Skip to main content
Top
Published in: Breast Cancer Research and Treatment 3/2020

Open Access 01-02-2020 | Breast Cancer | Preclinical study

HO-1 drives autophagy as a mechanism of resistance against HER2-targeted therapies

Authors: Natasha Tracey, Helen Creedon, Alain J. Kemp, Jayne Culley, Morwenna Muir, Teresa Klinowska, Valerie G. Brunton

Published in: Breast Cancer Research and Treatment | Issue 3/2020

Login to get access

Abstract

Purpose

Targeted therapies have resulted in major advances in the treatment of HER2-positive breast cancers. Despite this, up to 70% of patients will develop resistance to treatment within 2 years and new strategies for targeting resistant disease are needed.

Methods

To identify potential resistance mechanisms, we used the mouse MMTV-NIC-PTEN+/− spontaneous model of HER2-positive breast cancer and the pan-HER family kinase inhibitor sapatinib. Vehicle and sapatinib-treated tumors were evaluated by immunohistochemistry and proteomic analysis. In vitro studies were carried out to define the role of heme oxygenase 1 (HO-1) and autophagy in resistance to sapatinib and lapatinib, another pan-HER family kinase inhibitor.

Results

Treatment of tumor-bearing MMTV-NIC-PTEN+/− mice with sapatinib resulted in delayed tumor progression and increased survival. However, tumors eventually progressed on treatment. Proteomic analysis identified proteins associated with cellular iron homeostasis as being upregulated in the sapatinib-treated tumors. This included HO-1 whose overexpression was confirmed by immunohistochemistry. Overexpression of HO-1 in HER2-expressing SKBR3 breast cancer cells resulted in reduced sensitivity to both pan-HER family kinase inhibitors sapatinib and lapatinib. This was associated with increased autophagy in the HO-1 over-expressing cells. Furthermore, increased autophagy was also seen in the sapatinib-treated tumors. Treatment with autophagy inhibitors was able to increase the sensitivity of the HO-1 over-expressing cells to both lapatinib and sapatinib.

Conclusion

Together these data indicate a role for HO-1-induced autophagy in resistance to pan-HER family kinase inhibitors.
Appendix
Available only for authorised users
Literature
1.
go back to reference Sinn HP, Kreipe H (2013) A brief overview of the WHO Classification of breast tumors, 4th edition, focusing on issues and updates from the 3rd edition. Breast Care (Basel, Switzerland) 8(2):149–154CrossRef Sinn HP, Kreipe H (2013) A brief overview of the WHO Classification of breast tumors, 4th edition, focusing on issues and updates from the 3rd edition. Breast Care (Basel, Switzerland) 8(2):149–154CrossRef
2.
go back to reference Mendelsohn J (2016) Commentary on “recombinant humanized Anti-HER2 antibody (Herceptin) enhances the antitumor activity of paclitaxel and doxorubicin against HER2/neu overexpressing human breast cancer Xenografts” (a follow up). Cancer Res 76(18):5192–5194PubMedCrossRef Mendelsohn J (2016) Commentary on “recombinant humanized Anti-HER2 antibody (Herceptin) enhances the antitumor activity of paclitaxel and doxorubicin against HER2/neu overexpressing human breast cancer Xenografts” (a follow up). Cancer Res 76(18):5192–5194PubMedCrossRef
3.
go back to reference Barlaam B, Anderton J, Ballard P, Bradbury RH, Hennequin LF, Hickinson DM, Kettle JG, Kirk G, Klinowska T, Lambert-van der Brempt C et al (2013) Discovery of AZD8931, an equipotent, reversible inhibitor of signaling by EGFR, HER2, and HER3 receptors. ACS Med Chem Lett 4(8):742–746PubMedPubMedCentralCrossRef Barlaam B, Anderton J, Ballard P, Bradbury RH, Hennequin LF, Hickinson DM, Kettle JG, Kirk G, Klinowska T, Lambert-van der Brempt C et al (2013) Discovery of AZD8931, an equipotent, reversible inhibitor of signaling by EGFR, HER2, and HER3 receptors. ACS Med Chem Lett 4(8):742–746PubMedPubMedCentralCrossRef
4.
go back to reference Harbeck N, Beckmann MW, Rody A, Schneeweiss A, Muller V, Fehm T, Marschner N, Gluz O, Schrader I, Heinrich G et al (2013) HER2 Dimerization inhibitor pertuzumab—mode of action and clinical data in breast cancer. Breast Care (Basel, Switzerland) 8(1):49–55CrossRef Harbeck N, Beckmann MW, Rody A, Schneeweiss A, Muller V, Fehm T, Marschner N, Gluz O, Schrader I, Heinrich G et al (2013) HER2 Dimerization inhibitor pertuzumab—mode of action and clinical data in breast cancer. Breast Care (Basel, Switzerland) 8(1):49–55CrossRef
5.
go back to reference Rabindran SK, Discafani CM, Rosfjord EC, Baxter M, Floyd MB, Golas J, Hallett WA, Johnson BD, Nilakantan R, Overbeek E et al (2004) Antitumor activity of HKI-272, an orally active, irreversible inhibitor of the HER-2 tyrosine kinase. Cancer Res 64(11):3958–3965PubMedCrossRef Rabindran SK, Discafani CM, Rosfjord EC, Baxter M, Floyd MB, Golas J, Hallett WA, Johnson BD, Nilakantan R, Overbeek E et al (2004) Antitumor activity of HKI-272, an orally active, irreversible inhibitor of the HER-2 tyrosine kinase. Cancer Res 64(11):3958–3965PubMedCrossRef
6.
go back to reference Xia W, Mullin RJ, Keith BR, Liu LH, Ma H, Rusnak DW, Owens G, Alligood KJ, Spector NL (2002) Anti-tumor activity of GW572016: a dual tyrosine kinase inhibitor blocks EGF activation of EGFR/erbB2 and downstream Erk1/2 and AKT pathways. Oncogene 21(41):6255–6263PubMedCrossRef Xia W, Mullin RJ, Keith BR, Liu LH, Ma H, Rusnak DW, Owens G, Alligood KJ, Spector NL (2002) Anti-tumor activity of GW572016: a dual tyrosine kinase inhibitor blocks EGF activation of EGFR/erbB2 and downstream Erk1/2 and AKT pathways. Oncogene 21(41):6255–6263PubMedCrossRef
7.
go back to reference Arteaga CL, Sliwkowski MX, Osborne CK, Perez EA, Puglisi F, Gianni L (2012) Treatment of HER2-positive breast cancer: current status and future perspectives. Nat Rev Clin Oncol 9(1):16–32CrossRef Arteaga CL, Sliwkowski MX, Osborne CK, Perez EA, Puglisi F, Gianni L (2012) Treatment of HER2-positive breast cancer: current status and future perspectives. Nat Rev Clin Oncol 9(1):16–32CrossRef
8.
go back to reference Ponde N, Brandao M, El-Hachem G, Werbrouck E, Piccart M (2018) Treatment of advanced HER2-positive breast cancer: 2018 and beyond. Cancer Treat Rev 67:10–20PubMedCrossRef Ponde N, Brandao M, El-Hachem G, Werbrouck E, Piccart M (2018) Treatment of advanced HER2-positive breast cancer: 2018 and beyond. Cancer Treat Rev 67:10–20PubMedCrossRef
11.
go back to reference Holen I, Speirs V, Morrissey B, Blyth K (2017) In vivo models in breast cancer research: progress, challenges and future directions. Dis Model Mech 10(4):359–371PubMedPubMedCentralCrossRef Holen I, Speirs V, Morrissey B, Blyth K (2017) In vivo models in breast cancer research: progress, challenges and future directions. Dis Model Mech 10(4):359–371PubMedPubMedCentralCrossRef
12.
go back to reference Ursini-Siegel J, Hardy WR, Zuo D, Lam SH, Sanguin-Gendreau V, Cardiff RD, Pawson T, Muller WJ (2008) ShcA signalling is essential for tumour progression in mouse models of human breast cancer. EMBO J 27(6):910–920PubMedPubMedCentralCrossRef Ursini-Siegel J, Hardy WR, Zuo D, Lam SH, Sanguin-Gendreau V, Cardiff RD, Pawson T, Muller WJ (2008) ShcA signalling is essential for tumour progression in mouse models of human breast cancer. EMBO J 27(6):910–920PubMedPubMedCentralCrossRef
13.
go back to reference Creedon H, Balderstone LA, Muir M, Balla J, Gomez-Cuadrado L, Tracey N, Loane J, Klinowska T, Muller WJ, Brunton VG (2016) Use of a genetically engineered mouse model as a preclinical tool for HER2 breast cancer. Dis Model Mech 9(2):131–140PubMedPubMedCentralCrossRef Creedon H, Balderstone LA, Muir M, Balla J, Gomez-Cuadrado L, Tracey N, Loane J, Klinowska T, Muller WJ, Brunton VG (2016) Use of a genetically engineered mouse model as a preclinical tool for HER2 breast cancer. Dis Model Mech 9(2):131–140PubMedPubMedCentralCrossRef
14.
go back to reference Dunn LL, Midwinter RG, Ni J, Hamid HA, Parish CR, Stocker R (2014) New insights into intracellular locations and functions of heme oxygenase-1. Antioxid Redox Signal 20(11):1723–1742PubMedPubMedCentralCrossRef Dunn LL, Midwinter RG, Ni J, Hamid HA, Parish CR, Stocker R (2014) New insights into intracellular locations and functions of heme oxygenase-1. Antioxid Redox Signal 20(11):1723–1742PubMedPubMedCentralCrossRef
15.
go back to reference Chau LY (2015) Heme oxygenase-1: emerging target of cancer therapy. J Biomed Sci 2015(22):22CrossRef Chau LY (2015) Heme oxygenase-1: emerging target of cancer therapy. J Biomed Sci 2015(22):22CrossRef
16.
go back to reference Loboda A, Jozkowicz A, Dulak J (2015) HO-1/CO system in tumor growth, angiogenesis and metabolism—targeting HO-1 as an anti-tumor therapy. Vascul Pharmacol 74:11–22PubMedCrossRef Loboda A, Jozkowicz A, Dulak J (2015) HO-1/CO system in tumor growth, angiogenesis and metabolism—targeting HO-1 as an anti-tumor therapy. Vascul Pharmacol 74:11–22PubMedCrossRef
17.
go back to reference Berberat PO, Dambrauskas Z, Gulbinas A, Giese T, Giese N, Kunzli B, Autschbach F, Meuer S, Buchler MW, Friess H (2005) Inhibition of heme oxygenase-1 increases responsiveness of pancreatic cancer cells to anticancer treatment. Clin Cancer Res 11(10):3790–3798PubMedCrossRef Berberat PO, Dambrauskas Z, Gulbinas A, Giese T, Giese N, Kunzli B, Autschbach F, Meuer S, Buchler MW, Friess H (2005) Inhibition of heme oxygenase-1 increases responsiveness of pancreatic cancer cells to anticancer treatment. Clin Cancer Res 11(10):3790–3798PubMedCrossRef
18.
go back to reference Nowis D, Legat M, Grzela T, Niderla J, Wilczek E, Wilczynski GM, Glodkowska E, Mrowka P, Issat T, Dulak J et al (2006) Heme oxygenase-1 protects tumor cells against photodynamic therapy-mediated cytotoxicity. Oncogene 25(24):3365–3374PubMedPubMedCentralCrossRef Nowis D, Legat M, Grzela T, Niderla J, Wilczek E, Wilczynski GM, Glodkowska E, Mrowka P, Issat T, Dulak J et al (2006) Heme oxygenase-1 protects tumor cells against photodynamic therapy-mediated cytotoxicity. Oncogene 25(24):3365–3374PubMedPubMedCentralCrossRef
19.
go back to reference Tibullo D, Barbagallo I, Giallongo C, Vanella L, Conticello C, Romano A, Saccone S, Godos J, Di Raimondo F, Li Volti G (2016) Heme oxygenase-1 nuclear translocation regulates bortezomib induced cytotoxicity and mediates genomic instability in myeloma cells. Oncotarget 7(20):28868–28880PubMedPubMedCentralCrossRef Tibullo D, Barbagallo I, Giallongo C, Vanella L, Conticello C, Romano A, Saccone S, Godos J, Di Raimondo F, Li Volti G (2016) Heme oxygenase-1 nuclear translocation regulates bortezomib induced cytotoxicity and mediates genomic instability in myeloma cells. Oncotarget 7(20):28868–28880PubMedPubMedCentralCrossRef
21.
go back to reference Sui X, Chen R, Wang Z, Huang Z, Kong N, Zhang M, Han W, Lou F, Yang J, Zhang Q et al (2013) Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment. Cell Death Dis 4:e838PubMedPubMedCentralCrossRef Sui X, Chen R, Wang Z, Huang Z, Kong N, Zhang M, Han W, Lou F, Yang J, Zhang Q et al (2013) Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment. Cell Death Dis 4:e838PubMedPubMedCentralCrossRef
22.
go back to reference Karim SA, Creedon H, Patel H, Carragher NO, Morton JP, Muller WJ, Evans TR, Gusterson B, Sansom OJ, Brunton VG (2013) Dasatinib inhibits mammary tumour development in a genetically engineered mouse model. J Pathol 230(4):430–440PubMedCrossRef Karim SA, Creedon H, Patel H, Carragher NO, Morton JP, Muller WJ, Evans TR, Gusterson B, Sansom OJ, Brunton VG (2013) Dasatinib inhibits mammary tumour development in a genetically engineered mouse model. J Pathol 230(4):430–440PubMedCrossRef
23.
go back to reference Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372PubMedCrossRef Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372PubMedCrossRef
24.
go back to reference Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M et al (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45(2):228–247PubMedCrossRef Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M et al (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45(2):228–247PubMedCrossRef
25.
go back to reference Berns K, Horlings HM, Hennessy BT, Madiredjo M, Hijmans EM, Beelen K, Linn SC, Gonzalez-Angulo AM, Stemke-Hale K, Hauptmann M et al (2007) A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell 12(4):395–402PubMedCrossRef Berns K, Horlings HM, Hennessy BT, Madiredjo M, Hijmans EM, Beelen K, Linn SC, Gonzalez-Angulo AM, Stemke-Hale K, Hauptmann M et al (2007) A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell 12(4):395–402PubMedCrossRef
26.
go back to reference Nagata Y, Lan KH, Zhou X, Tan M, Esteva FJ, Sahin AA, Klos KS, Li P, Monia BP, Nguyen NT et al (2004) PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell 6(2):117–127PubMedCrossRef Nagata Y, Lan KH, Zhou X, Tan M, Esteva FJ, Sahin AA, Klos KS, Li P, Monia BP, Nguyen NT et al (2004) PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell 6(2):117–127PubMedCrossRef
27.
go back to reference Hjortso MD, Andersen MH (2014) The expression, function and targeting of haem oxygenase-1 in cancer. Curr Cancer Drug Targets 14(4):337–347PubMedCrossRef Hjortso MD, Andersen MH (2014) The expression, function and targeting of haem oxygenase-1 in cancer. Curr Cancer Drug Targets 14(4):337–347PubMedCrossRef
28.
go back to reference Furfaro AL, Traverso N, Domenicotti C, Piras S, Moretta L, Marinari UM, Pronzato MA, Nitti M (2016) The Nrf2/HO-1 axis in cancer cell growth and chemoresistance. Oxid Med Cell Longev 2016:1958174PubMedCrossRef Furfaro AL, Traverso N, Domenicotti C, Piras S, Moretta L, Marinari UM, Pronzato MA, Nitti M (2016) The Nrf2/HO-1 axis in cancer cell growth and chemoresistance. Oxid Med Cell Longev 2016:1958174PubMedCrossRef
30.
go back to reference Zitka O, Skalickova S, Gumulec J, Masarik M, Adam V, Hubalek J, Trnkova L, Kruseova J, Eckschlager T, Kizek R (2012) Redox status expressed as GSH:GSSG ratio as a marker for oxidative stress in paediatric tumour patients. Oncol Lett 4(6):1247PubMedPubMedCentralCrossRef Zitka O, Skalickova S, Gumulec J, Masarik M, Adam V, Hubalek J, Trnkova L, Kruseova J, Eckschlager T, Kizek R (2012) Redox status expressed as GSH:GSSG ratio as a marker for oxidative stress in paediatric tumour patients. Oncol Lett 4(6):1247PubMedPubMedCentralCrossRef
31.
go back to reference Bao LJ, Jaramillo MC, Zhang ZB, Zheng YX, Yao M, Zhang DD, Yi XF (2014) Nrf2 induces cisplatin resistance through activation of autophagy in ovarian carcinoma. Int J Clin Exp Pathol 7(4):1502–1513PubMedPubMedCentral Bao LJ, Jaramillo MC, Zhang ZB, Zheng YX, Yao M, Zhang DD, Yi XF (2014) Nrf2 induces cisplatin resistance through activation of autophagy in ovarian carcinoma. Int J Clin Exp Pathol 7(4):1502–1513PubMedPubMedCentral
32.
go back to reference Cao L, Wang J, Ma D, Wang P, Zhang Y, Fang Q (2016) Heme oxygenase-1 contributes to imatinib resistance by promoting autophagy in chronic myeloid leukemia through disrupting the mTOR signaling pathway. Biomed Pharmacother 78:30–38PubMedCrossRef Cao L, Wang J, Ma D, Wang P, Zhang Y, Fang Q (2016) Heme oxygenase-1 contributes to imatinib resistance by promoting autophagy in chronic myeloid leukemia through disrupting the mTOR signaling pathway. Biomed Pharmacother 78:30–38PubMedCrossRef
33.
go back to reference Pei L, Kong Y, Shao C, Yue X, Wang Z, Zhang N (2018) Heme oxygenase-1 induction mediates chemoresistance of breast cancer cells to pharmorubicin by promoting autophagy via PI3K/Akt pathway. J Cell Mol Med 22(11):5311–5321PubMedPubMedCentralCrossRef Pei L, Kong Y, Shao C, Yue X, Wang Z, Zhang N (2018) Heme oxygenase-1 induction mediates chemoresistance of breast cancer cells to pharmorubicin by promoting autophagy via PI3K/Akt pathway. J Cell Mol Med 22(11):5311–5321PubMedPubMedCentralCrossRef
34.
go back to reference Tan Q, Wang H, Hu Y, Hu M, Li X, Aodengqimuge Ma Y, Wei C, Song L (2015) Src/STAT3-dependent heme oxygenase-1 induction mediates chemoresistance of breast cancer cells to doxorubicin by promoting autophagy. Cancer Sci 106(8):1023–1032PubMedPubMedCentralCrossRef Tan Q, Wang H, Hu Y, Hu M, Li X, Aodengqimuge Ma Y, Wei C, Song L (2015) Src/STAT3-dependent heme oxygenase-1 induction mediates chemoresistance of breast cancer cells to doxorubicin by promoting autophagy. Cancer Sci 106(8):1023–1032PubMedPubMedCentralCrossRef
35.
go back to reference Kang J, Jeong MG, Oh S, Jang EJ, Kim HK, Hwang ES (2014) A FoxO1-dependent, but NRF2-independent induction of heme oxygenase-1 during muscle atrophy. FEBS Lett 588(1):79–85PubMedCrossRef Kang J, Jeong MG, Oh S, Jang EJ, Kim HK, Hwang ES (2014) A FoxO1-dependent, but NRF2-independent induction of heme oxygenase-1 during muscle atrophy. FEBS Lett 588(1):79–85PubMedCrossRef
36.
go back to reference Numata I, Okuyama R, Memezawa A, Ito Y, Takeda K, Furuyama K, Shibahara S, Aiba S (2009) Functional expression of heme oxygenase-1 in human differentiated epidermis and its regulation by cytokines. J Invest Dermatol 129(11):2594–2603PubMedCrossRef Numata I, Okuyama R, Memezawa A, Ito Y, Takeda K, Furuyama K, Shibahara S, Aiba S (2009) Functional expression of heme oxygenase-1 in human differentiated epidermis and its regulation by cytokines. J Invest Dermatol 129(11):2594–2603PubMedCrossRef
37.
go back to reference Piao MS, Park J-J, Choi J-Y, Lee D-H, Yun SJ, Lee J-B, Lee S-C (2012) Nrf2-dependent and Nrf2-independent induction of phase 2 detoxifying and antioxidant enzymes during keratinocyte differentiation. Arch Dermatol Res 304(5):387–395PubMedCrossRef Piao MS, Park J-J, Choi J-Y, Lee D-H, Yun SJ, Lee J-B, Lee S-C (2012) Nrf2-dependent and Nrf2-independent induction of phase 2 detoxifying and antioxidant enzymes during keratinocyte differentiation. Arch Dermatol Res 304(5):387–395PubMedCrossRef
38.
go back to reference Furfaro AL, Piras S, Passalacqua M, Domenicotti C, Parodi A, Fenoglio D, Pronzato MA, Marinari UM, Moretta L, Traverso N et al (2014) HO-1 up-regulation: a key point in high-risk neuroblastoma resistance to bortezomib. Biochim Biophys Acta 1842(4):613–622PubMedCrossRef Furfaro AL, Piras S, Passalacqua M, Domenicotti C, Parodi A, Fenoglio D, Pronzato MA, Marinari UM, Moretta L, Traverso N et al (2014) HO-1 up-regulation: a key point in high-risk neuroblastoma resistance to bortezomib. Biochim Biophys Acta 1842(4):613–622PubMedCrossRef
39.
go back to reference Kang HJ, Yi YW, Hong YB, Kim HJ, Jang YJ, Seong YS, Bae I (2014) HER2 confers drug resistance of human breast cancer cells through activation of NRF2 by direct interaction. Sci Rep 4:7201PubMedPubMedCentralCrossRef Kang HJ, Yi YW, Hong YB, Kim HJ, Jang YJ, Seong YS, Bae I (2014) HER2 confers drug resistance of human breast cancer cells through activation of NRF2 by direct interaction. Sci Rep 4:7201PubMedPubMedCentralCrossRef
40.
go back to reference Lv X, Song DM, Niu YH, Wang BS (2016) Inhibition of heme oxygenase-1 enhances the chemosensitivity of laryngeal squamous cell cancer Hep-2 cells to cisplatin. Apoptosis 21(4):489–501PubMedCrossRef Lv X, Song DM, Niu YH, Wang BS (2016) Inhibition of heme oxygenase-1 enhances the chemosensitivity of laryngeal squamous cell cancer Hep-2 cells to cisplatin. Apoptosis 21(4):489–501PubMedCrossRef
41.
go back to reference Yin H, Fang J, Liao L, Maeda H, Su Q (2014) Upregulation of heme oxygenase-1 in colorectal cancer patients with increased circulation carbon monoxide levels, potentially affects chemotherapeutic sensitivity. BMC Cancer 14:436PubMedPubMedCentralCrossRef Yin H, Fang J, Liao L, Maeda H, Su Q (2014) Upregulation of heme oxygenase-1 in colorectal cancer patients with increased circulation carbon monoxide levels, potentially affects chemotherapeutic sensitivity. BMC Cancer 14:436PubMedPubMedCentralCrossRef
42.
go back to reference Carchman EH, Rao J, Loughran PA, Rosengart MR, Zuckerbraun BS (2011) Heme oxygenase-1-mediated autophagy protects against hepatocyte cell death and hepatic injury from infection/sepsis in mice. Hepatology 53(6):2053–2062PubMedCrossRef Carchman EH, Rao J, Loughran PA, Rosengart MR, Zuckerbraun BS (2011) Heme oxygenase-1-mediated autophagy protects against hepatocyte cell death and hepatic injury from infection/sepsis in mice. Hepatology 53(6):2053–2062PubMedCrossRef
43.
go back to reference Wang R, Shen Z, Yang L, Yin M, Zheng W, Wu B, Liu T, Song H (2017) Protective effects of heme oxygenase-1-transduced bone marrow-derived mesenchymal stem cells on reducedsize liver transplantation: role of autophagy regulated by the ERK/mTOR signaling pathway. Int J Mol Med 40(5):1537–1548PubMedPubMedCentralCrossRef Wang R, Shen Z, Yang L, Yin M, Zheng W, Wu B, Liu T, Song H (2017) Protective effects of heme oxygenase-1-transduced bone marrow-derived mesenchymal stem cells on reducedsize liver transplantation: role of autophagy regulated by the ERK/mTOR signaling pathway. Int J Mol Med 40(5):1537–1548PubMedPubMedCentralCrossRef
44.
go back to reference Hsu FF, Yeh CT, Sun YJ, Chiang MT, Lan WM, Li FA, Lee WH, Chau LY (2015) Signal peptide peptidase-mediated nuclear localization of heme oxygenase-1 promotes cancer cell proliferation and invasion independent of its enzymatic activity. Oncogene 34(18):2360–2370PubMedCrossRef Hsu FF, Yeh CT, Sun YJ, Chiang MT, Lan WM, Li FA, Lee WH, Chau LY (2015) Signal peptide peptidase-mediated nuclear localization of heme oxygenase-1 promotes cancer cell proliferation and invasion independent of its enzymatic activity. Oncogene 34(18):2360–2370PubMedCrossRef
45.
go back to reference Biswas C, Shah N, Muthu M, La P, Fernando AP, Sengupta S, Yang G, Dennery PA (2014) Nuclear heme oxygenase-1 (HO-1) modulates subcellular distribution and activation of Nrf2, impacting metabolic and anti-oxidant defenses. J Biol Chem 289(39):26882–26894PubMedPubMedCentralCrossRef Biswas C, Shah N, Muthu M, La P, Fernando AP, Sengupta S, Yang G, Dennery PA (2014) Nuclear heme oxygenase-1 (HO-1) modulates subcellular distribution and activation of Nrf2, impacting metabolic and anti-oxidant defenses. J Biol Chem 289(39):26882–26894PubMedPubMedCentralCrossRef
46.
go back to reference Lin Q, Weis S, Yang G, Weng YH, Helston R, Rish K, Smith A, Bordner J, Polte T, Gaunitz F et al (2007) Heme oxygenase-1 protein localizes to the nucleus and activates transcription factors important in oxidative stress. J Biol Chem 282(28):20621–20633PubMedCrossRef Lin Q, Weis S, Yang G, Weng YH, Helston R, Rish K, Smith A, Bordner J, Polte T, Gaunitz F et al (2007) Heme oxygenase-1 protein localizes to the nucleus and activates transcription factors important in oxidative stress. J Biol Chem 282(28):20621–20633PubMedCrossRef
47.
go back to reference Kongpetch S, Puapairoj A, Ong CK, Senggunprai L, Prawan A, Kukongviriyapan U, Chan-On W, Siew EY, Khuntikeo N, Teh BT et al (2016) Haem oxygenase 1 expression is associated with prognosis in cholangiocarcinoma patients and with drug sensitivity in xenografted mice. Cell Prolif 49(1):90–101PubMedCrossRefPubMedCentral Kongpetch S, Puapairoj A, Ong CK, Senggunprai L, Prawan A, Kukongviriyapan U, Chan-On W, Siew EY, Khuntikeo N, Teh BT et al (2016) Haem oxygenase 1 expression is associated with prognosis in cholangiocarcinoma patients and with drug sensitivity in xenografted mice. Cell Prolif 49(1):90–101PubMedCrossRefPubMedCentral
48.
go back to reference Mayerhofer M, Gleixner KV, Mayerhofer J, Hoermann G, Jaeger E, Aichberger KJ, Ott RG, Greish K, Nakamura H, Derdak S et al (2008) Targeting of heat shock protein 32 (Hsp32)/heme oxygenase-1 (HO-1) in leukemic cells in chronic myeloid leukemia: a novel approach to overcome resistance against imatinib. Blood 111(4):2200–2210PubMedCrossRef Mayerhofer M, Gleixner KV, Mayerhofer J, Hoermann G, Jaeger E, Aichberger KJ, Ott RG, Greish K, Nakamura H, Derdak S et al (2008) Targeting of heat shock protein 32 (Hsp32)/heme oxygenase-1 (HO-1) in leukemic cells in chronic myeloid leukemia: a novel approach to overcome resistance against imatinib. Blood 111(4):2200–2210PubMedCrossRef
49.
go back to reference Salerno L, Floresta G, Ciaffaglione V, Gentile D, Margani F, Turnaturi R, Rescifina A, Pittala V (2019) Progress in the development of selective heme oxygenase-1 inhibitors and their potential therapeutic application. Eur J Med Chem 167:439–453PubMedCrossRef Salerno L, Floresta G, Ciaffaglione V, Gentile D, Margani F, Turnaturi R, Rescifina A, Pittala V (2019) Progress in the development of selective heme oxygenase-1 inhibitors and their potential therapeutic application. Eur J Med Chem 167:439–453PubMedCrossRef
50.
go back to reference Chude CI, Amaravadi RK (2017) Targeting autophagy in cancer: update on clinical trials and novel inhibitors. Int J Mol Sci 18(6):1279PubMedCentralCrossRef Chude CI, Amaravadi RK (2017) Targeting autophagy in cancer: update on clinical trials and novel inhibitors. Int J Mol Sci 18(6):1279PubMedCentralCrossRef
Metadata
Title
HO-1 drives autophagy as a mechanism of resistance against HER2-targeted therapies
Authors
Natasha Tracey
Helen Creedon
Alain J. Kemp
Jayne Culley
Morwenna Muir
Teresa Klinowska
Valerie G. Brunton
Publication date
01-02-2020
Publisher
Springer US
Published in
Breast Cancer Research and Treatment / Issue 3/2020
Print ISSN: 0167-6806
Electronic ISSN: 1573-7217
DOI
https://doi.org/10.1007/s10549-019-05489-1

Other articles of this Issue 3/2020

Breast Cancer Research and Treatment 3/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine