Skip to main content
Top
Published in: Breast Cancer Research and Treatment 2/2014

01-11-2014 | Preclinical study

Small molecule 1′-acetoxychavicol acetate suppresses breast tumor metastasis by regulating the SHP-1/STAT3/MMPs signaling pathway

Authors: Jieqiong Wang, Li Zhang, Guoliang Chen, Jing Zhang, Zhenxi Li, Weiqiang Lu, Mingyao Liu, Xiufeng Pang

Published in: Breast Cancer Research and Treatment | Issue 2/2014

Login to get access

Abstract

Signal transducer and activator of transcription 3 (STAT3) is implicated breast cancer metastasis and represents a potential target for developing new anti-tumor metastasis drugs. The purpose of this study is to investigate whether the natural agent 1′-acetoxychavicol acetate (ACA), derived from the rhizomes and seeds of Languas galanga, could suppress breast cancer metastasis by targeting STAT3 signaling pathway. ACA was examined for its effects on breast cancer migration/invasion and metastasis using Transwell assays in vitro and breast cancer skeletal metastasis mouse model in vivo (n = 10 mice per group). The inhibitory effect of ACA on cellular STAT3 signaling pathway was investigated by series of biochemistry analysis. The chavicol preferentially suppressed cancer cell migration and invasion, and this activity was superior to its cytotoxic effects. ACA suppressed both constitutive and interleukin-6-inducible STAT3 activation and diminished the accumulation of STAT3 in the nucleus and its DNA-binding activity. More importantly, ACA treatment led to significant up-regulation of Src homology region 2 domain-containing phosphatase 1 (SHP-1), and the ACA-induced depression of cancer cell migration and STAT3 signaling could be apparently reversed by blockade of SHP-1. Matrix metalloproteinase (MMP)-2 and -9, gene products of STAT3 that regulate cell invasion, were specifically suppressed by ACA. In tumor metastasis model, ACA potently inhibited the human breast cancer cell-induced osteolysis, and had little apparent in vivo toxicity at the test concentrations. ACA is a novel drug candidate for the inhibition of tumor metastasis through interference with the SHP-1/STAT3/MMPs signaling pathway.
Literature
2.
4.
go back to reference Steeg PS (2006) Tumor metastasis: mechanistic insights and clinical challenges. Nat Med 12(8):895–904PubMedCrossRef Steeg PS (2006) Tumor metastasis: mechanistic insights and clinical challenges. Nat Med 12(8):895–904PubMedCrossRef
5.
go back to reference Wang TH, Niu GL, Kortylewski M, Burdelya L, Shain K, Zhang SM, Bhattacharya R, Gabrilovich D, Heller R, Coppola D, Dalton W, Jove R, Pardoll D, Yu H (2004) Regulation of the innate and adaptive immune responses by STAT-3 signaling in tumor cells. Nat Med 10(1):48–54PubMedCrossRef Wang TH, Niu GL, Kortylewski M, Burdelya L, Shain K, Zhang SM, Bhattacharya R, Gabrilovich D, Heller R, Coppola D, Dalton W, Jove R, Pardoll D, Yu H (2004) Regulation of the innate and adaptive immune responses by STAT-3 signaling in tumor cells. Nat Med 10(1):48–54PubMedCrossRef
6.
go back to reference Huang SY (2007) Regulation of metastases by signal transducer and activator of transcription 3 signaling pathway: clinical implications. Clin Cancer Res 13(5):1362–1366PubMedCrossRef Huang SY (2007) Regulation of metastases by signal transducer and activator of transcription 3 signaling pathway: clinical implications. Clin Cancer Res 13(5):1362–1366PubMedCrossRef
7.
go back to reference Devarajan E, Huang S (2009) STAT3 as a central regulator of tumor metastases. Curr Mol Med 9(5):626–633PubMedCrossRef Devarajan E, Huang S (2009) STAT3 as a central regulator of tumor metastases. Curr Mol Med 9(5):626–633PubMedCrossRef
8.
go back to reference Darnell JE Jr (2002) Transcription factors as targets for cancer therapy. Nat Rev Cancer 2(10):740–749PubMedCrossRef Darnell JE Jr (2002) Transcription factors as targets for cancer therapy. Nat Rev Cancer 2(10):740–749PubMedCrossRef
9.
go back to reference Knoops L, Hornakova T, Royer Y, Constantinescu SN, Renauld JC (2008) JAK kinases overexpression promotes in vitro cell transformation. Oncogene 27(11):1511–1519PubMedCrossRef Knoops L, Hornakova T, Royer Y, Constantinescu SN, Renauld JC (2008) JAK kinases overexpression promotes in vitro cell transformation. Oncogene 27(11):1511–1519PubMedCrossRef
10.
go back to reference Jiao H, Berrada K, Yang W, Tabrizi M, Platanias LC, Yi T (1996) Direct association with and dephosphorylation of Jak2 kinase by the SH2-domain-containing protein tyrosine phosphatase SHP-1. Mol Cell Biol 16(12):6985–6992PubMedCentralPubMed Jiao H, Berrada K, Yang W, Tabrizi M, Platanias LC, Yi T (1996) Direct association with and dephosphorylation of Jak2 kinase by the SH2-domain-containing protein tyrosine phosphatase SHP-1. Mol Cell Biol 16(12):6985–6992PubMedCentralPubMed
12.
go back to reference Xie TX, Wei D, Liu M, Gao AC, Ali-Osman F, Sawaya R, Huang S (2004) STAT3 activation regulates the expression of matrix metalloproteinase-2 and tumor invasion and metastasis. Oncogene 23(20):3550–3560PubMedCrossRef Xie TX, Wei D, Liu M, Gao AC, Ali-Osman F, Sawaya R, Huang S (2004) STAT3 activation regulates the expression of matrix metalloproteinase-2 and tumor invasion and metastasis. Oncogene 23(20):3550–3560PubMedCrossRef
13.
go back to reference Dechow TN, Pedranzini L, Leitch A, Leslie K, Gerald WL, Linkov I, Bromberg JF (2004) Requirement of matrix metalloproteinase-9 for the transformation of human mammary epithelial cells by STAT3-C. Proc Natl Acad Sci USA 101(29):10602–10607PubMedCentralPubMedCrossRef Dechow TN, Pedranzini L, Leitch A, Leslie K, Gerald WL, Linkov I, Bromberg JF (2004) Requirement of matrix metalloproteinase-9 for the transformation of human mammary epithelial cells by STAT3-C. Proc Natl Acad Sci USA 101(29):10602–10607PubMedCentralPubMedCrossRef
14.
go back to reference Siveen KS, Sikka S, Surana R, Dai X, Zhang J, Kumar AP, Tan BK, Sethi G, Bishayee A (2014) Targeting the STAT3 signaling pathway in cancer: role of synthetic and natural inhibitors. Biochim Biophys Acta 1845 2:136–154 Siveen KS, Sikka S, Surana R, Dai X, Zhang J, Kumar AP, Tan BK, Sethi G, Bishayee A (2014) Targeting the STAT3 signaling pathway in cancer: role of synthetic and natural inhibitors. Biochim Biophys Acta 1845 2:136–154
15.
go back to reference Pandey MK, Sung B, Aggarwal BB (2010) Betulinic acid suppresses STAT3 activation pathway through induction of protein tyrosine phosphatase SHP-1 in human multiple myeloma cells. Int J Cancer 127(2):282–292PubMedCentralPubMed Pandey MK, Sung B, Aggarwal BB (2010) Betulinic acid suppresses STAT3 activation pathway through induction of protein tyrosine phosphatase SHP-1 in human multiple myeloma cells. Int J Cancer 127(2):282–292PubMedCentralPubMed
16.
go back to reference Rajendran P, Ong TH, Chen L, Li F, Shanmugam MK, Vali S, Abbasi T, Kapoor S, Sharma A, Kumar AP, Hui KM, Sethi G (2011) Suppression of signal transducer and activator of transcription 3 activation by butein inhibits growth of human hepatocellular carcinoma in vivo. Clin Cancer Res 17(6):1425–1439PubMedCrossRef Rajendran P, Ong TH, Chen L, Li F, Shanmugam MK, Vali S, Abbasi T, Kapoor S, Sharma A, Kumar AP, Hui KM, Sethi G (2011) Suppression of signal transducer and activator of transcription 3 activation by butein inhibits growth of human hepatocellular carcinoma in vivo. Clin Cancer Res 17(6):1425–1439PubMedCrossRef
17.
go back to reference Jung JE, Kim HS, Lee CS, Park DH, Kim YN, Lee MJ, Lee JW, Park JW, Kim MS, Ye SK, Chung MH (2007) Caffeic acid and its synthetic derivative CADPE suppress tumor angiogenesis by blocking STAT3-mediated VEGF expression in human renal carcinoma cells. Carcinogenesis 28(8):1780–1787PubMedCrossRef Jung JE, Kim HS, Lee CS, Park DH, Kim YN, Lee MJ, Lee JW, Park JW, Kim MS, Ye SK, Chung MH (2007) Caffeic acid and its synthetic derivative CADPE suppress tumor angiogenesis by blocking STAT3-mediated VEGF expression in human renal carcinoma cells. Carcinogenesis 28(8):1780–1787PubMedCrossRef
18.
go back to reference Ohnishi M, Tanaka T, Makita H, Kawamori T, Mori H, Satoh K, Hara A, Murakami A, Ohigashi H, Koshimizu K (1996) Chemopreventive effect of a xanthine oxidase inhibitor, 1′-acetoxychavicol acetate, on rat oral carcinogenesis. Jpn J Cancer Res 87(4):349–356PubMedCrossRef Ohnishi M, Tanaka T, Makita H, Kawamori T, Mori H, Satoh K, Hara A, Murakami A, Ohigashi H, Koshimizu K (1996) Chemopreventive effect of a xanthine oxidase inhibitor, 1′-acetoxychavicol acetate, on rat oral carcinogenesis. Jpn J Cancer Res 87(4):349–356PubMedCrossRef
19.
go back to reference Murakami A, Ohura S, Nakamura Y, Koshimizu K, Ohigashi H (1996) 1′-Acetoxychavicol acetate, a superoxide anion generation inhibitor, potently inhibits tumor promotion by 12-O-tetradecanoylphorbol-13-acetate in ICR mouse skin. Oncology 53(5):386–391PubMedCrossRef Murakami A, Ohura S, Nakamura Y, Koshimizu K, Ohigashi H (1996) 1′-Acetoxychavicol acetate, a superoxide anion generation inhibitor, potently inhibits tumor promotion by 12-O-tetradecanoylphorbol-13-acetate in ICR mouse skin. Oncology 53(5):386–391PubMedCrossRef
20.
go back to reference Ohata T, Fukuda K, Murakami A, Ohigashi H, Sugimura T, Wakabayashi K (1998) Inhibition by 1′-acetoxychavicol acetate of lipopolysaccharide- and interferon-gamma-induced nitric oxide production through suppression of inducible nitric oxide synthase gene expression in RAW264 cells. Carcinogenesis 19(6):1007–1012PubMedCrossRef Ohata T, Fukuda K, Murakami A, Ohigashi H, Sugimura T, Wakabayashi K (1998) Inhibition by 1′-acetoxychavicol acetate of lipopolysaccharide- and interferon-gamma-induced nitric oxide production through suppression of inducible nitric oxide synthase gene expression in RAW264 cells. Carcinogenesis 19(6):1007–1012PubMedCrossRef
21.
go back to reference Tanaka T, Kawabata K, Kakumoto M, Makita H, Matsunaga K, Mori H, Satoh K, Hara A, Murakami A, Koshimizu K, Ohigashi H (1997) Chemoprevention of azoxymethane-induced rat colon carcinogenesis by a xanthine oxidase inhibitor, 1′-acetoxychavicol acetate. Jpn J Cancer Res 88(9):821–830PubMedCrossRef Tanaka T, Kawabata K, Kakumoto M, Makita H, Matsunaga K, Mori H, Satoh K, Hara A, Murakami A, Koshimizu K, Ohigashi H (1997) Chemoprevention of azoxymethane-induced rat colon carcinogenesis by a xanthine oxidase inhibitor, 1′-acetoxychavicol acetate. Jpn J Cancer Res 88(9):821–830PubMedCrossRef
22.
go back to reference Kawabata K, Tanaka T, Yamamoto T, Ushida J, Hara A, Murakami A, Koshimizu K, Ohigashi H, Stoner GD, Mori H (2000) Suppression of N-nitrosomethylbenzylamine-induced rat esophageal tumorigenesis by dietary feeding of 1′-acetoxychavicol acetate. Jpn J Cancer Res 91(2):148–155PubMedCrossRef Kawabata K, Tanaka T, Yamamoto T, Ushida J, Hara A, Murakami A, Koshimizu K, Ohigashi H, Stoner GD, Mori H (2000) Suppression of N-nitrosomethylbenzylamine-induced rat esophageal tumorigenesis by dietary feeding of 1′-acetoxychavicol acetate. Jpn J Cancer Res 91(2):148–155PubMedCrossRef
23.
go back to reference Kato R, Matsui-Yuasa I, Azuma H, Kojima-Yuasa A (2014) The synergistic effect of 1′-acetoxychavicol acetate and sodium butyrate on the death of human hepatocellular carcinoma cells. Chem Biol Interact 212C:1–10CrossRef Kato R, Matsui-Yuasa I, Azuma H, Kojima-Yuasa A (2014) The synergistic effect of 1′-acetoxychavicol acetate and sodium butyrate on the death of human hepatocellular carcinoma cells. Chem Biol Interact 212C:1–10CrossRef
24.
go back to reference Wang H, Shen L, Li X, Sun M (2013) MicroRNAs contribute to the anticancer effect of 1′-acetoxychavicol acetate in human head and neck squamous cell carcinoma cell line HN4. Biosci Biotechnol Biochem 77(12):2348–2355PubMedCrossRef Wang H, Shen L, Li X, Sun M (2013) MicroRNAs contribute to the anticancer effect of 1′-acetoxychavicol acetate in human head and neck squamous cell carcinoma cell line HN4. Biosci Biotechnol Biochem 77(12):2348–2355PubMedCrossRef
25.
go back to reference Williams M, Tietzel I, Quick QA (2013) 1′-Acetoxychavicol acetate promotes caspase 3-activated glioblastoma cell death by overcoming enhanced cytokine expression. Oncol Lett 5(6):1968–1972PubMedCentralPubMed Williams M, Tietzel I, Quick QA (2013) 1′-Acetoxychavicol acetate promotes caspase 3-activated glioblastoma cell death by overcoming enhanced cytokine expression. Oncol Lett 5(6):1968–1972PubMedCentralPubMed
26.
go back to reference Moffatt J, Kennedy DO, Kojima A, Hasuma T, Yano Y, Otani S, Murakami A, Koshimizu K, Ohigashi H, Matsui-Yuasa I (2002) Involvement of protein tyrosine phosphorylation and reduction of cellular sulfhydryl groups in cell death induced by 1′-acetoxychavicol acetate in Ehrlich ascites tumor cells. Chem Biol Interact 139(2):215–230PubMedCrossRef Moffatt J, Kennedy DO, Kojima A, Hasuma T, Yano Y, Otani S, Murakami A, Koshimizu K, Ohigashi H, Matsui-Yuasa I (2002) Involvement of protein tyrosine phosphorylation and reduction of cellular sulfhydryl groups in cell death induced by 1′-acetoxychavicol acetate in Ehrlich ascites tumor cells. Chem Biol Interact 139(2):215–230PubMedCrossRef
27.
go back to reference Ito K, Nakazato T, Xian MJ, Yamada T, Hozumi N, Murakami A, Ohigashi H, Ikeda Y, Kizaki M (2005) 1′-acetoxychavicol acetate is a novel nuclear factor kappa B inhibitor with significant activity against multiple myeloma in vitro and in vivo. Cancer Res 65(10):4417–4424PubMedCrossRef Ito K, Nakazato T, Xian MJ, Yamada T, Hozumi N, Murakami A, Ohigashi H, Ikeda Y, Kizaki M (2005) 1′-acetoxychavicol acetate is a novel nuclear factor kappa B inhibitor with significant activity against multiple myeloma in vitro and in vivo. Cancer Res 65(10):4417–4424PubMedCrossRef
28.
go back to reference Ichikawa H, Takada Y, Murakami A, Aggarwal BB (2005) Identification of a novel blocker of I kappa B alpha kinase that enhances cellular apoptosis and inhibits cellular invasion through suppression of NF-kappa B-regulated gene products. J Immunol 174(11):7383–7392PubMedCrossRef Ichikawa H, Takada Y, Murakami A, Aggarwal BB (2005) Identification of a novel blocker of I kappa B alpha kinase that enhances cellular apoptosis and inhibits cellular invasion through suppression of NF-kappa B-regulated gene products. J Immunol 174(11):7383–7392PubMedCrossRef
29.
go back to reference Ito K, Nakazato T, Murakami A, Ohigashi H, Ikeda Y, Kizaki M (2005) 1′-Acetoxychavicol acetate induces apoptosis of myeloma cells via induction of TRAIL. Biochem Biophys Res Commun 338(4):1702–1710PubMedCrossRef Ito K, Nakazato T, Murakami A, Ohigashi H, Ikeda Y, Kizaki M (2005) 1′-Acetoxychavicol acetate induces apoptosis of myeloma cells via induction of TRAIL. Biochem Biophys Res Commun 338(4):1702–1710PubMedCrossRef
30.
go back to reference Pang X, Zhang L, Lai L, Chen J, Wu Y, Yi Z, Zhang J, Qu W, Aggarwal BB, Liu M (2011) 1′-Acetoxychavicol acetate suppresses angiogenesis-mediated human prostate tumor growth by targeting VEGF-mediated Src-FAK-Rho GTPase-signaling pathway. Carcinogenesis 32(6):904–912PubMedCentralPubMedCrossRef Pang X, Zhang L, Lai L, Chen J, Wu Y, Yi Z, Zhang J, Qu W, Aggarwal BB, Liu M (2011) 1′-Acetoxychavicol acetate suppresses angiogenesis-mediated human prostate tumor growth by targeting VEGF-mediated Src-FAK-Rho GTPase-signaling pathway. Carcinogenesis 32(6):904–912PubMedCentralPubMedCrossRef
31.
go back to reference Pang X, Yi Z, Zhang X, Sung B, Qu W, Lian X, Aggarwal BB, Liu M (2009) Acetyl-11-keto-beta-boswellic acid inhibits prostate tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis. Cancer Res 69(14):5893–5900PubMedCentralPubMedCrossRef Pang X, Yi Z, Zhang X, Sung B, Qu W, Lian X, Aggarwal BB, Liu M (2009) Acetyl-11-keto-beta-boswellic acid inhibits prostate tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis. Cancer Res 69(14):5893–5900PubMedCentralPubMedCrossRef
32.
go back to reference Li C, Yang Z, Zhai C, Qiu W, Li D, Yi Z, Wang L, Tang J, Qian M, Luo J, Liu M (2010) Maslinic acid potentiates the anti-tumor activity of tumor necrosis factor alpha by inhibiting NF-kappa B signaling pathway. Mol Cancer 9:73–85PubMedCentralPubMedCrossRef Li C, Yang Z, Zhai C, Qiu W, Li D, Yi Z, Wang L, Tang J, Qian M, Luo J, Liu M (2010) Maslinic acid potentiates the anti-tumor activity of tumor necrosis factor alpha by inhibiting NF-kappa B signaling pathway. Mol Cancer 9:73–85PubMedCentralPubMedCrossRef
33.
go back to reference Chen J, Wang J, Lin L, He L, Wu Y, Zhang L, Yi Z, Chen Y, Pang X, Liu M (2012) Inhibition of STAT3 signaling pathway by nitidine chloride suppressed the angiogenesis and growth of human gastric cancer. Mol Cancer Ther 11(2):277–287PubMedCrossRef Chen J, Wang J, Lin L, He L, Wu Y, Zhang L, Yi Z, Chen Y, Pang X, Liu M (2012) Inhibition of STAT3 signaling pathway by nitidine chloride suppressed the angiogenesis and growth of human gastric cancer. Mol Cancer Ther 11(2):277–287PubMedCrossRef
34.
go back to reference Franke-Fayard B, Waters AP, Janse CJ (2006) Real-time in vivo imaging of transgenic bioluminescent blood stages of rodent malaria parasites in mice. Nat Protoc 1(1):476–485PubMedCrossRef Franke-Fayard B, Waters AP, Janse CJ (2006) Real-time in vivo imaging of transgenic bioluminescent blood stages of rodent malaria parasites in mice. Nat Protoc 1(1):476–485PubMedCrossRef
35.
36.
go back to reference Schreiner SJ, Schiavone AP, Smithgall TE (2002) Activation of STAT3 by the Src family kinase Hck requires a functional SH3 domain. J Biol Chem 277(47):45680–45687PubMedCrossRef Schreiner SJ, Schiavone AP, Smithgall TE (2002) Activation of STAT3 by the Src family kinase Hck requires a functional SH3 domain. J Biol Chem 277(47):45680–45687PubMedCrossRef
37.
go back to reference Hirano T, Ishihara K, Hibi M (2000) Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene 19(21):2548–2556PubMedCrossRef Hirano T, Ishihara K, Hibi M (2000) Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene 19(21):2548–2556PubMedCrossRef
38.
go back to reference Seidel HM, Milocco LH, Lamb P, Darnell JE Jr, Stein RB, Rosen J (1995) Spacing of palindromic half sites as a determinant of selective signal transducers and activators of transcription (STAT) DNA binding and transcriptional activity. Proc Natl Acad Sci USA 92(7):3041–3045PubMedCentralPubMedCrossRef Seidel HM, Milocco LH, Lamb P, Darnell JE Jr, Stein RB, Rosen J (1995) Spacing of palindromic half sites as a determinant of selective signal transducers and activators of transcription (STAT) DNA binding and transcriptional activity. Proc Natl Acad Sci USA 92(7):3041–3045PubMedCentralPubMedCrossRef
39.
go back to reference Han Y, Amin HM, Franko B, Frantz C, Shi X, Lai R (2006) Loss of SHP1 enhances JAK3/STAT3 signaling and decreases proteosome degradation of JAK3 and NPM-ALK in ALK + anaplastic large-cell lymphoma. Blood 108(8):2796–2803PubMedCrossRef Han Y, Amin HM, Franko B, Frantz C, Shi X, Lai R (2006) Loss of SHP1 enhances JAK3/STAT3 signaling and decreases proteosome degradation of JAK3 and NPM-ALK in ALK + anaplastic large-cell lymphoma. Blood 108(8):2796–2803PubMedCrossRef
40.
go back to reference Sandur SK, Pandey MK, Sung B, Aggarwal BB (2010) 5-hydroxy-2-methyl-1,4-naphthoquinone, a vitamin K3 analogue, suppresses STAT3 activation pathway through induction of protein tyrosine phosphatase, SHP-1: potential role in chemosensitization. Mol Cancer Res 8(1):107–118PubMedCentralPubMedCrossRef Sandur SK, Pandey MK, Sung B, Aggarwal BB (2010) 5-hydroxy-2-methyl-1,4-naphthoquinone, a vitamin K3 analogue, suppresses STAT3 activation pathway through induction of protein tyrosine phosphatase, SHP-1: potential role in chemosensitization. Mol Cancer Res 8(1):107–118PubMedCentralPubMedCrossRef
41.
go back to reference Wu C, Sun M, Liu L, Zhou GW (2003) The function of the protein tyrosine phosphatase SHP-1 in cancer. Gene 306:1–12PubMedCrossRef Wu C, Sun M, Liu L, Zhou GW (2003) The function of the protein tyrosine phosphatase SHP-1 in cancer. Gene 306:1–12PubMedCrossRef
42.
go back to reference Zhu J, Jia X, Xiao G, Kang Y, Partridge NC, Qin L (2007) EGF-like ligands stimulate osteoclastogenesis by regulating expression of osteoclast regulatory factors by osteoblasts: implications for osteolytic bone metastases. J Biol Chem 282(37):26656–26664PubMedCrossRef Zhu J, Jia X, Xiao G, Kang Y, Partridge NC, Qin L (2007) EGF-like ligands stimulate osteoclastogenesis by regulating expression of osteoclast regulatory factors by osteoblasts: implications for osteolytic bone metastases. J Biol Chem 282(37):26656–26664PubMedCrossRef
43.
go back to reference Ostman A, Hellberg C, Bohmer FD (2006) Protein-tyrosine phosphatases and cancer. Nat Rev Cancer 6(4):307–320PubMedCrossRef Ostman A, Hellberg C, Bohmer FD (2006) Protein-tyrosine phosphatases and cancer. Nat Rev Cancer 6(4):307–320PubMedCrossRef
44.
go back to reference Bhutani M, Pathak AK, Nair AS, Kunnumakkara AB, Guha S, Sethi G, Aggarwal BB (2007) Capsaicin is a novel blocker of constitutive and interleukin-6-inducible STAT3 activation. Clin Cancer Res 13(10):3024–3032PubMedCrossRef Bhutani M, Pathak AK, Nair AS, Kunnumakkara AB, Guha S, Sethi G, Aggarwal BB (2007) Capsaicin is a novel blocker of constitutive and interleukin-6-inducible STAT3 activation. Clin Cancer Res 13(10):3024–3032PubMedCrossRef
45.
go back to reference Bendell JC, Hong DS, Burris HA 3rd, Naing A, Jones SF, Falchook G, Bricmont P, Elekes A, Rock EP, Kurzrock R (2014) Phase 1, open-label, dose-escalation, and pharmacokinetic study of STAT3 inhibitor OPB-31121 in subjects with advanced solid tumors. Cancer Chemother Pharmacol 74(1):125–130PubMedCrossRef Bendell JC, Hong DS, Burris HA 3rd, Naing A, Jones SF, Falchook G, Bricmont P, Elekes A, Rock EP, Kurzrock R (2014) Phase 1, open-label, dose-escalation, and pharmacokinetic study of STAT3 inhibitor OPB-31121 in subjects with advanced solid tumors. Cancer Chemother Pharmacol 74(1):125–130PubMedCrossRef
46.
go back to reference Gialeli C, Theocharis AD, Karamanos NK (2011) Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J 278(1):16–27PubMedCrossRef Gialeli C, Theocharis AD, Karamanos NK (2011) Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J 278(1):16–27PubMedCrossRef
47.
48.
go back to reference Lu X, Wang Q, Hu G, Van Poznak C, Fleisher M, Reiss M, Massague J, Kang Y (2009) ADAMTS1 and MMP1 proteolytically engage EGF-like ligands in an osteolytic signaling cascade for bone metastasis. Genes Dev 23(16):1882–1894PubMedCentralPubMedCrossRef Lu X, Wang Q, Hu G, Van Poznak C, Fleisher M, Reiss M, Massague J, Kang Y (2009) ADAMTS1 and MMP1 proteolytically engage EGF-like ligands in an osteolytic signaling cascade for bone metastasis. Genes Dev 23(16):1882–1894PubMedCentralPubMedCrossRef
49.
go back to reference Orita S, Hirose M, Takahashi S, Imaida K, Ito N, Shudo K, Ohigashi H, Murakami A, Shirai T (2004) Modifying effects of 1′-acetoxychavicol acetate (ACA) and the novel synthetic retinoids Re-80, Am-580 and Am-55P in a two-stage carcinogenesis model in female rats. Toxicol Pathol 32(2):250–257PubMedCrossRef Orita S, Hirose M, Takahashi S, Imaida K, Ito N, Shudo K, Ohigashi H, Murakami A, Shirai T (2004) Modifying effects of 1′-acetoxychavicol acetate (ACA) and the novel synthetic retinoids Re-80, Am-580 and Am-55P in a two-stage carcinogenesis model in female rats. Toxicol Pathol 32(2):250–257PubMedCrossRef
50.
go back to reference Park BK, Zhang H, Zeng Q, Dai J, Keller ET, Giordano T, Gu K, Shah V, Pei L, Zarbo RJ, McCauley L, Shi S, Chen S, Wang CY (2007) NF-kappa B in breast cancer cells promotes osteolytic bone metastasis by inducing osteoclastogenesis via GM-CSF. Nat Med 13(1):62–69PubMedCrossRef Park BK, Zhang H, Zeng Q, Dai J, Keller ET, Giordano T, Gu K, Shah V, Pei L, Zarbo RJ, McCauley L, Shi S, Chen S, Wang CY (2007) NF-kappa B in breast cancer cells promotes osteolytic bone metastasis by inducing osteoclastogenesis via GM-CSF. Nat Med 13(1):62–69PubMedCrossRef
Metadata
Title
Small molecule 1′-acetoxychavicol acetate suppresses breast tumor metastasis by regulating the SHP-1/STAT3/MMPs signaling pathway
Authors
Jieqiong Wang
Li Zhang
Guoliang Chen
Jing Zhang
Zhenxi Li
Weiqiang Lu
Mingyao Liu
Xiufeng Pang
Publication date
01-11-2014
Publisher
Springer US
Published in
Breast Cancer Research and Treatment / Issue 2/2014
Print ISSN: 0167-6806
Electronic ISSN: 1573-7217
DOI
https://doi.org/10.1007/s10549-014-3165-6

Other articles of this Issue 2/2014

Breast Cancer Research and Treatment 2/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine