia formation and function. Cancer research, 66, 3034–3043.PubMed Artym, V. V., Zhang, Y., Seillier-Moiseiwitsch, F., Yamada, K. M., & Mueller, S. C. (2006). Dynamic interactions of cortactin and membrane type 1 matrix metalloproteinase at invadopodia: defining the stages of invadopodia formation and function. Cancer research, 66, 3034–3043.PubMed
74.
go back to reference Clark, E. S., Whigham, A. S., Yarbrough, W. G., & Weaver, A. M. (2007). Cortactin is an essential regulator of matrix metalloproteinase secretion and extracellular matrix degradation in invadopodia. Cancer research, 67, 4227–4235.PubMed Clark, E. S., Whigham, A. S., Yarbrough, W. G., & Weaver, A. M. (2007). Cortactin is an essential regulator of matrix metalloproteinase secretion and extracellular matrix degradation in invadopodia. Cancer research, 67, 4227–4235.PubMed
75.
go back to reference Krueger, E. W., Orth, J. D., Cao, H., & McNiven, M. A. (2003). A Dynamin-Cortactin-Arp2/3 Complex Mediates Actin Reorganization in Growth Factor-stimulated Cells. Mol Biol Cell, 14, 1085–1096.PubMed Krueger, E. W., Orth, J. D., Cao, H., & McNiven, M. A. (2003). A Dynamin-Cortactin-Arp2/3 Complex Mediates Actin Reorganization in Growth Factor-stimulated Cells. Mol Biol Cell, 14, 1085–1096.PubMed
76.
go back to reference Schafer, D. A. (2002). Coupling actin dynamics and membrane dynamics during endocytosis. Curr Opin Cell Biol, 14, 76–81.PubMed Schafer, D. A. (2002). Coupling actin dynamics and membrane dynamics during endocytosis. Curr Opin Cell Biol, 14, 76–81.PubMed
77.
go back to reference Abram, C. L., Seals, D. F., Pass, I., Salinsky, D., Maurer, L., Roth, T. M., & Courtneidge, S. A. (2003). The adaptor protein fish associates with members of the ADAMs family and localizes to podosomes of Src-transformed cells. J Biol Chem, 278, 16844–16851.PubMed Abram, C. L., Seals, D. F., Pass, I., Salinsky, D., Maurer, L., Roth, T. M., & Courtneidge, S. A. (2003). The adaptor protein fish associates with members of the ADAMs family and localizes to podosomes of Src-transformed cells. J Biol Chem, 278, 16844–16851.PubMed
78.
go back to reference Seals, D. F., Azucena Jr., E. F., Pass, I., Tesfay, L., Gordon, R., Woodrow, M., Resau, J. H., et al. (2005). The adaptor protein Tks5/Fish is required for podosome formation and function, and for the protease-driven invasion of cancer cells. Cancer Cell, 7, 155–165.PubMed Seals, D. F., Azucena Jr., E. F., Pass, I., Tesfay, L., Gordon, R., Woodrow, M., Resau, J. H., et al. (2005). The adaptor protein Tks5/Fish is required for podosome formation and function, and for the protease-driven invasion of cancer cells. Cancer Cell, 7, 155–165.PubMed
79.
go back to reference Oikawa, T., Itoh, T., & Takenawa, T. (2008). Sequential signals toward podosome formation in NIH-src cells. J Cell Biol, 182, 157–169.PubMed Oikawa, T., Itoh, T., & Takenawa, T. (2008). Sequential signals toward podosome formation in NIH-src cells. J Cell Biol, 182, 157–169.PubMed
80.
go back to reference Blouw, B., Seals, D. F., Pass, I., Diaz, B., & Courtneidge, S. A. (2008). A role for the podosome/invadopodia scaffold protein Tks5 in tumor growth in vivo. Eur J Cell Biol, 87, 555–567.PubMed Blouw, B., Seals, D. F., Pass, I., Diaz, B., & Courtneidge, S. A. (2008). A role for the podosome/invadopodia scaffold protein Tks5 in tumor growth in vivo. Eur J Cell Biol, 87, 555–567.PubMed
81.
go back to reference Danino, D., & Hinshaw, J. E. (2001). Dynamin family of mechanoenzymes. Curr Opin Cell Biol, 13, 454–460.PubMed Danino, D., & Hinshaw, J. E. (2001). Dynamin family of mechanoenzymes. Curr Opin Cell Biol, 13, 454–460.PubMed
82.
go back to reference McNiven, M. A., Cao, H., Pitts, K. R., & Yoon, Y. (2000). The dynamin family of mechanoenzymes: pinching in new places. Trends Biochem Sci, 25, 115–120.PubMed McNiven, M. A., Cao, H., Pitts, K. R., & Yoon, Y. (2000). The dynamin family of mechanoenzymes: pinching in new places. Trends Biochem Sci, 25, 115–120.PubMed
83.
go back to reference Hinshaw, J. E. (2000). Dynamin and Its Role in Membrane Fission. Annu Rev Cell Dev Biol, 16, 483–519.PubMed Hinshaw, J. E. (2000). Dynamin and Its Role in Membrane Fission. Annu Rev Cell Dev Biol, 16, 483–519.PubMed
84.
go back to reference Schmid, S. L., McNiven, M. A., & De Camilli, P. (1998). Dynamin and its partners: a progress report. Curr Opin Cell Biol, 10, 504–512.PubMed Schmid, S. L., McNiven, M. A., & De Camilli, P. (1998). Dynamin and its partners: a progress report. Curr Opin Cell Biol, 10, 504–512.PubMed
85.
go back to reference Lee, E., & De Camilli, P. (2002). From the Cover: Dynamin at actin tails. Proc Natl Acad Sci U S A, 99, 161–166.PubMed Lee, E., & De Camilli, P. (2002). From the Cover: Dynamin at actin tails. Proc Natl Acad Sci U S A, 99, 161–166.PubMed
86.
go back to reference Orth, J. D., Krueger, E. W., Cao, H., & McNiven, M. A. (2002). From the Cover: The large GTPase dynamin regulates actin comet formation and movement in living cells. Proc Natl Acad Sci U S A, 99, 167–172.PubMed Orth, J. D., Krueger, E. W., Cao, H., & McNiven, M. A. (2002). From the Cover: The large GTPase dynamin regulates actin comet formation and movement in living cells. Proc Natl Acad Sci U S A, 99, 167–172.PubMed
87.
go back to reference Ochoa, G. C., Slepnev, V. I., Neff, L., Ringstad, N., Takei, K., Daniell, L., et al. (2000). A functional link between dynamin and the actin cytoskeleton at podosomes. J Cell Biol, 150, 377–389.PubMed Ochoa, G. C., Slepnev, V. I., Neff, L., Ringstad, N., Takei, K., Daniell, L., et al. (2000). A functional link between dynamin and the actin cytoskeleton at podosomes. J Cell Biol, 150, 377–389.PubMed
88.
go back to reference McNiven, M. A., Baldassarre, M., & Buccione, R. (2004). The role of dynamin in the assembly and function of podosomes and invadopodia. Front Biosci, 9, 1944–1953.PubMed McNiven, M. A., Baldassarre, M., & Buccione, R. (2004). The role of dynamin in the assembly and function of podosomes and invadopodia. Front Biosci, 9, 1944–1953.PubMed
89.
go back to reference Shajahan, A. N., Timblin, B. K., Sandoval, R., Tiruppathi, C., Malik, A. B., & Minshall, R. D. (2004). Role of Src-induced dynamin-2 phosphorylation in caveolae-mediated endocytosis in endothelial cells. J Biol Chem, 279, 20392–20400.PubMed Shajahan, A. N., Timblin, B. K., Sandoval, R., Tiruppathi, C., Malik, A. B., & Minshall, R. D. (2004). Role of Src-induced dynamin-2 phosphorylation in caveolae-mediated endocytosis in endothelial cells. J Biol Chem, 279, 20392–20400.PubMed
90.
go back to reference Weaver, A. M. (2006). Invadopodia: Specialized Cell Structures for Cancer Invasion. Clin Exp Metastasis, 23(2), 97–105.PubMed Weaver, A. M. (2006). Invadopodia: Specialized Cell Structures for Cancer Invasion. Clin Exp Metastasis, 23(2), 97–105.PubMed
91.
go back to reference Vignjevic, D., & Montagnac, G. (2008). Reorganisation of the dendritic actin network during cancer cell migration and invasion. Semin Cancer Biol, 18, 12–22.PubMed Vignjevic, D., & Montagnac, G. (2008). Reorganisation of the dendritic actin network during cancer cell migration and invasion. Semin Cancer Biol, 18, 12–22.PubMed
92.
go back to reference Kindzelskii, A. L., Amhadk, I., Keller, D., Zhou, M. J., Haugland, R. P., Garni-Wagner, B. A., et al. (2004). Pericellular proteolysis by leukocytes and tumor cells on substrates: focal activation and the role of urokinase-type plasminogen activator. Histochem Cell Biol, 121, 299–310.PubMed Kindzelskii, A. L., Amhadk, I., Keller, D., Zhou, M. J., Haugland, R. P., Garni-Wagner, B. A., et al. (2004). Pericellular proteolysis by leukocytes and tumor cells on substrates: focal activation and the role of urokinase-type plasminogen activator. Histochem Cell Biol, 121, 299–310.PubMed
93.
go back to reference Nozaki, S., Endo, Y., Nakahara, H., Yoshizawa, K., Ohara, T., & Yamamoto, E. (2006). Targeting urokinase-type plasminogen activator and its receptor for cancer therapy. Anticancer Drugs, 17, 1109–1117.PubMed Nozaki, S., Endo, Y., Nakahara, H., Yoshizawa, K., Ohara, T., & Yamamoto, E. (2006). Targeting urokinase-type plasminogen activator and its receptor for cancer therapy. Anticancer Drugs, 17, 1109–1117.PubMed
94.
go back to reference Dano, K., Behrendt, N., Hoyer-Hansen, G., Johnsen, M., Lund, L. R., Ploug, M., et al. (2005). Plasminogen activation and cancer. Thromb Haemost, 93, 676–681.PubMed Dano, K., Behrendt, N., Hoyer-Hansen, G., Johnsen, M., Lund, L. R., Ploug, M., et al. (2005). Plasminogen activation and cancer. Thromb Haemost, 93, 676–681.PubMed
95.
go back to reference Egeblad, M., & Werb, Z. (2002). New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer, 2, 161–174.PubMed Egeblad, M., & Werb, Z. (2002). New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer, 2, 161–174.PubMed
96.
go back to reference Seiki, M. (2003). Membrane-type 1 matrix metalloproteinase: a key enzyme for tumor invasion. Cancer Lett, 194, 1–11.PubMed Seiki, M. (2003). Membrane-type 1 matrix metalloproteinase: a key enzyme for tumor invasion. Cancer Lett, 194, 1–11.PubMed
97.
go back to reference Sounni, N. E., Janssen, M., Foidart, J. M., & Noel, A. (2003). Membrane type-1 matrix metalloproteinase and TIMP-2 in tumor angiogenesis. Matrix Biol, 22, 55–61.PubMed Sounni, N. E., Janssen, M., Foidart, J. M., & Noel, A. (2003). Membrane type-1 matrix metalloproteinase and TIMP-2 in tumor angiogenesis. Matrix Biol, 22, 55–61.PubMed
98.
go back to reference Holmbeck, K., Bianco, P., Yamada, S., & Birkedal-Hansen, H. (2004). MT1-MMP: a tethered collagenase. J Cell Physiol, 200, 11–19.PubMed Holmbeck, K., Bianco, P., Yamada, S., & Birkedal-Hansen, H. (2004). MT1-MMP: a tethered collagenase. J Cell Physiol, 200, 11–19.PubMed
99.
go back to reference Seiki, M., & Yana, I. (2003). Roles of pericellular proteolysis by membrane type-1 matrix metalloproteinase in cancer invasion and angiogenesis. Cancer Sci, 94, 569–574.PubMed Seiki, M., & Yana, I. (2003). Roles of pericellular proteolysis by membrane type-1 matrix metalloproteinase in cancer invasion and angiogenesis. Cancer Sci, 94, 569–574.PubMed
100.
go back to reference Nakahara, H., Howard, L., Thompson, E. W., Sato, H., Seiki, M., Yeh, Y., et al. (1997). Transmembrane/cytoplasmic domain-mediated membrane type 1-matrix metalloprotease docking to invadopodia is required for cell invasion. Proc Natl Acad Sci USA, 94, 7959–7964.PubMed Nakahara, H., Howard, L., Thompson, E. W., Sato, H., Seiki, M., Yeh, Y., et al. (1997). Transmembrane/cytoplasmic domain-mediated membrane type 1-matrix metalloprotease docking to invadopodia is required for cell invasion. Proc Natl Acad Sci USA, 94, 7959–7964.PubMed
101.
go back to reference Galvez, B. G., Matias-Roman, S., Yanez-Mo, M., Sanchez-Madrid, F., & Arroyo, A. G. (2002). ECM regulates MT1-MMP localization with beta1 or alphavbeta3 integrins at distinct cell compartments modulating its internalization and activity on human endothelial cells. J Cell Biol, 159, 509–521.PubMed Galvez, B. G., Matias-Roman, S., Yanez-Mo, M., Sanchez-Madrid, F., & Arroyo, A. G. (2002). ECM regulates MT1-MMP localization with beta1 or alphavbeta3 integrins at distinct cell compartments modulating its internalization and activity on human endothelial cells. J Cell Biol, 159, 509–521.PubMed
102.
go back to reference Baciu, P. C., Suleiman, E. A., Deryugina, E. I., & Strongin, A. Y. (2003). Membrane type-1 matrix metalloproteinase (MT1-MMP) processing of pro-alphav integrin regulates cross-talk between alphavbeta3 and alpha2beta1 integrins in breast carcinoma cells. Exp Cell Res, 291, 167–175.PubMed Baciu, P. C., Suleiman, E. A., Deryugina, E. I., & Strongin, A. Y. (2003). Membrane type-1 matrix metalloproteinase (MT1-MMP) processing of pro-alphav integrin regulates cross-talk between alphavbeta3 and alpha2beta1 integrins in breast carcinoma cells. Exp Cell Res, 291, 167–175.PubMed
103.
go back to reference Fujiwara, T., Oda, K., Yokota, S., Takatsuki, A., & Ikehara, Y. (1988). Brefeldin A causes disassembly of the Golgi complex and accumulation of secretory proteins in the endoplasmic reticulum. J Biol Chem, 263, 18545–18552.PubMed Fujiwara, T., Oda, K., Yokota, S., Takatsuki, A., & Ikehara, Y. (1988). Brefeldin A causes disassembly of the Golgi complex and accumulation of secretory proteins in the endoplasmic reticulum. J Biol Chem, 263, 18545–18552.PubMed
104.
go back to reference Steffen, A., Le Dez, G., Poincloux, R., Recchi, C., Nassoy, P., Rottner, K., et al. (2008). MT1-MMP-Dependent Invasion Is Regulated by TI-VAMP/VAMP7. Curr Biol, 18, 926–931.PubMed Steffen, A., Le Dez, G., Poincloux, R., Recchi, C., Nassoy, P., Rottner, K., et al. (2008). MT1-MMP-Dependent Invasion Is Regulated by TI-VAMP/VAMP7. Curr Biol, 18, 926–931.PubMed
105.
go back to reference Gimona, M., & Buccione, R. (2006). Adhesions that mediate invasion. Int J Biochem Cell Biol, 38, 1875–1892.PubMed Gimona, M., & Buccione, R. (2006). Adhesions that mediate invasion. Int J Biochem Cell Biol, 38, 1875–1892.PubMed
106.
go back to reference Linder, S., & Aepfelbacher, M. (2003). Podosomes: adhesion hot-spots of invasive cells. Trends in cell biology, 13, 376–385.PubMed Linder, S., & Aepfelbacher, M. (2003). Podosomes: adhesion hot-spots of invasive cells. Trends in cell biology, 13, 376–385.PubMed
107.
go back to reference Hai, C. M., Hahne, P., Harrington, E. O., & Gimona, M. (2002). Conventional protein kinase C mediates phorbol-dibutyrate-induced cytoskeletal remodeling in a7r5 smooth muscle cells. Exp Cell Res, 280, 64–74.PubMed Hai, C. M., Hahne, P., Harrington, E. O., & Gimona, M. (2002). Conventional protein kinase C mediates phorbol-dibutyrate-induced cytoskeletal remodeling in a7r5 smooth muscle cells. Exp Cell Res, 280, 64–74.PubMed
108.
go back to reference Osiak, A. E., Zenner, G., & Linder, S. (2005). Subconfluent endothelial cells form podosomes downstream of cytokine and RhoGTPase signaling. Exp Cell Res, 307, 342–353.PubMed Osiak, A. E., Zenner, G., & Linder, S. (2005). Subconfluent endothelial cells form podosomes downstream of cytokine and RhoGTPase signaling. Exp Cell Res, 307, 342–353.PubMed
109.
go back to reference Spinardi, L., Rietdorf, J., Nitsch, L., Bono, M., Tacchetti, C., Way, M., et al. (2004). A dynamic podosome-like structure of epithelial cells. Exp Cell Res, 295, 360–374.PubMed Spinardi, L., Rietdorf, J., Nitsch, L., Bono, M., Tacchetti, C., Way, M., et al. (2004). A dynamic podosome-like structure of epithelial cells. Exp Cell Res, 295, 360–374.PubMed
110.
go back to reference Wolf, K., Friedl, P. (2008). Mapping proteolytic cancer cell-extracellular matrix interfaces. Clin Exp Metastasis. Wolf, K., Friedl, P. (2008). Mapping proteolytic cancer cell-extracellular matrix interfaces. Clin Exp Metastasis.
111.
go back to reference Wolf, K., Wu, Y. I., Liu, Y., Geiger, J., Tam, E., Overall, C., Stack, M. S., & Friedl, P. (2007). Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nature cell biology, 9, 893–904.PubMed Wolf, K., Wu, Y. I., Liu, Y., Geiger, J., Tam, E., Overall, C., Stack, M. S., & Friedl, P. (2007). Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nature cell biology, 9, 893–904.PubMed
112.
go back to reference Wolf, K., & Friedl, P. (2005). Functional imaging of pericellular proteolysis in cancer cell invasion. Biochimie, 87, 315–320.PubMed Wolf, K., & Friedl, P. (2005). Functional imaging of pericellular proteolysis in cancer cell invasion. Biochimie, 87, 315–320.PubMed
113.
go back to reference Jurdic, P., Saltel, F., Chabadel, A., & Destaing, O. (2006). Podosome and sealing zone: specificity of the osteoclast model. Eur J Cell Biol, 85, 195–202.PubMed Jurdic, P., Saltel, F., Chabadel, A., & Destaing, O. (2006). Podosome and sealing zone: specificity of the osteoclast model. Eur J Cell Biol, 85, 195–202.PubMed
114.
go back to reference Burgstaller, G., & Gimona, M. (2005). Podosome-mediated matrix resorption and cell motility in vascular smooth muscle cells. Am J Physiol Heart Circ Physiol, 288, H3001–3005.PubMed Burgstaller, G., & Gimona, M. (2005). Podosome-mediated matrix resorption and cell motility in vascular smooth muscle cells. Am J Physiol Heart Circ Physiol, 288, H3001–3005.PubMed
115.
go back to reference Saltel, F., Destaing, O., Bard, F., Eichert, D., & Jurdic, P. (2004). Apatite-mediated actin dynamics in resorbing osteoclasts. Mol Biol Cell, 15, 5231–5241.PubMed Saltel, F., Destaing, O., Bard, F., Eichert, D., & Jurdic, P. (2004). Apatite-mediated actin dynamics in resorbing osteoclasts. Mol Biol Cell, 15, 5231–5241.PubMed
116.
go back to reference Alexander, N. R., Branch, K. M., Parekh, A., Clark, E. S., Iwueke, I. C., Guelcher, S. A., et al. (2008). Extracellular Matrix Rigidity Promotes Invadopodia Activity. Curr Biol, 18(17), 1295–1299.PubMed Alexander, N. R., Branch, K. M., Parekh, A., Clark, E. S., Iwueke, I. C., Guelcher, S. A., et al. (2008). Extracellular Matrix Rigidity Promotes Invadopodia Activity. Curr Biol, 18(17), 1295–1299.PubMed
117.
go back to reference Beningo, K. A., Dembo, M., & Wang, Y. L. (2004). Responses of fibroblasts to anchorage of dorsal extracellular matrix receptors. Proc Natl Acad Sci U S A, 101, 18024–18029.PubMed Beningo, K. A., Dembo, M., & Wang, Y. L. (2004). Responses of fibroblasts to anchorage of dorsal extracellular matrix receptors. Proc Natl Acad Sci U S A, 101, 18024–18029.PubMed
118.
go back to reference Li, S., Guan, J. L., & Chien, S. (2005). Biochemistry and biomechanics of cell motility. Annu Rev Biomed Eng, 7, 105–150.PubMed Li, S., Guan, J. L., & Chien, S. (2005). Biochemistry and biomechanics of cell motility. Annu Rev Biomed Eng, 7, 105–150.PubMed
Metadata
Title
Invadopodia: specialized tumor cell structures for the focal degradation of the extracellular matrix
Authors
Roberto Buccione
Giusi Caldieri
Inmaculada Ayala
Publication date
01-06-2009
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 1-2/2009
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-008-9176-1

Other articles of this Issue 1-2/2009

Cancer and Metastasis Reviews 1-2/2009 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine