Skip to main content
Top
Published in: Breast Cancer Research and Treatment 1/2018

01-05-2018 | Epidemiology

Impact of chemotherapy relative dose intensity on cause-specific and overall survival for stage I–III breast cancer: ER+/PR+, HER2- vs. triple-negative

Authors: Lu Zhang, Qingzhao Yu, Xiao-Cheng Wu, Mei-Chin Hsieh, Michelle Loch, Vivien W. Chen, Elizabeth Fontham, Tekeda Ferguson

Published in: Breast Cancer Research and Treatment | Issue 1/2018

Login to get access

Abstract

Purpose

To investigate the impact of chemotherapy relative dose intensity (RDI) on cause-specific and overall survival for stage I–III breast cancer: estrogen receptor or progesterone receptor positive, human epidermal-growth factor receptor negative (ER+/PR+ and HER2-) vs. triple-negative (TNBC) and to identify the optimal RDI cut-off points in these two patient populations.

Methods

Data were collected by the Louisiana Tumor Registry for two CDC-funded projects. Women diagnosed with stage I–III ER+/PR+, HER2- breast cancer, or TNBC in 2011 with complete information on RDI were included. Five RDI cut-off points (95, 90, 85, 80, and 75%) were evaluated on cause-specific and overall survival, adjusting for multiple demographic variables, tumor characteristics, comorbidity, use of granulocyte-growth factor/cytokines, chemotherapy delay, chemotherapy regimens, and use of hormone therapy. Cox proportional hazards models and Kaplan–Meier survival curves were estimated and adjusted by stabilized inverse probability treatment weighting (IPTW) of propensity score.

Results

Of 494 ER+/PR+, HER2- patients and 180 TNBC patients, RDI < 85% accounted for 30.4 and 27.8%, respectively. Among ER+/PR+, HER2- patients, 85% was the only cut-off point at which the low RDI was significantly associated with worse overall survival (HR = 1.93; 95% CI 1.09–3.40). Among TNBC patients, 75% was the cut-off point at which the high RDI was associated with better cause-specific (HR = 2.64; 95% CI 1.09, 6.38) and overall survival (HR = 2.39; 95% CI 1.04–5.51).

Conclusions

Higher RDI of chemotherapy is associated with better survival for ER+/PR+, HER2- patients and TNBC patients. To optimize survival benefits, RDI should be maintained ≥ 85% in ER+/PR+, HER2- patients, and ≥ 75% in TNBC patients.
Appendix
Available only for authorised users
Literature
2.
go back to reference Fisher B, Dignam J, Wolmark N, DeCillis A, Emir B, Wickerham DL, Bryant J, Dimitrov NV, Abramson N, Atkins JN, Shibata H, Deschenes L, Margolese RG (1997) Tamoxifen and chemotherapy for lymph node-negative, estrogen receptor-positive breast cancer. J Natl Cancer Inst 89(22):1673–1682CrossRefPubMed Fisher B, Dignam J, Wolmark N, DeCillis A, Emir B, Wickerham DL, Bryant J, Dimitrov NV, Abramson N, Atkins JN, Shibata H, Deschenes L, Margolese RG (1997) Tamoxifen and chemotherapy for lymph node-negative, estrogen receptor-positive breast cancer. J Natl Cancer Inst 89(22):1673–1682CrossRefPubMed
3.
go back to reference Mansour EG, Gray R, Shatila AH, Tormey DC, Cooper MR, Osborne CK, Falkson G (1998) Survival advantage of adjuvant chemotherapy in high-risk node-negative breast cancer: ten-year analysis–an intergroup study. J Clin Oncol 16(11):3486–3492CrossRefPubMed Mansour EG, Gray R, Shatila AH, Tormey DC, Cooper MR, Osborne CK, Falkson G (1998) Survival advantage of adjuvant chemotherapy in high-risk node-negative breast cancer: ten-year analysis–an intergroup study. J Clin Oncol 16(11):3486–3492CrossRefPubMed
4.
go back to reference Fisher B, Jeong JH, Dignam J, Anderson S, Mamounas E, Wickerham DL, Wolmark N (2001) Findings from recent National Surgical Adjuvant Breast and Bowel Project adjuvant studies in stage I breast cancer. J Natl Cancer Inst Monogr 30:62–66CrossRef Fisher B, Jeong JH, Dignam J, Anderson S, Mamounas E, Wickerham DL, Wolmark N (2001) Findings from recent National Surgical Adjuvant Breast and Bowel Project adjuvant studies in stage I breast cancer. J Natl Cancer Inst Monogr 30:62–66CrossRef
6.
go back to reference Budman DR, Berry DA, Cirrincione CT, Henderson IC, Wood WC, Weiss RB, Ferree CR, Muss HB, Green MR, Norton L, Frei E 3rd (1998) Dose and dose intensity as determinants of outcome in the adjuvant treatment of breast cancer. The Cancer and Leukemia Group B. J Natl Cancer Inst 90(16):1205–1211CrossRefPubMed Budman DR, Berry DA, Cirrincione CT, Henderson IC, Wood WC, Weiss RB, Ferree CR, Muss HB, Green MR, Norton L, Frei E 3rd (1998) Dose and dose intensity as determinants of outcome in the adjuvant treatment of breast cancer. The Cancer and Leukemia Group B. J Natl Cancer Inst 90(16):1205–1211CrossRefPubMed
7.
8.
go back to reference Lyman GH (2009) Impact of chemotherapy dose intensity on cancer patient outcomes. J Natl Compr Cancer Netw 7(1):99–108CrossRef Lyman GH (2009) Impact of chemotherapy dose intensity on cancer patient outcomes. J Natl Compr Cancer Netw 7(1):99–108CrossRef
16.
go back to reference Kuerer HM, Newman LA, Smith TL, Ames FC, Hunt KK, Dhingra K, Theriault RL, Singh G, Binkley SM, Sneige N, Buchholz TA, Ross MI, McNeese MD, Buzdar AU, Hortobagyi GN, Singletary SE (1999) Clinical course of breast cancer patients with complete pathologic primary tumor and axillary lymph node response to doxorubicin-based neoadjuvant chemotherapy. J Clin Oncol 17(2):460–469CrossRefPubMed Kuerer HM, Newman LA, Smith TL, Ames FC, Hunt KK, Dhingra K, Theriault RL, Singh G, Binkley SM, Sneige N, Buchholz TA, Ross MI, McNeese MD, Buzdar AU, Hortobagyi GN, Singletary SE (1999) Clinical course of breast cancer patients with complete pathologic primary tumor and axillary lymph node response to doxorubicin-based neoadjuvant chemotherapy. J Clin Oncol 17(2):460–469CrossRefPubMed
17.
go back to reference Cortazar P, Zhang L, Untch M, Mehta K, Costantino JP, Wolmark N, Bonnefoi H, Cameron D, Gianni L, Valagussa P, Swain SM, Prowell T, Loibl S, Wickerham DL, Bogaerts J, Baselga J, Perou C, Blumenthal G, Blohmer J, Mamounas EP, Bergh J, Semiglazov V, Justice R, Eidtmann H, Paik S, Piccart M, Sridhara R, Fasching PA, Slaets L, Tang S, Gerber B, Geyer CE, Pazdur R, Ditsch N, Rastogi P, Eiermann W, Minckwitz G (2014) Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet 384(9938):164–172. https://doi.org/10.1016/s0140-6736(13)62422-8 CrossRefPubMed Cortazar P, Zhang L, Untch M, Mehta K, Costantino JP, Wolmark N, Bonnefoi H, Cameron D, Gianni L, Valagussa P, Swain SM, Prowell T, Loibl S, Wickerham DL, Bogaerts J, Baselga J, Perou C, Blumenthal G, Blohmer J, Mamounas EP, Bergh J, Semiglazov V, Justice R, Eidtmann H, Paik S, Piccart M, Sridhara R, Fasching PA, Slaets L, Tang S, Gerber B, Geyer CE, Pazdur R, Ditsch N, Rastogi P, Eiermann W, Minckwitz G (2014) Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet 384(9938):164–172. https://​doi.​org/​10.​1016/​s0140-6736(13)62422-8 CrossRefPubMed
20.
go back to reference Chen VW, Eheman CR, Johnson CJ, Hernandez MN, Rousseau D, Styles TS, West DW, Hsieh M, Hakenewerth AM, Celaya MO, Rycroft RK, Wike JM, Pearson M, Brockhouse J, Mulvihill LG, Zhang KB (2014) Enhancing cancer registry data for comparative effectiveness research (CER) project: overview and methodology. J Regist Manag 41(3):103–112 Chen VW, Eheman CR, Johnson CJ, Hernandez MN, Rousseau D, Styles TS, West DW, Hsieh M, Hakenewerth AM, Celaya MO, Rycroft RK, Wike JM, Pearson M, Brockhouse J, Mulvihill LG, Zhang KB (2014) Enhancing cancer registry data for comparative effectiveness research (CER) project: overview and methodology. J Regist Manag 41(3):103–112
21.
go back to reference Hryniuk W, Levine MN (1986) Analysis of dose intensity for adjuvant chemotherapy trials in stage II breast cancer. J Clin Oncol 4(8):1162–1170CrossRefPubMed Hryniuk W, Levine MN (1986) Analysis of dose intensity for adjuvant chemotherapy trials in stage II breast cancer. J Clin Oncol 4(8):1162–1170CrossRefPubMed
22.
go back to reference Longo DL, Duffey PL, DeVita VT Jr, Wesley MN, Hubbard SM, Young RC (1991) The calculation of actual or received dose intensity: a comparison of published methods. J Clin Oncol 9(11):2042–2051CrossRefPubMed Longo DL, Duffey PL, DeVita VT Jr, Wesley MN, Hubbard SM, Young RC (1991) The calculation of actual or received dose intensity: a comparison of published methods. J Clin Oncol 9(11):2042–2051CrossRefPubMed
28.
go back to reference Quan H, Sundararajan V, Halfon P, Fong A, Burnand B, Luthi JC, Saunders LD, Beck CA, Feasby TE, Ghali WA (2005) Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Med Care 43(11):1130–1139CrossRefPubMed Quan H, Sundararajan V, Halfon P, Fong A, Burnand B, Luthi JC, Saunders LD, Beck CA, Feasby TE, Ghali WA (2005) Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Med Care 43(11):1130–1139CrossRefPubMed
32.
go back to reference Austin PC, Stuart EA (2015) The performance of inverse probability of treatment weighting and full matching on the propensity score in the presence of model misspecification when estimating the effect of treatment on survival outcomes. Stat Methods Med Res. https://doi.org/10.1177/0962280215584401 Austin PC, Stuart EA (2015) The performance of inverse probability of treatment weighting and full matching on the propensity score in the presence of model misspecification when estimating the effect of treatment on survival outcomes. Stat Methods Med Res. https://​doi.​org/​10.​1177/​0962280215584401​
34.
go back to reference Therneau TM, Grambsch PM (2000) Testing proportional hazards. In: Dietz K et al (eds) Modeling survival Data: Extending the cox model. Statistics for biology and Health. Springer, New YorkCrossRef Therneau TM, Grambsch PM (2000) Testing proportional hazards. In: Dietz K et al (eds) Modeling survival Data: Extending the cox model. Statistics for biology and Health. Springer, New YorkCrossRef
35.
36.
go back to reference Yuan JQ, Wang SM, Tang LL, Mao J, Wu YH, Hai J, Luo SY, Ou HY, Guo L, Liao LQ, Huang J, Li Y, Xiao Z, Zhang KJ, Luo N, Chen FY (2015) Relative dose intensity and therapy efficacy in different breast cancer molecular subtypes: a retrospective study of early stage breast cancer patients treated with neoadjuvant chemotherapy. Breast Cancer Res Treat 151(2):405–413. https://doi.org/10.1007/s10549-015-3418-z CrossRefPubMed Yuan JQ, Wang SM, Tang LL, Mao J, Wu YH, Hai J, Luo SY, Ou HY, Guo L, Liao LQ, Huang J, Li Y, Xiao Z, Zhang KJ, Luo N, Chen FY (2015) Relative dose intensity and therapy efficacy in different breast cancer molecular subtypes: a retrospective study of early stage breast cancer patients treated with neoadjuvant chemotherapy. Breast Cancer Res Treat 151(2):405–413. https://​doi.​org/​10.​1007/​s10549-015-3418-z CrossRefPubMed
37.
go back to reference Moon HG, Im SA, Han W, Oh DY, Han SW, Keam B, Park IA, Chang JM, Moon WK, Cho N, Noh DY (2012) Estrogen receptor status confers a distinct pattern of response to neoadjuvant chemotherapy: implications for optimal durations of therapy: distinct patterns of response according to ER expression. Breast Cancer Res Treat 134(3):1133–1140. https://doi.org/10.1007/s10549-012-2145-y CrossRefPubMed Moon HG, Im SA, Han W, Oh DY, Han SW, Keam B, Park IA, Chang JM, Moon WK, Cho N, Noh DY (2012) Estrogen receptor status confers a distinct pattern of response to neoadjuvant chemotherapy: implications for optimal durations of therapy: distinct patterns of response according to ER expression. Breast Cancer Res Treat 134(3):1133–1140. https://​doi.​org/​10.​1007/​s10549-012-2145-y CrossRefPubMed
39.
40.
go back to reference Lyman GH (2006) Chemotherapy dose intensity and quality cancer care. Oncology 20(14 Suppl 9):16–25 Lyman GH (2006) Chemotherapy dose intensity and quality cancer care. Oncology 20(14 Suppl 9):16–25
41.
go back to reference Denduluri N, Patt DA, Wang Y, Bhor M, Li X, Favret AM, Morrow PK, Barron RL, Asmar L, Saravanan S, Li Y, Garcia J, Lyman GH (2015) Dose delays, dose reductions, and relative dose intensity in patients with cancer who received adjuvant or neoadjuvant chemotherapy in community oncology practices. J Natl Compr Cancer Netw 13(11):1383–1393CrossRef Denduluri N, Patt DA, Wang Y, Bhor M, Li X, Favret AM, Morrow PK, Barron RL, Asmar L, Saravanan S, Li Y, Garcia J, Lyman GH (2015) Dose delays, dose reductions, and relative dose intensity in patients with cancer who received adjuvant or neoadjuvant chemotherapy in community oncology practices. J Natl Compr Cancer Netw 13(11):1383–1393CrossRef
Metadata
Title
Impact of chemotherapy relative dose intensity on cause-specific and overall survival for stage I–III breast cancer: ER+/PR+, HER2- vs. triple-negative
Authors
Lu Zhang
Qingzhao Yu
Xiao-Cheng Wu
Mei-Chin Hsieh
Michelle Loch
Vivien W. Chen
Elizabeth Fontham
Tekeda Ferguson
Publication date
01-05-2018
Publisher
Springer US
Published in
Breast Cancer Research and Treatment / Issue 1/2018
Print ISSN: 0167-6806
Electronic ISSN: 1573-7217
DOI
https://doi.org/10.1007/s10549-017-4646-1

Other articles of this Issue 1/2018

Breast Cancer Research and Treatment 1/2018 Go to the issue

Rebuttal Letter

Reply to K. Altundag

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine