Skip to main content
Top
Published in: Molecular Cancer 1/2010

Open Access 01-12-2010 | Research

Maslinic acid potentiates the anti-tumor activity of tumor necrosis factor α by inhibiting NF-κB signaling pathway

Authors: Chenghai Li, Zhengfeng Yang, Chunyan Zhai, Wenwei Qiu, Dali Li, Zhengfang Yi, Lei Wang, Jie Tang, Min Qian, Jian Luo, Mingyao Liu

Published in: Molecular Cancer | Issue 1/2010

Login to get access

Abstract

Background

Tumor necrosis factor alpha (TNFα) has been used to treat certain tumors in clinic trials. However, the curative effect of TNFα has been undermined by the induced-NF-κB activation in many types of tumor. Maslinic acid (MA), a pharmacological safe natural product, has been known for its important effects as anti-oxidant, anti-inflammatory, and anti-viral activities. The aim of this study was to determine whether MA potentiates the anti-tumor activity of TNFα though the regulation of NF-κB activation.

Results

In this study, we demonstrate that MA significantly enhanced TNFα-induced inhibition of pancreatic cancer cell proliferation, invasion, and potentiated TNFα-induced cell apoptosis by suppressing TNFα-induced NF-κB activation in a dose- and time-dependent manner. Addition of MA inhibited TNFα-induced IκBα degradation, p65 phosphorylation, and nuclear translocation. Furthermore, MA decreased the expression levels of NF-κB-regulated genes, including genes involved in tumor cell proliferation (Cyclin D1, COX-2 and c-Myc), apoptosis (Survivin, Bcl-2, Bcl-xl, XIAP, IAP-1), invasion (MMP-9 and ICAM-1), and angiogenesis (VEGF). In athymic nu/nu mouse model, we further demonstrated that MA significantly suppressed pancreatic tumor growth, induced tumor apoptosis, and inhibited NF-κB-regulated anti-apoptotic gene expression, such as Survivin and Bcl-xl.

Conclusions

Our data demonstrate that MA can potentiate the anti-tumor activities of TNFα and inhibit pancreatic tumor growth and invasion by activating caspase-dependent apoptotic pathway and by suppressing NF-κB activation and its downstream gene expression. Therefore, MA together with TNFα could be new promising agents in the treatment of pancreatic cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ: Cancer statistics, 2008. CA Cancer J Clin. 2008, 58: 71-96. 10.3322/CA.2007.0010CrossRefPubMed Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ: Cancer statistics, 2008. CA Cancer J Clin. 2008, 58: 71-96. 10.3322/CA.2007.0010CrossRefPubMed
2.
go back to reference Koliopanos A, Avgerinos C, Paraskeva C, Touloumis Z, Kelgiorgi D, Dervenis C: Molecular aspects of carcinogenesis in pancreatic cancer. Hepatobiliary Pancreat Dis Int. 2008, 7: 345-356.PubMed Koliopanos A, Avgerinos C, Paraskeva C, Touloumis Z, Kelgiorgi D, Dervenis C: Molecular aspects of carcinogenesis in pancreatic cancer. Hepatobiliary Pancreat Dis Int. 2008, 7: 345-356.PubMed
3.
go back to reference Borja-Cacho D, Jensen EH, Saluja AK, Buchsbaum DJ, Vickers SM: Molecular targeted therapies for pancreatic cancer. Am J Surg. 2008, 196: 430-441. 10.1016/j.amjsurg.2008.04.009PubMedCentralCrossRefPubMed Borja-Cacho D, Jensen EH, Saluja AK, Buchsbaum DJ, Vickers SM: Molecular targeted therapies for pancreatic cancer. Am J Surg. 2008, 196: 430-441. 10.1016/j.amjsurg.2008.04.009PubMedCentralCrossRefPubMed
4.
go back to reference Feldmann G, Maitra A: Molecular genetics of pancreatic ductal adenocarcinomas and recent implications for translational efforts. J Mol Diagn. 2008, 10: 111-122. 10.2353/jmoldx.2008.070115PubMedCentralCrossRefPubMed Feldmann G, Maitra A: Molecular genetics of pancreatic ductal adenocarcinomas and recent implications for translational efforts. J Mol Diagn. 2008, 10: 111-122. 10.2353/jmoldx.2008.070115PubMedCentralCrossRefPubMed
5.
go back to reference Hezel AF, Kimmelman AC, Stanger BZ, Bardeesy N, Depinho RA: Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev. 2006, 20: 1218-1249. 10.1101/gad.1415606CrossRefPubMed Hezel AF, Kimmelman AC, Stanger BZ, Bardeesy N, Depinho RA: Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev. 2006, 20: 1218-1249. 10.1101/gad.1415606CrossRefPubMed
6.
go back to reference Diamantidis M, Tsapournas G, Kountouras J, Zavos C: New aspects of regulatory signaling pathways and novel therapies in pancreatic cancer. Curr Mol Med. 2008, 8: 12-37. 10.2174/156652408783565586CrossRefPubMed Diamantidis M, Tsapournas G, Kountouras J, Zavos C: New aspects of regulatory signaling pathways and novel therapies in pancreatic cancer. Curr Mol Med. 2008, 8: 12-37. 10.2174/156652408783565586CrossRefPubMed
7.
8.
go back to reference Egberts JH, Cloosters V, Noack A, Schniewind B, Thon L, Klose S, Kettler B, von Forstner C, Kneitz C, Tepel J: Anti-tumor necrosis factor therapy inhibits pancreatic tumor growth and metastasis. Cancer Res. 2008, 68: 1443-1450. 10.1158/0008-5472.CAN-07-5704CrossRefPubMed Egberts JH, Cloosters V, Noack A, Schniewind B, Thon L, Klose S, Kettler B, von Forstner C, Kneitz C, Tepel J: Anti-tumor necrosis factor therapy inhibits pancreatic tumor growth and metastasis. Cancer Res. 2008, 68: 1443-1450. 10.1158/0008-5472.CAN-07-5704CrossRefPubMed
9.
go back to reference Cohenuram M, Saif MW: Epidermal growth factor receptor inhibition strategies in pancreatic cancer: past, present and the future. JOP. 2007, 8: 4-15.PubMed Cohenuram M, Saif MW: Epidermal growth factor receptor inhibition strategies in pancreatic cancer: past, present and the future. JOP. 2007, 8: 4-15.PubMed
10.
go back to reference Pilati P, Rossi CR, Mocellin S: Strategies to enhance the anticancer potential of TNF. Front Biosci. 2008, 13: 3181-3193. 10.2741/2919CrossRefPubMed Pilati P, Rossi CR, Mocellin S: Strategies to enhance the anticancer potential of TNF. Front Biosci. 2008, 13: 3181-3193. 10.2741/2919CrossRefPubMed
11.
go back to reference Lejeune FJ, Ruegg C, Lienard D: Clinical applications of TNF-alpha in cancer. Curr Opin Immunol. 1998, 10: 573-580. 10.1016/S0952-7915(98)80226-4CrossRefPubMed Lejeune FJ, Ruegg C, Lienard D: Clinical applications of TNF-alpha in cancer. Curr Opin Immunol. 1998, 10: 573-580. 10.1016/S0952-7915(98)80226-4CrossRefPubMed
12.
go back to reference Bazzoni F, Beutler B: The tumor necrosis factor ligand and receptor families. N Engl J Med. 1996, 334: 1717-1725. 10.1056/NEJM199606273342607CrossRefPubMed Bazzoni F, Beutler B: The tumor necrosis factor ligand and receptor families. N Engl J Med. 1996, 334: 1717-1725. 10.1056/NEJM199606273342607CrossRefPubMed
13.
go back to reference Mocellin S, Pilati P, Nitti D: Towards the development of tumor necrosis factor (TNF) sensitizers: making TNF work against cancer. Curr Pharm Des. 2007, 13: 537-551. 10.2174/138161207780162926CrossRefPubMed Mocellin S, Pilati P, Nitti D: Towards the development of tumor necrosis factor (TNF) sensitizers: making TNF work against cancer. Curr Pharm Des. 2007, 13: 537-551. 10.2174/138161207780162926CrossRefPubMed
14.
go back to reference Mocellin S, Rossi CR, Pilati P, Nitti D: Tumor necrosis factor, cancer and anticancer therapy. Cytokine Growth Factor Rev. 2005, 16: 35-53. 10.1016/j.cytogfr.2004.11.001CrossRefPubMed Mocellin S, Rossi CR, Pilati P, Nitti D: Tumor necrosis factor, cancer and anticancer therapy. Cytokine Growth Factor Rev. 2005, 16: 35-53. 10.1016/j.cytogfr.2004.11.001CrossRefPubMed
15.
go back to reference Aggarwal BB: Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol. 2003, 3: 745-756. 10.1038/nri1184CrossRefPubMed Aggarwal BB: Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol. 2003, 3: 745-756. 10.1038/nri1184CrossRefPubMed
16.
go back to reference Sung B, Pandey MK, Ahn KS, Yi T, Chaturvedi MM, Liu M, Aggarwal BB: Anacardic acid (6-nonadecyl salicylic acid), an inhibitor of histone acetyltransferase, suppresses expression of nuclear factor-kappaB-regulated gene products involved in cell survival, proliferation, invasion, and inflammation through inhibition of the inhibitory subunit of nuclear factor-kappaBalpha kinase, leading to potentiation of apoptosis. Blood. 2008, 111: 4880-4891. 10.1182/blood-2007-10-117994PubMedCentralCrossRefPubMed Sung B, Pandey MK, Ahn KS, Yi T, Chaturvedi MM, Liu M, Aggarwal BB: Anacardic acid (6-nonadecyl salicylic acid), an inhibitor of histone acetyltransferase, suppresses expression of nuclear factor-kappaB-regulated gene products involved in cell survival, proliferation, invasion, and inflammation through inhibition of the inhibitory subunit of nuclear factor-kappaBalpha kinase, leading to potentiation of apoptosis. Blood. 2008, 111: 4880-4891. 10.1182/blood-2007-10-117994PubMedCentralCrossRefPubMed
17.
go back to reference Aladedunye FA, Okorie DA, Ighodaro OM: Anti-inflammatory and antioxidant activities and constituents of Platostoma africanum P. Beauv. Nat Prod Res. 2008, 22: 1067-1073. 10.1080/14786410802264004CrossRefPubMed Aladedunye FA, Okorie DA, Ighodaro OM: Anti-inflammatory and antioxidant activities and constituents of Platostoma africanum P. Beauv. Nat Prod Res. 2008, 22: 1067-1073. 10.1080/14786410802264004CrossRefPubMed
18.
go back to reference Scalon Cunha LC, Andrade e Silva ML, Cardoso Furtado NA, Vinholis AH, Gomes Martins CH, da Silva Filho AA, Cunha WR: Antibacterial activity of triterpene acids and semi-synthetic derivatives against oral pathogens. Z Naturforsch [C]. 2007, 62: 668-672. Scalon Cunha LC, Andrade e Silva ML, Cardoso Furtado NA, Vinholis AH, Gomes Martins CH, da Silva Filho AA, Cunha WR: Antibacterial activity of triterpene acids and semi-synthetic derivatives against oral pathogens. Z Naturforsch [C]. 2007, 62: 668-672.
19.
go back to reference Sultana N, Lee NH: Antielastase and free radical scavenging activities of compounds from the stems of Cornus kousa. Phytother Res. 2007, 21: 1171-1176. 10.1002/ptr.2230CrossRefPubMed Sultana N, Lee NH: Antielastase and free radical scavenging activities of compounds from the stems of Cornus kousa. Phytother Res. 2007, 21: 1171-1176. 10.1002/ptr.2230CrossRefPubMed
20.
go back to reference Liu J, Sun H, Duan W, Mu D, Zhang L: Maslinic acid reduces blood glucose in KK-Ay mice. Biol Pharm Bull. 2007, 30: 2075-2078. 10.1248/bpb.30.2075CrossRefPubMed Liu J, Sun H, Duan W, Mu D, Zhang L: Maslinic acid reduces blood glucose in KK-Ay mice. Biol Pharm Bull. 2007, 30: 2075-2078. 10.1248/bpb.30.2075CrossRefPubMed
21.
go back to reference Fernandez-Navarro M, Peragon J, Amores V, De La Higuera M, Lupianez JA: Maslinic acid added to the diet increases growth and protein-turnover rates in the white muscle of rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol C Toxicol Pharmacol. 2008, 147: 158-167. 10.1016/j.cbpc.2007.09.010CrossRefPubMed Fernandez-Navarro M, Peragon J, Amores V, De La Higuera M, Lupianez JA: Maslinic acid added to the diet increases growth and protein-turnover rates in the white muscle of rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol C Toxicol Pharmacol. 2008, 147: 158-167. 10.1016/j.cbpc.2007.09.010CrossRefPubMed
22.
go back to reference Reyes-Zurita FJ, Rufino-Palomares EE, Lupianez JA, Cascante M: Maslinic acid, a natural triterpene from Olea europaea L., induces apoptosis in HT29 human colon-cancer cells via the mitochondrial apoptotic pathway. Cancer Lett. 2009, 273: 44-54. 10.1016/j.canlet.2008.07.033CrossRefPubMed Reyes-Zurita FJ, Rufino-Palomares EE, Lupianez JA, Cascante M: Maslinic acid, a natural triterpene from Olea europaea L., induces apoptosis in HT29 human colon-cancer cells via the mitochondrial apoptotic pathway. Cancer Lett. 2009, 273: 44-54. 10.1016/j.canlet.2008.07.033CrossRefPubMed
23.
go back to reference Martin R, Carvalho J, Ibeas E, Hernandez M, Ruiz-Gutierrez V, Nieto ML: Acidic triterpenes compromise growth and survival of astrocytoma cell lines by regulating reactive oxygen species accumulation. Cancer Res. 2007, 67: 3741-3751. 10.1158/0008-5472.CAN-06-4759CrossRefPubMed Martin R, Carvalho J, Ibeas E, Hernandez M, Ruiz-Gutierrez V, Nieto ML: Acidic triterpenes compromise growth and survival of astrocytoma cell lines by regulating reactive oxygen species accumulation. Cancer Res. 2007, 67: 3741-3751. 10.1158/0008-5472.CAN-06-4759CrossRefPubMed
24.
go back to reference Karin M: Nuclear factor-kappaB in cancer development and progression. Nature. 2006, 441: 431-436. 10.1038/nature04870CrossRefPubMed Karin M: Nuclear factor-kappaB in cancer development and progression. Nature. 2006, 441: 431-436. 10.1038/nature04870CrossRefPubMed
25.
go back to reference Sclabas GM, Uwagawa T, Schmidt C, Hess KR, Evans DB, Abbruzzese JL, Chiao PJ: Nuclear factor kappa B activation is a potential target for preventing pancreatic carcinoma by aspirin. Cancer. 2005, 103: 2485-2490. 10.1002/cncr.21075CrossRefPubMed Sclabas GM, Uwagawa T, Schmidt C, Hess KR, Evans DB, Abbruzzese JL, Chiao PJ: Nuclear factor kappa B activation is a potential target for preventing pancreatic carcinoma by aspirin. Cancer. 2005, 103: 2485-2490. 10.1002/cncr.21075CrossRefPubMed
26.
go back to reference Zheng L, Bidere N, Staudt D, Cubre A, Orenstein J, Chan FK, Lenardo M: Competitive control of independent programs of tumor necrosis factor receptor-induced cell death by TRADD and RIP1. Mol Cell Biol. 2006, 26: 3505-3513. 10.1128/MCB.26.9.3505-3513.2006PubMedCentralCrossRefPubMed Zheng L, Bidere N, Staudt D, Cubre A, Orenstein J, Chan FK, Lenardo M: Competitive control of independent programs of tumor necrosis factor receptor-induced cell death by TRADD and RIP1. Mol Cell Biol. 2006, 26: 3505-3513. 10.1128/MCB.26.9.3505-3513.2006PubMedCentralCrossRefPubMed
27.
go back to reference Vince JE, Wong WW, Khan N, Feltham R, Chau D, Ahmed AU, Benetatos CA, Chunduru SK, Condon SM, McKinlay M: IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis. Cell. 2007, 131: 682-693. 10.1016/j.cell.2007.10.037CrossRefPubMed Vince JE, Wong WW, Khan N, Feltham R, Chau D, Ahmed AU, Benetatos CA, Chunduru SK, Condon SM, McKinlay M: IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis. Cell. 2007, 131: 682-693. 10.1016/j.cell.2007.10.037CrossRefPubMed
28.
go back to reference van Rossen ME, Hofland LJ, Tol van den MP, van Koetsveld PM, Jeekel J, Marquet RL, van Eijck CH: Effect of inflammatory cytokines and growth factors on tumour cell adhesion to the peritoneum. J Pathol. 2001, 193: 530-537. 10.1002/1096-9896(2000)9999:9999<::AID-PATH805>3.0.CO;2-OCrossRefPubMed van Rossen ME, Hofland LJ, Tol van den MP, van Koetsveld PM, Jeekel J, Marquet RL, van Eijck CH: Effect of inflammatory cytokines and growth factors on tumour cell adhesion to the peritoneum. J Pathol. 2001, 193: 530-537. 10.1002/1096-9896(2000)9999:9999<::AID-PATH805>3.0.CO;2-OCrossRefPubMed
29.
go back to reference Zhang Y, Gavriil M, Lucas J, Mandiyan S, Follettie M, Diesl V, Sum FW, Powell D, Haney S, Abraham R, Arndt K: IkappaBalpha kinase inhibitor IKI-1 conferred tumor necrosis factor alpha sensitivity to pancreatic cancer cells and a xenograft tumor model. Cancer Res. 2008, 68: 9519-9524. 10.1158/0008-5472.CAN-08-1549CrossRefPubMed Zhang Y, Gavriil M, Lucas J, Mandiyan S, Follettie M, Diesl V, Sum FW, Powell D, Haney S, Abraham R, Arndt K: IkappaBalpha kinase inhibitor IKI-1 conferred tumor necrosis factor alpha sensitivity to pancreatic cancer cells and a xenograft tumor model. Cancer Res. 2008, 68: 9519-9524. 10.1158/0008-5472.CAN-08-1549CrossRefPubMed
30.
go back to reference Yi T, Yi Z, Cho SG, Luo J, Pandey MK, Aggarwal BB, Liu M: Gambogic acid inhibits angiogenesis and prostate tumor growth by suppressing vascular endothelial growth factor receptor 2 signaling. Cancer Res. 2008, 68: 1843-1850. 10.1158/0008-5472.CAN-07-5944PubMedCentralCrossRefPubMed Yi T, Yi Z, Cho SG, Luo J, Pandey MK, Aggarwal BB, Liu M: Gambogic acid inhibits angiogenesis and prostate tumor growth by suppressing vascular endothelial growth factor receptor 2 signaling. Cancer Res. 2008, 68: 1843-1850. 10.1158/0008-5472.CAN-07-5944PubMedCentralCrossRefPubMed
31.
go back to reference Kunnumakkara AB, Guha S, Krishnan S, Diagaradjane P, Gelovani J, Aggarwal BB: Curcumin potentiates antitumor activity of gemcitabine in an orthotopic model of pancreatic cancer through suppression of proliferation, angiogenesis, and inhibition of nuclear factor-kappaB-regulated gene products. Cancer Res. 2007, 67: 3853-3861. 10.1158/0008-5472.CAN-06-4257CrossRefPubMed Kunnumakkara AB, Guha S, Krishnan S, Diagaradjane P, Gelovani J, Aggarwal BB: Curcumin potentiates antitumor activity of gemcitabine in an orthotopic model of pancreatic cancer through suppression of proliferation, angiogenesis, and inhibition of nuclear factor-kappaB-regulated gene products. Cancer Res. 2007, 67: 3853-3861. 10.1158/0008-5472.CAN-06-4257CrossRefPubMed
32.
go back to reference Takada Y, Ichikawa H, Badmaev V, Aggarwal BB: Acetyl-11-keto-beta-boswellic acid potentiates apoptosis, inhibits invasion, and abolishes osteoclastogenesis by suppressing NF-kappa B and NF-kappa B-regulated gene expression. J Immunol. 2006, 176: 3127-3140.CrossRefPubMed Takada Y, Ichikawa H, Badmaev V, Aggarwal BB: Acetyl-11-keto-beta-boswellic acid potentiates apoptosis, inhibits invasion, and abolishes osteoclastogenesis by suppressing NF-kappa B and NF-kappa B-regulated gene expression. J Immunol. 2006, 176: 3127-3140.CrossRefPubMed
33.
go back to reference Talar-Wojnarowska R, Gasiorowska A, Smolarz B, Romanowicz-Makowska H, Kulig A, Malecka-Panas E: Tumor necrosis factor alpha and interferon gamma genes polymorphisms and serum levels in pancreatic adenocarcinoma . Neoplasma. 2009, 56: 56-62. 10.4149/neo_2009_01_56CrossRefPubMed Talar-Wojnarowska R, Gasiorowska A, Smolarz B, Romanowicz-Makowska H, Kulig A, Malecka-Panas E: Tumor necrosis factor alpha and interferon gamma genes polymorphisms and serum levels in pancreatic adenocarcinoma . Neoplasma. 2009, 56: 56-62. 10.4149/neo_2009_01_56CrossRefPubMed
Metadata
Title
Maslinic acid potentiates the anti-tumor activity of tumor necrosis factor α by inhibiting NF-κB signaling pathway
Authors
Chenghai Li
Zhengfeng Yang
Chunyan Zhai
Wenwei Qiu
Dali Li
Zhengfang Yi
Lei Wang
Jie Tang
Min Qian
Jian Luo
Mingyao Liu
Publication date
01-12-2010
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2010
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-9-73

Other articles of this Issue 1/2010

Molecular Cancer 1/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine