Skip to main content
Top
Published in: Cancer and Metastasis Reviews 1-2/2009

01-06-2009 | NON-THEMATIC REVIEW

Emerging role of nuclear protein 1 (NUPR1) in cancer biology

Authors: Uttio Roy Chowdhury, Rajeev S. Samant, Oystein Fodstad, Lalita A. Shevde

Published in: Cancer and Metastasis Reviews | Issue 1-2/2009

Login to get access

Abstract

NUPR1, or p8 or com1, was first identified from rat pancreas during acute pancreatitis and later as a gene whose expression was upregulated in metastatic breast cancer cells. NUPR1 is a molecule whose expression is upregulated in response to stress and is hence influenced by the host microenvironment. While NUPR1 has been implicated in several diseases, there is no singular biochemical pathway that can be attributed to its role in cancer. NUPR1 has been found to aid the establishment of metastasis and to play a key role in the progression of several malignancies including those of breast, thyroid, brain and pancreas. NUPR1 has been implicated in inducing chemoresistance in pancreatic and breast cancer cells, protecting them from apoptosis and making tumor cells genetically unstable. In prostate cancer, however, NUPR1 appears to have tumor suppressive activity. Understanding the mechanism of action of the multifaceted functions of NUPR1 may open up new dimensions towards creating novel therapies against cancer as well as other pathologies. This review draws on several published studies on NUPR1, mainly in cancer biology, and assesses NUPR1 from the perspective of its functional role in making cancer cells resistant to the action of conventional chemotherapeutic drugs.
Literature
1.
go back to reference Mallo, G. V., Fiedler, F., Calvo, E. L., Ortiz, E. M., Vasseur, S., Keim, V., et al. (1997). Cloning and expression of the rat p8 cDNA, a new gene activated in pancreas during the acute phase of pancreatitis, pancreatic development, and regeneration, and which promotes cellular growth. Journal of biological chemistry, 272, 32360–32369.PubMedCrossRef Mallo, G. V., Fiedler, F., Calvo, E. L., Ortiz, E. M., Vasseur, S., Keim, V., et al. (1997). Cloning and expression of the rat p8 cDNA, a new gene activated in pancreas during the acute phase of pancreatitis, pancreatic development, and regeneration, and which promotes cellular growth. Journal of biological chemistry, 272, 32360–32369.PubMedCrossRef
2.
go back to reference Ree, A. H., Tvermyr, M., Engebraaten, O., Rooman, M., Rosok, O., Hovig, E., et al. (1999). Expression of a novel factor in human breast cancer cells with metastatic potential. Cancer research, 59, 4675–4680.PubMed Ree, A. H., Tvermyr, M., Engebraaten, O., Rooman, M., Rosok, O., Hovig, E., et al. (1999). Expression of a novel factor in human breast cancer cells with metastatic potential. Cancer research, 59, 4675–4680.PubMed
3.
go back to reference Giroux, V., Malicet, C., Barthet, M., Gironella, M., Archange, C., Dagorn, J. C., et al. (2006). p8 is a new target of gemcitabine in pancreatic cancer cells. Clinical cancer research, 12, 235–241.PubMedCrossRef Giroux, V., Malicet, C., Barthet, M., Gironella, M., Archange, C., Dagorn, J. C., et al. (2006). p8 is a new target of gemcitabine in pancreatic cancer cells. Clinical cancer research, 12, 235–241.PubMedCrossRef
4.
go back to reference Clark, D. W., Mitra, A., Fillmore, R. A., Jiang, W. G., Samant, R. S., Fodstad, O., et al. (2008). NUPR1 interacts with p53, transcriptionally regulates p21 and rescues breast epithelial cells from doxorubicin-induced genotoxic stress. Current cancer drug targets, 8(5), 421–430.PubMedCrossRef Clark, D. W., Mitra, A., Fillmore, R. A., Jiang, W. G., Samant, R. S., Fodstad, O., et al. (2008). NUPR1 interacts with p53, transcriptionally regulates p21 and rescues breast epithelial cells from doxorubicin-induced genotoxic stress. Current cancer drug targets, 8(5), 421–430.PubMedCrossRef
5.
go back to reference Vasseur, S., Vidal Mallo, G., Fiedler, F., Bodeker, H., Canepa, E., Moreno, S., et al. (1999). Cloning and expression of the human p8, a nuclear protein with mitogenic activity. European journal of biochemistry, 259, 670–675.PubMedCrossRef Vasseur, S., Vidal Mallo, G., Fiedler, F., Bodeker, H., Canepa, E., Moreno, S., et al. (1999). Cloning and expression of the human p8, a nuclear protein with mitogenic activity. European journal of biochemistry, 259, 670–675.PubMedCrossRef
6.
go back to reference Vasseur, S., Hoffmeister, A., Garcia-Montero, A., Barthet, M., Saint-Michel, L., Berthezene, P., et al. (2003). Mice with targeted disruption of p8 gene show increased sensitivity to lipopolysaccharide and DNA microarray analysis of livers reveals an aberrant gene expression response. BMC Gastroenterol, 3, 25.PubMedCrossRef Vasseur, S., Hoffmeister, A., Garcia-Montero, A., Barthet, M., Saint-Michel, L., Berthezene, P., et al. (2003). Mice with targeted disruption of p8 gene show increased sensitivity to lipopolysaccharide and DNA microarray analysis of livers reveals an aberrant gene expression response. BMC Gastroenterol, 3, 25.PubMedCrossRef
7.
go back to reference Taieb, D., Malicet, C., Garcia, S., Rocchi, P., Arnaud, C., Dagorn, J. C., et al. (2005). Inactivation of stress protein p8 increases murine carbon tetrachloride hepatotoxicity via preserved CYP2E1 activity. Hepatology, 42, 176–182.PubMedCrossRef Taieb, D., Malicet, C., Garcia, S., Rocchi, P., Arnaud, C., Dagorn, J. C., et al. (2005). Inactivation of stress protein p8 increases murine carbon tetrachloride hepatotoxicity via preserved CYP2E1 activity. Hepatology, 42, 176–182.PubMedCrossRef
8.
go back to reference Vasseur, S., Hoffmeister, A., Garcia-Montero, A., Mallo, G. V., Feil, R., Kuhbandner, S., et al. (2002). p8-deficient fibroblasts grow more rapidly and are more resistant to adriamycin-induced apoptosis. Oncogene, 21, 1685–1694.PubMedCrossRef Vasseur, S., Hoffmeister, A., Garcia-Montero, A., Mallo, G. V., Feil, R., Kuhbandner, S., et al. (2002). p8-deficient fibroblasts grow more rapidly and are more resistant to adriamycin-induced apoptosis. Oncogene, 21, 1685–1694.PubMedCrossRef
9.
go back to reference Courjal, F., & Theillet, C. (1997). Comparative genomic hybridization analysis of breast tumors with predetermined profiles of DNA amplification. Cancer research, 57, 4368–4377.PubMed Courjal, F., & Theillet, C. (1997). Comparative genomic hybridization analysis of breast tumors with predetermined profiles of DNA amplification. Cancer research, 57, 4368–4377.PubMed
10.
go back to reference Valacco, M. P., Varone, C., Malicet, C., Canepa, E., Iovanna, J. L., Moreno, S. (2006). Cell growth-dependent subcellular localization of p8. Journal of cellular biochemistry, 97, 1066–1079.PubMedCrossRef Valacco, M. P., Varone, C., Malicet, C., Canepa, E., Iovanna, J. L., Moreno, S. (2006). Cell growth-dependent subcellular localization of p8. Journal of cellular biochemistry, 97, 1066–1079.PubMedCrossRef
11.
go back to reference Malicet, C., Lesavre, N., Vasseur, S., & Iovanna, J. L. (2003). p8 inhibits the growth of human pancreatic cancer cells and its expression is induced through pathways involved in growth inhibition and repressed by factors promoting cell growth. Molecular cancer, 2, 37.PubMedCrossRef Malicet, C., Lesavre, N., Vasseur, S., & Iovanna, J. L. (2003). p8 inhibits the growth of human pancreatic cancer cells and its expression is induced through pathways involved in growth inhibition and repressed by factors promoting cell growth. Molecular cancer, 2, 37.PubMedCrossRef
12.
go back to reference Dingwall, C., & Laskey, R. A. (1991). Nuclear targeting sequences—a consensus? Trends in biochemical sciences, 16, 478–481.PubMedCrossRef Dingwall, C., & Laskey, R. A. (1991). Nuclear targeting sequences—a consensus? Trends in biochemical sciences, 16, 478–481.PubMedCrossRef
13.
go back to reference Goruppi, S., & Kyriakis, J. M. (2004). The pro-hypertrophic basic helix-loop-helix protein p8 is degraded by the ubiquitin/proteasome system in a protein kinase B/Akt— and glycogen synthase kinase-3-dependent manner, whereas endothelin induction of p8 mRNA and renal mesangial cell hypertrophy require NFAT4. Journal of biological chemistry, 279, 20950–20958.PubMedCrossRef Goruppi, S., & Kyriakis, J. M. (2004). The pro-hypertrophic basic helix-loop-helix protein p8 is degraded by the ubiquitin/proteasome system in a protein kinase B/Akt— and glycogen synthase kinase-3-dependent manner, whereas endothelin induction of p8 mRNA and renal mesangial cell hypertrophy require NFAT4. Journal of biological chemistry, 279, 20950–20958.PubMedCrossRef
14.
go back to reference Path, G., Opel, A., Knoll, A., & Seufert, J. (2004). Nuclear protein p8 is associated with glucose-induced pancreatic beta-cell growth. Diabetes, 53(Suppl 1), S82–85.PubMedCrossRef Path, G., Opel, A., Knoll, A., & Seufert, J. (2004). Nuclear protein p8 is associated with glucose-induced pancreatic beta-cell growth. Diabetes, 53(Suppl 1), S82–85.PubMedCrossRef
15.
go back to reference Vasseur, S., Folch-Puy, E., Hlouschek, V., Garcia, S., Fiedler, F., Lerch, M. M., et al. (2004). p8 improves pancreatic response to acute pancreatitis by enhancing the expression of the anti-inflammatory protein pancreatitis-associated protein I. Journal of biological chemistry, 279, 7199–7207.PubMedCrossRef Vasseur, S., Folch-Puy, E., Hlouschek, V., Garcia, S., Fiedler, F., Lerch, M. M., et al. (2004). p8 improves pancreatic response to acute pancreatitis by enhancing the expression of the anti-inflammatory protein pancreatitis-associated protein I. Journal of biological chemistry, 279, 7199–7207.PubMedCrossRef
16.
go back to reference Carracedo, A., Egia, A., Guzman, M., & Velasco, G. (2006). p8 Upregulation sensitizes astrocytes to oxidative stress. FEBS letters, 580, 1571–1575.PubMedCrossRef Carracedo, A., Egia, A., Guzman, M., & Velasco, G. (2006). p8 Upregulation sensitizes astrocytes to oxidative stress. FEBS letters, 580, 1571–1575.PubMedCrossRef
17.
go back to reference Goruppi, S., Patten, R. D., Force, T., & Kyriakis, J. M. (2007). Helix-loop-helix protein p8, a transcriptional regulator required for cardiomyocyte hypertrophy and cardiac fibroblast matrix metalloprotease induction. Molecular and cellular biology, 27, 993–1006.PubMedCrossRef Goruppi, S., Patten, R. D., Force, T., & Kyriakis, J. M. (2007). Helix-loop-helix protein p8, a transcriptional regulator required for cardiomyocyte hypertrophy and cardiac fibroblast matrix metalloprotease induction. Molecular and cellular biology, 27, 993–1006.PubMedCrossRef
18.
go back to reference Malicet, C., Giroux, V., Vasseur, S., Dagorn, J. C., Neira, J. L., & Iovanna, J. L. (2006). Regulation of apoptosis by the p8/prothymosin alpha complex. Proceedings of the National Academy of Sciences of the United States of America, 103, 2671–2676.PubMedCrossRef Malicet, C., Giroux, V., Vasseur, S., Dagorn, J. C., Neira, J. L., & Iovanna, J. L. (2006). Regulation of apoptosis by the p8/prothymosin alpha complex. Proceedings of the National Academy of Sciences of the United States of America, 103, 2671–2676.PubMedCrossRef
19.
go back to reference Ree, A. H., Pacheco, M. M., Tvermyr, M., Fodstad, O., & Brentani, M. M. (2000). Expression of a novel factor, com1, in early tumor progression of breast cancer. Clinical cancer research, 6, 1778–1783.PubMed Ree, A. H., Pacheco, M. M., Tvermyr, M., Fodstad, O., & Brentani, M. M. (2000). Expression of a novel factor, com1, in early tumor progression of breast cancer. Clinical cancer research, 6, 1778–1783.PubMed
20.
go back to reference Su, S. B., Motoo, Y., Iovanna, J. L., Berthezene, P., Xie, M. J., Mouri, H., et al. (2001). Overexpression of p8 is inversely correlated with apoptosis in pancreatic cancer. Clinical cancer research, 7, 1320–1324.PubMed Su, S. B., Motoo, Y., Iovanna, J. L., Berthezene, P., Xie, M. J., Mouri, H., et al. (2001). Overexpression of p8 is inversely correlated with apoptosis in pancreatic cancer. Clinical cancer research, 7, 1320–1324.PubMed
21.
go back to reference Su, S. B., Motoo, Y., Iovanna, J. L., Xie, M. J., Mouri, H., Ohtsubo, K., et al. (2001). Expression of p8 in human pancreatic cancer. Clinical cancer research, 7, 309–313.PubMed Su, S. B., Motoo, Y., Iovanna, J. L., Xie, M. J., Mouri, H., Ohtsubo, K., et al. (2001). Expression of p8 in human pancreatic cancer. Clinical cancer research, 7, 309–313.PubMed
22.
go back to reference Quirk, C. C., Seachrist, D. D., & Nilson, J. H. (2003). Embryonic expression of the luteinizing hormone beta gene appears to be coupled to the transient appearance of p8, a high mobility group-related transcription factor. Journal of biological chemistry, 278, 1680–1685.PubMedCrossRef Quirk, C. C., Seachrist, D. D., & Nilson, J. H. (2003). Embryonic expression of the luteinizing hormone beta gene appears to be coupled to the transient appearance of p8, a high mobility group-related transcription factor. Journal of biological chemistry, 278, 1680–1685.PubMedCrossRef
23.
go back to reference Mohammad, H. P., Seachrist, D. D., Quirk, C. C., & Nilson, J. H. (2004). Reexpression of p8 contributes to tumorigenic properties of pituitary cells and appears in a subset of prolactinomas in transgenic mice that hypersecrete luteinizing hormone. Molecular endocrinology, 18, 2583–2593.PubMedCrossRef Mohammad, H. P., Seachrist, D. D., Quirk, C. C., & Nilson, J. H. (2004). Reexpression of p8 contributes to tumorigenic properties of pituitary cells and appears in a subset of prolactinomas in transgenic mice that hypersecrete luteinizing hormone. Molecular endocrinology, 18, 2583–2593.PubMedCrossRef
24.
go back to reference Brannon, K. M., Million Passe, C. M., White, C. R., Bade, N. A., King, M. W., & Quirk, C. C. (2007). Expression of the high mobility group A family member p8 is essential to maintaining tumorigenic potential by promoting cell cycle dysregulation in LbetaT2 cells. Cancer letter, 254, 146–155.CrossRef Brannon, K. M., Million Passe, C. M., White, C. R., Bade, N. A., King, M. W., & Quirk, C. C. (2007). Expression of the high mobility group A family member p8 is essential to maintaining tumorigenic potential by promoting cell cycle dysregulation in LbetaT2 cells. Cancer letter, 254, 146–155.CrossRef
25.
go back to reference Ito, Y., Yoshida, H., Motoo, Y., Miyoshi, E., Iovanna, J. L., Tomoda, C., et al. (2003). Expression and cellular localization of p8 protein in thyroid neoplasms. Cancer letter, 201, 237–244.CrossRef Ito, Y., Yoshida, H., Motoo, Y., Miyoshi, E., Iovanna, J. L., Tomoda, C., et al. (2003). Expression and cellular localization of p8 protein in thyroid neoplasms. Cancer letter, 201, 237–244.CrossRef
26.
go back to reference Ree, A. H., Bratland, A., Kroes, R. A., Aasheim, H. C., Florenes, V. A., Moskal, J. R., et al. (2002). Clinical and cell line specific expression profiles of a human gene identified in experimental central nervous system metastases. Anticancer research, 22, 1949–1957.PubMed Ree, A. H., Bratland, A., Kroes, R. A., Aasheim, H. C., Florenes, V. A., Moskal, J. R., et al. (2002). Clinical and cell line specific expression profiles of a human gene identified in experimental central nervous system metastases. Anticancer research, 22, 1949–1957.PubMed
27.
go back to reference Bratland, A., Risberg, K., Maelandsmo, G. M., Gutzkow, K. B., Olsen, O. E., Moghaddam, A., et al. (2000). Expression of a novel factor, com1, is regulated by 1,25-dihydroxyvitamin D3 in breast cancer cells. Cancer research, 60, 5578–5583.PubMed Bratland, A., Risberg, K., Maelandsmo, G. M., Gutzkow, K. B., Olsen, O. E., Moghaddam, A., et al. (2000). Expression of a novel factor, com1, is regulated by 1,25-dihydroxyvitamin D3 in breast cancer cells. Cancer research, 60, 5578–5583.PubMed
28.
go back to reference Vasseur, S., Hoffmeister, A., Garcia, S., Bagnis, C., Dagorn, J. C., & Iovanna, J. L. (2002). p8 is critical for tumour development induced by rasV12 mutated protein and E1A oncogene. EMBO reports, 3, 165–170.PubMedCrossRef Vasseur, S., Hoffmeister, A., Garcia, S., Bagnis, C., Dagorn, J. C., & Iovanna, J. L. (2002). p8 is critical for tumour development induced by rasV12 mutated protein and E1A oncogene. EMBO reports, 3, 165–170.PubMedCrossRef
29.
go back to reference Blazquez, C., Salazar, M., Carracedo, A., Lorente, M., Egia, A., Gonzalez-Feria, L., et al. (2008). Cannabinoids inhibit glioma cell invasion by down-regulating matrix metalloproteinase-2 expression. Cancer research, 68, 1945–1952.PubMedCrossRef Blazquez, C., Salazar, M., Carracedo, A., Lorente, M., Egia, A., Gonzalez-Feria, L., et al. (2008). Cannabinoids inhibit glioma cell invasion by down-regulating matrix metalloproteinase-2 expression. Cancer research, 68, 1945–1952.PubMedCrossRef
30.
go back to reference Blazquez, C., Carracedo, A., Salazar, M., Lorente, M., Egia, A., Gonzalez-Feria, L., et al. (2008). Down-regulation of tissue inhibitor of metalloproteinases-1 in gliomas: a new marker of cannabinoid antitumoral activity? Neuropharmacology, 54, 235–243.PubMedCrossRef Blazquez, C., Carracedo, A., Salazar, M., Lorente, M., Egia, A., Gonzalez-Feria, L., et al. (2008). Down-regulation of tissue inhibitor of metalloproteinases-1 in gliomas: a new marker of cannabinoid antitumoral activity? Neuropharmacology, 54, 235–243.PubMedCrossRef
31.
go back to reference Carracedo, A., Gironella, M., Lorente, M., Garcia, S., Guzman, M., Velasco, G., et al. (2006). Cannabinoids induce apoptosis of pancreatic tumor cells via endoplasmic reticulum stress-related genes. Cancer research, 66, 6748–6755.PubMedCrossRef Carracedo, A., Gironella, M., Lorente, M., Garcia, S., Guzman, M., Velasco, G., et al. (2006). Cannabinoids induce apoptosis of pancreatic tumor cells via endoplasmic reticulum stress-related genes. Cancer research, 66, 6748–6755.PubMedCrossRef
32.
go back to reference Jiang, W. G., Watkins, G., Douglas-Jones, A., Mokbel, K., Mansel, R. E., & Fodstad, O. (2005). Expression of Com-1/P8 in human breast cancer and its relevance to clinical outcome and ER status. International journal of cancer, 117, 730–737.CrossRef Jiang, W. G., Watkins, G., Douglas-Jones, A., Mokbel, K., Mansel, R. E., & Fodstad, O. (2005). Expression of Com-1/P8 in human breast cancer and its relevance to clinical outcome and ER status. International journal of cancer, 117, 730–737.CrossRef
33.
go back to reference Jiang, W. G., Davies, G., & Fodstad, O. (2005). Com-1/P8 in oestrogen regulated growth of breast cancer cells, the ER-beta connection. Biochemical and biophysical research communications, 330, 253–262.PubMedCrossRef Jiang, W. G., Davies, G., & Fodstad, O. (2005). Com-1/P8 in oestrogen regulated growth of breast cancer cells, the ER-beta connection. Biochemical and biophysical research communications, 330, 253–262.PubMedCrossRef
34.
go back to reference Jiang, W. G., Davies, G., Martin, T. A., Kynaston, H., Mason, M. D., & Fodstad, O. (2006). Com-1/p8 acts as a putative tumour suppressor in prostate cancer. International Journal of Molecular Medicine, 18, 981–986.PubMed Jiang, W. G., Davies, G., Martin, T. A., Kynaston, H., Mason, M. D., & Fodstad, O. (2006). Com-1/p8 acts as a putative tumour suppressor in prostate cancer. International Journal of Molecular Medicine, 18, 981–986.PubMed
35.
go back to reference Ishida, M., Miyamoto, M., Naitoh, S., Tatsuda, D., Hasegawa, T., Nemoto, T., et al. (2007). The SYT-SSX fusion protein down-regulates the cell proliferation regulator COM1 in t(x;18) synovial sarcoma. Molecular and cellular biology, 27, 1348–1355.PubMedCrossRef Ishida, M., Miyamoto, M., Naitoh, S., Tatsuda, D., Hasegawa, T., Nemoto, T., et al. (2007). The SYT-SSX fusion protein down-regulates the cell proliferation regulator COM1 in t(x;18) synovial sarcoma. Molecular and cellular biology, 27, 1348–1355.PubMedCrossRef
36.
go back to reference Dulic, V., Stein, G. H., Far, D. F., & Reed, S. I. (1998). Nuclear accumulation of p21Cip1 at the onset of mitosis: a role at the G2/M-phase transition. Molecular and cellular biology, 18, 546–557.PubMed Dulic, V., Stein, G. H., Far, D. F., & Reed, S. I. (1998). Nuclear accumulation of p21Cip1 at the onset of mitosis: a role at the G2/M-phase transition. Molecular and cellular biology, 18, 546–557.PubMed
37.
go back to reference Medema, R. H., Klompmaker, R., Smits, V. A., & Rijksen, G. (1998). p21waf1 can block cells at two points in the cell cycle, but does not interfere with processive DNA-replication or stress-activated kinases. Oncogene, 16, 431–441.PubMedCrossRef Medema, R. H., Klompmaker, R., Smits, V. A., & Rijksen, G. (1998). p21waf1 can block cells at two points in the cell cycle, but does not interfere with processive DNA-replication or stress-activated kinases. Oncogene, 16, 431–441.PubMedCrossRef
38.
go back to reference Niculescu 3rd, A. B., Chen, X., Smeets, M., Hengst, L., Prives, C., & Reed, S. I. (1998). Effects of p21(Cip1/Waf1) at both the G1/S and the G2/M cell cycle transitions: pRb is a critical determinant in blocking DNA replication and in preventing endoreduplication. Molecular and cellular biology, 18, 629–643.PubMed Niculescu 3rd, A. B., Chen, X., Smeets, M., Hengst, L., Prives, C., & Reed, S. I. (1998). Effects of p21(Cip1/Waf1) at both the G1/S and the G2/M cell cycle transitions: pRb is a critical determinant in blocking DNA replication and in preventing endoreduplication. Molecular and cellular biology, 18, 629–643.PubMed
39.
go back to reference Smits, V. A., & Medema, R. H. (2001). Checking out the G(2)/M transition. Biochimica et biophysica acta, 1519, 1–12.PubMed Smits, V. A., & Medema, R. H. (2001). Checking out the G(2)/M transition. Biochimica et biophysica acta, 1519, 1–12.PubMed
40.
go back to reference Staversky, R. J., Vitiello, P. F., Gehen, S. C., Helt, C. E., Rahman, A., Keng, P. C., et al. (2006). p21(Cip1/Waf1/Sdi1) protects against hyperoxia by maintaining expression of Bcl-X(L). Free radical biology & medicine, 41, 601–609.CrossRef Staversky, R. J., Vitiello, P. F., Gehen, S. C., Helt, C. E., Rahman, A., Keng, P. C., et al. (2006). p21(Cip1/Waf1/Sdi1) protects against hyperoxia by maintaining expression of Bcl-X(L). Free radical biology & medicine, 41, 601–609.CrossRef
41.
go back to reference Tian, H., Wittmack, E. K., & Jorgensen, T. J. (2000). p21WAF1/CIP1 antisense therapy radiosensitizes human colon cancer by converting growth arrest to apoptosis. Cancer research, 60, 679–684.PubMed Tian, H., Wittmack, E. K., & Jorgensen, T. J. (2000). p21WAF1/CIP1 antisense therapy radiosensitizes human colon cancer by converting growth arrest to apoptosis. Cancer research, 60, 679–684.PubMed
42.
go back to reference Zhang, Y., Fujita, N., & Tsuruo, T. (1999). Caspase-mediated cleavage of p21Waf1/Cip1 converts cancer cells from growth arrest to undergoing apoptosis. Oncogene, 18, 1131–1138.PubMedCrossRef Zhang, Y., Fujita, N., & Tsuruo, T. (1999). Caspase-mediated cleavage of p21Waf1/Cip1 converts cancer cells from growth arrest to undergoing apoptosis. Oncogene, 18, 1131–1138.PubMedCrossRef
43.
go back to reference Vitiello, P. F., Staversky, R. J., Gehen, S. C., Johnston, C. J., Finkelstein, J. N., Wright, T. W., et al. (2006). p21Cip1 protection against hyperoxia requires Bcl-XL and is uncoupled from its ability to suppress growth. American journal of pathology, 168, 1838–1847.PubMedCrossRef Vitiello, P. F., Staversky, R. J., Gehen, S. C., Johnston, C. J., Finkelstein, J. N., Wright, T. W., et al. (2006). p21Cip1 protection against hyperoxia requires Bcl-XL and is uncoupled from its ability to suppress growth. American journal of pathology, 168, 1838–1847.PubMedCrossRef
44.
go back to reference Wang, Z., Goulet 3rd, R., Stanton, K. J., Sadaria, M., & Nakshatri, H. (2005). Differential effect of anti-apoptotic genes Bcl-xL and c-FLIP on sensitivity of MCF-7 breast cancer cells to paclitaxel and docetaxel. Anticancer research, 25, 2367–2379.PubMed Wang, Z., Goulet 3rd, R., Stanton, K. J., Sadaria, M., & Nakshatri, H. (2005). Differential effect of anti-apoptotic genes Bcl-xL and c-FLIP on sensitivity of MCF-7 breast cancer cells to paclitaxel and docetaxel. Anticancer research, 25, 2367–2379.PubMed
45.
go back to reference Shoemaker, A. R., Oleksijew, A., Bauch, J., Belli, B. A., Borre, T., Bruncko, M., et al. (2006). A small-molecule inhibitor of Bcl-XL potentiates the activity of cytotoxic drugs in vitro and in vivo. Cancer research, 66, 8731–8739.PubMedCrossRef Shoemaker, A. R., Oleksijew, A., Bauch, J., Belli, B. A., Borre, T., Bruncko, M., et al. (2006). A small-molecule inhibitor of Bcl-XL potentiates the activity of cytotoxic drugs in vitro and in vivo. Cancer research, 66, 8731–8739.PubMedCrossRef
46.
go back to reference Trump, D. L., Muindi, J., Fakih, M., Yu, W. D., & Johnson, C. S. (2006). Vitamin D compounds: clinical development as cancer therapy and prevention agents. Anticancer research, 26, 2551–2556.PubMed Trump, D. L., Muindi, J., Fakih, M., Yu, W. D., & Johnson, C. S. (2006). Vitamin D compounds: clinical development as cancer therapy and prevention agents. Anticancer research, 26, 2551–2556.PubMed
47.
go back to reference Garcia-Montero, A. C., Vasseur, S., Giono, L. E., Canepa, E., Moreno, S., Dagorn, J. C., et al. (2001). Transforming growth factor beta-1 enhances Smad transcriptional activity through activation of p8 gene expression. Biochemical journal, 357, 249–253.PubMedCrossRef Garcia-Montero, A. C., Vasseur, S., Giono, L. E., Canepa, E., Moreno, S., Dagorn, J. C., et al. (2001). Transforming growth factor beta-1 enhances Smad transcriptional activity through activation of p8 gene expression. Biochemical journal, 357, 249–253.PubMedCrossRef
48.
go back to reference Massague, J. (1998). TGF-beta signal transduction. Annual Reviews of Biochemical, 67, 753–791.CrossRef Massague, J. (1998). TGF-beta signal transduction. Annual Reviews of Biochemical, 67, 753–791.CrossRef
49.
go back to reference Chen, Y. G., Hata, A., Lo, R. S., Wotton, D., Shi, Y., Pavletich, N., et al. (1998). Determinants of specificity in TGF-beta signal transduction. Genes & development, 12, 2144–2152.CrossRef Chen, Y. G., Hata, A., Lo, R. S., Wotton, D., Shi, Y., Pavletich, N., et al. (1998). Determinants of specificity in TGF-beta signal transduction. Genes & development, 12, 2144–2152.CrossRef
50.
go back to reference Kretzschmar, M., & Massague, J. (1998). SMADs: mediators and regulators of TGF-beta signaling. Current opinion in genetics & development, 8, 103–111.CrossRef Kretzschmar, M., & Massague, J. (1998). SMADs: mediators and regulators of TGF-beta signaling. Current opinion in genetics & development, 8, 103–111.CrossRef
51.
go back to reference Hoffmeister, A., Ropolo, A., Vasseur, S., Mallo, G. V., Bodeker, H., Ritz-Laser, B., et al. (2002). The HMG-I/Y-related protein p8 binds to p300 and Pax2 trans-activation domain-interacting protein to regulate the trans-activation activity of the Pax2A and Pax2B transcription factors on the glucagon gene promoter. Journal of biological chemistry, 277, 22314–22319.PubMedCrossRef Hoffmeister, A., Ropolo, A., Vasseur, S., Mallo, G. V., Bodeker, H., Ritz-Laser, B., et al. (2002). The HMG-I/Y-related protein p8 binds to p300 and Pax2 trans-activation domain-interacting protein to regulate the trans-activation activity of the Pax2A and Pax2B transcription factors on the glucagon gene promoter. Journal of biological chemistry, 277, 22314–22319.PubMedCrossRef
52.
go back to reference Carracedo, A., Lorente, M., Egia, A., Blazquez, C., Garcia, S., Giroux, V., et al. (2006). The stress-regulated protein p8 mediates cannabinoid-induced apoptosis of tumor cells. Cancer Cell, 9, 301–312.PubMedCrossRef Carracedo, A., Lorente, M., Egia, A., Blazquez, C., Garcia, S., Giroux, V., et al. (2006). The stress-regulated protein p8 mediates cannabinoid-induced apoptosis of tumor cells. Cancer Cell, 9, 301–312.PubMedCrossRef
53.
go back to reference Gort, E. H., van Haaften, G., Verlaan, I., Groot, A. J., Plasterk, R. H., Shvarts, A., et al. (2008). The TWIST1 oncogene is a direct target of hypoxia-inducible factor-2alpha. Oncogene, 27, 1501–1510.PubMedCrossRef Gort, E. H., van Haaften, G., Verlaan, I., Groot, A. J., Plasterk, R. H., Shvarts, A., et al. (2008). The TWIST1 oncogene is a direct target of hypoxia-inducible factor-2alpha. Oncogene, 27, 1501–1510.PubMedCrossRef
54.
go back to reference Gort, E. H., Groot, A. J., van der Wall, E., van Diest, P. J., & Vooijs, M. A. (2008). Hypoxic regulation of metastasis via hypoxia-inducible factors. Current molecular medicine, 8, 60–67.PubMedCrossRef Gort, E. H., Groot, A. J., van der Wall, E., van Diest, P. J., & Vooijs, M. A. (2008). Hypoxic regulation of metastasis via hypoxia-inducible factors. Current molecular medicine, 8, 60–67.PubMedCrossRef
55.
go back to reference Bristow, R. G., & Hill, R. P. (2008). Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability. Nature reviews. Cancer, 8, 180–192.PubMedCrossRef Bristow, R. G., & Hill, R. P. (2008). Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability. Nature reviews. Cancer, 8, 180–192.PubMedCrossRef
56.
go back to reference Bindra, R. S., Schaffer, P. J., Meng, A., Woo, J., Maseide, K., Roth, M. E., et al. (2005). Alterations in DNA repair gene expression under hypoxia: elucidating the mechanisms of hypoxia-induced genetic instability. Annals of the New York Academy of Sciences, 1059, 184–195.PubMedCrossRef Bindra, R. S., Schaffer, P. J., Meng, A., Woo, J., Maseide, K., Roth, M. E., et al. (2005). Alterations in DNA repair gene expression under hypoxia: elucidating the mechanisms of hypoxia-induced genetic instability. Annals of the New York Academy of Sciences, 1059, 184–195.PubMedCrossRef
57.
go back to reference Rankin, E. B., & Giaccia, A. J. (2008). The role of hypoxia-inducible factors in tumorigenesis. Cell death and differentiation, 15, 678–685.PubMedCrossRef Rankin, E. B., & Giaccia, A. J. (2008). The role of hypoxia-inducible factors in tumorigenesis. Cell death and differentiation, 15, 678–685.PubMedCrossRef
58.
go back to reference Mehlen, P., & Puisieux, A. (2006). Metastasis: a question of life or death. Nature reviews. Cancer, 6, 449–458.PubMedCrossRef Mehlen, P., & Puisieux, A. (2006). Metastasis: a question of life or death. Nature reviews. Cancer, 6, 449–458.PubMedCrossRef
Metadata
Title
Emerging role of nuclear protein 1 (NUPR1) in cancer biology
Authors
Uttio Roy Chowdhury
Rajeev S. Samant
Oystein Fodstad
Lalita A. Shevde
Publication date
01-06-2009
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 1-2/2009
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-009-9183-x

Other articles of this Issue 1-2/2009

Cancer and Metastasis Reviews 1-2/2009 Go to the issue

EditorialNotes

Preface

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine