Skip to main content
Top
Published in: Breast Cancer Research and Treatment 3/2020

01-02-2020 | Breast Cancer | Preclinical study

Amphiregulin deletion strongly attenuates the development of estrogen receptor-positive tumors in p53 mutant mice

Authors: David R. Meier, Megan A. Girtman, Kristopher A. Lofgren, Paraic A. Kenny

Published in: Breast Cancer Research and Treatment | Issue 3/2020

Login to get access

Abstract

Purpose

The epidermal growth factor receptor ligand, Amphiregulin, is a transcriptional target of estrogen receptor alpha and is required for pubertal mammary gland development. Previous studies using immortalized human breast cancer cell line xenografts have suggested that Amphiregulin may be an important effector of estrogen receptor alpha during breast cancer development, at least in immune-compromised animals. Here, we evaluate the requirement for Amphiregulin in an immune-competent mouse model which is prone to developing estrogen receptor-positive tumors.

Methods

We have intercrossed mice with mammary-specific mutation of p53 with mice deficient in Amphiregulin in order to assess the requirement for Amphiregulin in the initiation and progression of both estrogen receptor-positive and estrogen receptor-negative mammary tumors.

Results

Deletion of Amphiregulin significantly delayed the onset of palpable mammary tumors and also strongly reduced the proportion of estrogen receptor alpha-positive tumors formed. Upon necropsy, no substantial differences in the prevalence of non-palpable lesions were observed between cohorts, suggesting that the importance of Amphiregulin in mammary tumorigenesis is limited to the post-initiation phase.

Conclusions

This study underlines the importance of the EGFR ligand, Amphiregulin, as a key mediator of estrogen receptor action in breast cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Shoyab M, McDonald VL, Bradley JG, Todaro GJ (1988) Amphiregulin: a bifunctional growth-modulating glycoprotein produced by the phorbol 12-myristate 13-acetate-treated human breast adenocarcinoma cell line MCF-7. Proc Natl Acad Sci USA 85(17):6528–6532CrossRef Shoyab M, McDonald VL, Bradley JG, Todaro GJ (1988) Amphiregulin: a bifunctional growth-modulating glycoprotein produced by the phorbol 12-myristate 13-acetate-treated human breast adenocarcinoma cell line MCF-7. Proc Natl Acad Sci USA 85(17):6528–6532CrossRef
2.
go back to reference Martinez-Lacaci I, Saceda M, Plowman GD, Johnson GR, Normanno N, Salomon DS, Dickson RB (1995) Estrogen and phorbol esters regulate amphiregulin expression by two separate mechanisms in human breast cancer cell lines. Endocrinology 136(9):3983–3992CrossRef Martinez-Lacaci I, Saceda M, Plowman GD, Johnson GR, Normanno N, Salomon DS, Dickson RB (1995) Estrogen and phorbol esters regulate amphiregulin expression by two separate mechanisms in human breast cancer cell lines. Endocrinology 136(9):3983–3992CrossRef
3.
go back to reference Berquin IM, Dziubinski ML, Nolan GP, Ethier SP (2001) A functional screen for genes inducing epidermal growth factor autonomy of human mammary epithelial cells confirms the role of amphiregulin. Oncogene 20(30):4019–4028CrossRef Berquin IM, Dziubinski ML, Nolan GP, Ethier SP (2001) A functional screen for genes inducing epidermal growth factor autonomy of human mammary epithelial cells confirms the role of amphiregulin. Oncogene 20(30):4019–4028CrossRef
4.
go back to reference Kenny PA, Bissell MJ (2007) Targeting TACE-dependent EGFR ligand shedding in breast cancer. J Clin Investig 117(2):337–345CrossRef Kenny PA, Bissell MJ (2007) Targeting TACE-dependent EGFR ligand shedding in breast cancer. J Clin Investig 117(2):337–345CrossRef
5.
go back to reference Luetteke NC, Qiu TH, Fenton SE, Troyer KL, Riedel RF, Chang A, Lee DC (1999) Targeted inactivation of the EGF and amphiregulin genes reveals distinct roles for EGF receptor ligands in mouse mammary gland development. Development 126(12):2739–2750PubMed Luetteke NC, Qiu TH, Fenton SE, Troyer KL, Riedel RF, Chang A, Lee DC (1999) Targeted inactivation of the EGF and amphiregulin genes reveals distinct roles for EGF receptor ligands in mouse mammary gland development. Development 126(12):2739–2750PubMed
8.
go back to reference McBryan J, Howlin J, Kenny PA, Shioda T, Martin F (2007) ERalpha-CITED1 co-regulated genes expressed during pubertal mammary gland development: implications for breast cancer prognosis. Oncogene 26(44):6406–6419CrossRef McBryan J, Howlin J, Kenny PA, Shioda T, Martin F (2007) ERalpha-CITED1 co-regulated genes expressed during pubertal mammary gland development: implications for breast cancer prognosis. Oncogene 26(44):6406–6419CrossRef
10.
12.
go back to reference Wagner KU, Wall RJ, St-Onge L, Gruss P, Wynshaw-Boris A, Garrett L, Li M, Furth PA, Hennighausen L (1997) Cre-mediated gene deletion in the mammary gland. Nucleic Acids Res 25(21):4323–4330CrossRef Wagner KU, Wall RJ, St-Onge L, Gruss P, Wynshaw-Boris A, Garrett L, Li M, Furth PA, Hennighausen L (1997) Cre-mediated gene deletion in the mammary gland. Nucleic Acids Res 25(21):4323–4330CrossRef
13.
go back to reference Rasmussen SB, Young LJ, Smith GH (2000) Preparing mammary gland whole mounts from mice. In: Ip MM, Asch BB (eds) Methods in mammary gland biology and breast cancer research. Kluwer, New York, pp 75–85CrossRef Rasmussen SB, Young LJ, Smith GH (2000) Preparing mammary gland whole mounts from mice. In: Ip MM, Asch BB (eds) Methods in mammary gland biology and breast cancer research. Kluwer, New York, pp 75–85CrossRef
16.
go back to reference Carroll JS, Meyer CA, Song J, Li W, Geistlinger TR, Eeckhoute J, Brodsky AS, Keeton EK, Fertuck KC, Hall GF, Wang Q, Bekiranov S, Sementchenko V, Fox EA, Silver PA, Gingeras TR, Liu XS, Brown M (2006) Genome-wide analysis of estrogen receptor binding sites. Nat Genet 38(11):1289–1297. https://doi.org/10.1038/ng1901 CrossRefPubMed Carroll JS, Meyer CA, Song J, Li W, Geistlinger TR, Eeckhoute J, Brodsky AS, Keeton EK, Fertuck KC, Hall GF, Wang Q, Bekiranov S, Sementchenko V, Fox EA, Silver PA, Gingeras TR, Liu XS, Brown M (2006) Genome-wide analysis of estrogen receptor binding sites. Nat Genet 38(11):1289–1297. https://​doi.​org/​10.​1038/​ng1901 CrossRefPubMed
22.
go back to reference Lofgren KA, Kenny PA (2016) An instructive ductal microenvironment is key for efficient in vivo modeling of estrogen receptor positive breast cancer. Transl Cancer Res 5(S2):S360–362CrossRef Lofgren KA, Kenny PA (2016) An instructive ductal microenvironment is key for efficient in vivo modeling of estrogen receptor positive breast cancer. Transl Cancer Res 5(S2):S360–362CrossRef
Metadata
Title
Amphiregulin deletion strongly attenuates the development of estrogen receptor-positive tumors in p53 mutant mice
Authors
David R. Meier
Megan A. Girtman
Kristopher A. Lofgren
Paraic A. Kenny
Publication date
01-02-2020
Publisher
Springer US
Published in
Breast Cancer Research and Treatment / Issue 3/2020
Print ISSN: 0167-6806
Electronic ISSN: 1573-7217
DOI
https://doi.org/10.1007/s10549-019-05507-2

Other articles of this Issue 3/2020

Breast Cancer Research and Treatment 3/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine