Skip to main content
Top
Published in: Breast Cancer Research and Treatment 3/2007

01-12-2007 | Preclinical Study

VRP immunotherapy targeting neu: treatment efficacy and evidence for immunoediting in a stringent rat mammary tumor model

Authors: Amanda K. Laust, Brandon W. Sur, Kehui Wang, Bolyn Hubby, Jonathan F. Smith, Edward L. Nelson

Published in: Breast Cancer Research and Treatment | Issue 3/2007

Login to get access

Abstract

The ability to overcome intrinsic tolerance to a strict “self” tumor-associated antigen (TAA) and successfully treat pre-existing tumor is the most stringent test for anti-tumor immunotherapeutic strategies. Although this capacity has been demonstrated in various models using complicated strategies that may not be readily translated into the clinical arena, straightforward antigen-specific immunotherapeutic strategies in the most stringent models of common epithelial cancers have largely failed to meet this standard. We employed an immunotherapeutic strategy using an alphavirus-based, virus-like replicon particle (VRP), which has in vivo tropism for dendritic cells, to elicit immune responses to the non-mutated TAA rat neu in an aggressive rat mammary tumor model. Using this VRP-based immunotherapeutic strategy targeting a single TAA, we generated effective anti-tumor immunity in the setting of pre-existing tumor resulting in the cure of 36% of rats over multiple experiments, P = 0.002. We also observed down-regulation of rat neu expression in tumors that showed initial responses followed by tumor escape with resumption of rapid tumor growth. These responses were accompanied by significant anti-tumor proliferative responses and CD8+ cellular tumor infiltrates, all of which were restricted to animals receiving the anti-neu immunotherapy. Together these data, obtained in a stringent “self” TAA model, indicate that the VRP-based antigen-specific immunotherapy elicits sufficiently potent immune responses to exert immunologic pressure, selection, and editing of the growing tumors, thus supporting the activity of this straightforward immunotherapy and suggesting that it is a promising platform upon which to build even more potent strategies.
Literature
1.
go back to reference Rosenberg SA, Yang JC, Restifo NP (2004) Cancer immunotherapy: moving beyond current vaccines. Nat Med 10(9):909–915PubMedCrossRef Rosenberg SA, Yang JC, Restifo NP (2004) Cancer immunotherapy: moving beyond current vaccines. Nat Med 10(9):909–915PubMedCrossRef
2.
go back to reference Bishop MR, Fowler DH, Marchigiani D, Castro K, Kasten-Sportes C, Steinberg SM, Gea-Banacloche JC, Dean R, Chow CK, Carter C et al. (2004) Allogeneic lymphocytes induce tumor regression of advanced metastatic breast cancer. J Clin Oncol 22(19):3886–3892PubMedCrossRef Bishop MR, Fowler DH, Marchigiani D, Castro K, Kasten-Sportes C, Steinberg SM, Gea-Banacloche JC, Dean R, Chow CK, Carter C et al. (2004) Allogeneic lymphocytes induce tumor regression of advanced metastatic breast cancer. J Clin Oncol 22(19):3886–3892PubMedCrossRef
3.
go back to reference Dean RM, Bishop MR (2004) Allogeneic hematopoietic stem cell transplantation for lymphoma. Clin Lymphoma 4(4):238–249PubMedCrossRef Dean RM, Bishop MR (2004) Allogeneic hematopoietic stem cell transplantation for lymphoma. Clin Lymphoma 4(4):238–249PubMedCrossRef
4.
go back to reference Levy R (2004) Vaccines in lymphoma. Clin Adv Hematol Oncol 2(7):426–427 Levy R (2004) Vaccines in lymphoma. Clin Adv Hematol Oncol 2(7):426–427
5.
go back to reference Schattenberg AV, Dolstra H (2005) Cellular adoptive immunotherapy after allogeneic stem cell transplantation. Curr Opin Oncol 17(6):617–621PubMedCrossRef Schattenberg AV, Dolstra H (2005) Cellular adoptive immunotherapy after allogeneic stem cell transplantation. Curr Opin Oncol 17(6):617–621PubMedCrossRef
6.
go back to reference Igney FH, Krammer PH (2002) Immune escape of tumors: apoptosis resistance and tumor counterattack. J Leukoc Biol 71(6):907–920PubMed Igney FH, Krammer PH (2002) Immune escape of tumors: apoptosis resistance and tumor counterattack. J Leukoc Biol 71(6):907–920PubMed
7.
go back to reference Khong HT, Restifo NP (2002) Natural selection of tumor variants in the generation of “tumor escape” phenotypes. Nat Immunol 3(11):999–1005PubMedCrossRef Khong HT, Restifo NP (2002) Natural selection of tumor variants in the generation of “tumor escape” phenotypes. Nat Immunol 3(11):999–1005PubMedCrossRef
8.
go back to reference Marincola FM, Jaffee EM, Hicklin DJ, Ferrone S (2000) Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv Immunol 74:181–273PubMed Marincola FM, Jaffee EM, Hicklin DJ, Ferrone S (2000) Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv Immunol 74:181–273PubMed
9.
go back to reference Riker A, Cormier J, Panelli M, Kammula U, Wang E, Abati A, Fetsch P, Lee KH, Steinberg S, Rosenberg S et al. (1999) Immune selection after antigen-specific immunotherapy of melanoma. Surgery 126(2):112–120PubMed Riker A, Cormier J, Panelli M, Kammula U, Wang E, Abati A, Fetsch P, Lee KH, Steinberg S, Rosenberg S et al. (1999) Immune selection after antigen-specific immunotherapy of melanoma. Surgery 126(2):112–120PubMed
10.
go back to reference Slingluff CL Jr, Colella TA, Thompson L, Graham DD, Skipper JC, Caldwell J, Brinckerhoff L, Kittlesen DJ, Deacon DH, Oei C et al. (2000) Melanomas with concordant loss of multiple melanocytic differentiation proteins: immune escape that may be overcome by targeting unique or undefined antigens. Cancer Immunol Immunother 48(12):661–672PubMedCrossRef Slingluff CL Jr, Colella TA, Thompson L, Graham DD, Skipper JC, Caldwell J, Brinckerhoff L, Kittlesen DJ, Deacon DH, Oei C et al. (2000) Melanomas with concordant loss of multiple melanocytic differentiation proteins: immune escape that may be overcome by targeting unique or undefined antigens. Cancer Immunol Immunother 48(12):661–672PubMedCrossRef
11.
go back to reference Powell DJ Jr, Dudley ME, Robbins PF, Rosenberg SA (2005) Transition of late-stage effector T cells to CD27+ CD28+ tumor-reactive effector memory T cells in humans after adoptive cell transfer therapy. Blood 105(1):241–250PubMedCrossRef Powell DJ Jr, Dudley ME, Robbins PF, Rosenberg SA (2005) Transition of late-stage effector T cells to CD27+ CD28+ tumor-reactive effector memory T cells in humans after adoptive cell transfer therapy. Blood 105(1):241–250PubMedCrossRef
12.
go back to reference Gattinoni L, Klebanoff CA, Palmer DC, Wrzesinski C, Kerstann K, Yu Z, Finkelstein SE, Theoret MR, Rosenberg SA, Restifo NP (2005) Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8(+) T cells. J Clin Invest 115(6):1616–1626PubMedCrossRef Gattinoni L, Klebanoff CA, Palmer DC, Wrzesinski C, Kerstann K, Yu Z, Finkelstein SE, Theoret MR, Rosenberg SA, Restifo NP (2005) Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8(+) T cells. J Clin Invest 115(6):1616–1626PubMedCrossRef
13.
go back to reference Huang J, Khong HT, Dudley ME, El-Gamil M, Li YF, Rosenberg SA, Robbins PF (2005) Survival, persistence, and progressive differentiation of adoptively transferred tumor-reactive T cells associated with tumor regression. J Immunother 28(3):258–267PubMedCrossRef Huang J, Khong HT, Dudley ME, El-Gamil M, Li YF, Rosenberg SA, Robbins PF (2005) Survival, persistence, and progressive differentiation of adoptively transferred tumor-reactive T cells associated with tumor regression. J Immunother 28(3):258–267PubMedCrossRef
14.
go back to reference Dudley ME, Wunderlich JR, Yang JC, Sherry RM, Topalian SL, Restifo NP, Royal RE, Kammula U, White DE, Mavroukakis SA et al. (2005) Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol 23(10):2346–2357PubMedCrossRef Dudley ME, Wunderlich JR, Yang JC, Sherry RM, Topalian SL, Restifo NP, Royal RE, Kammula U, White DE, Mavroukakis SA et al. (2005) Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol 23(10):2346–2357PubMedCrossRef
15.
go back to reference Zhou J, Dudley ME, Rosenberg SA, Robbins PF (2005) Persistence of multiple tumor-specific T-cell clones is associated with complete tumor regression in a melanoma patient receiving adoptive cell transfer therapy. J Immunother 28(1):53–62PubMedCrossRef Zhou J, Dudley ME, Rosenberg SA, Robbins PF (2005) Persistence of multiple tumor-specific T-cell clones is associated with complete tumor regression in a melanoma patient receiving adoptive cell transfer therapy. J Immunother 28(1):53–62PubMedCrossRef
16.
go back to reference Timmerman JM, Levy R (2004) Cancer vaccines: pessimism in check. Nat Med 10(12):1279; author reply 1279–1280 Timmerman JM, Levy R (2004) Cancer vaccines: pessimism in check. Nat Med 10(12):1279; author reply 1279–1280
17.
go back to reference Rosenberg SA, Yang JC, Restifo NP (2004) Reply-cancer vaccines: pessimism in check. Nat Med 10(12):1279–1280CrossRef Rosenberg SA, Yang JC, Restifo NP (2004) Reply-cancer vaccines: pessimism in check. Nat Med 10(12):1279–1280CrossRef
18.
go back to reference Amici A, Smorlesi A, Noce G, Santoni G, Cappelletti P, Capparuccia L, Coppari R, Lucciarini R, Petrelli C, Provinciali M (2000) DNA vaccination with full-length or truncated neu induces protective immunity against the development of spontaneous mammary tumors in HER-2/neu transgenic mice. Gene Ther 7(8):703–706PubMedCrossRef Amici A, Smorlesi A, Noce G, Santoni G, Cappelletti P, Capparuccia L, Coppari R, Lucciarini R, Petrelli C, Provinciali M (2000) DNA vaccination with full-length or truncated neu induces protective immunity against the development of spontaneous mammary tumors in HER-2/neu transgenic mice. Gene Ther 7(8):703–706PubMedCrossRef
19.
go back to reference Amici A, Venanzi FM, Concetti A (1998) Genetic immunization against neu/erbB2 transgenic breast cancer. Cancer Immunol Immunother 47(4):183–190PubMedCrossRef Amici A, Venanzi FM, Concetti A (1998) Genetic immunization against neu/erbB2 transgenic breast cancer. Cancer Immunol Immunother 47(4):183–190PubMedCrossRef
20.
go back to reference Cefai D, Morrison BW, Sckell A, Favre L, Balli M, Leunig M, Gimmi CD (1999) Targeting HER-2/neu for active-specific immunotherapy in a mouse model of spontaneous breast cancer. Int J Cancer 83(3):393–400PubMedCrossRef Cefai D, Morrison BW, Sckell A, Favre L, Balli M, Leunig M, Gimmi CD (1999) Targeting HER-2/neu for active-specific immunotherapy in a mouse model of spontaneous breast cancer. Int J Cancer 83(3):393–400PubMedCrossRef
21.
go back to reference Chen SA, Tsai MH, Wu FT, Hsiang A, Chen YL, Lei HY, Tzai TS, Leung HW, Jin YT, Hsieh CL et al. (2000) Induction of antitumor immunity with combination of HER2/neu DNA vaccine and interleukin 2 gene-modified tumor vaccine. Clin Cancer Res 6(11):4381–4388PubMed Chen SA, Tsai MH, Wu FT, Hsiang A, Chen YL, Lei HY, Tzai TS, Leung HW, Jin YT, Hsieh CL et al. (2000) Induction of antitumor immunity with combination of HER2/neu DNA vaccine and interleukin 2 gene-modified tumor vaccine. Clin Cancer Res 6(11):4381–4388PubMed
22.
go back to reference Chen Y, Emtage P, Zhu Q, Foley R, Muller W, Hitt M, Gauldie J, Wan Y (2001) Induction of ErbB-2/neu-specific protective and therapeutic antitumor immunity using genetically modified dendritic cells: enhanced efficacy by cotransduction of gene encoding IL-12. Gene Ther 8(4):316–323PubMedCrossRef Chen Y, Emtage P, Zhu Q, Foley R, Muller W, Hitt M, Gauldie J, Wan Y (2001) Induction of ErbB-2/neu-specific protective and therapeutic antitumor immunity using genetically modified dendritic cells: enhanced efficacy by cotransduction of gene encoding IL-12. Gene Ther 8(4):316–323PubMedCrossRef
23.
go back to reference Clinchy B, Gazdar A, Rabinovsky R, Yefenof E, Gordon B, Vitetta ES (2000) The growth and metastasis of human, HER-2/neu-overexpressing tumor cell lines in male SCID mice. Breast Cancer Res Treat 61(3):217–228PubMedCrossRef Clinchy B, Gazdar A, Rabinovsky R, Yefenof E, Gordon B, Vitetta ES (2000) The growth and metastasis of human, HER-2/neu-overexpressing tumor cell lines in male SCID mice. Breast Cancer Res Treat 61(3):217–228PubMedCrossRef
24.
go back to reference Esserman LJ, Lopez T, Montes R, Bald LN, Fendly BM, Campbell MJ (1999) Vaccination with the extracellular domain of p185neu prevents mammary tumor development in neu transgenic mice. Cancer Immunol Immunother 47(6):337–342PubMedCrossRef Esserman LJ, Lopez T, Montes R, Bald LN, Fendly BM, Campbell MJ (1999) Vaccination with the extracellular domain of p185neu prevents mammary tumor development in neu transgenic mice. Cancer Immunol Immunother 47(6):337–342PubMedCrossRef
25.
go back to reference Disis ML, Bernhard H, Shiota FM, Hand SL, Gralow JR, Huseby ES, Gillis S, Cheever MA (1996) Granulocyte-macrophage colony-stimulating factor: an effective adjuvant for protein and peptide-based vaccines. Blood 88(1):202–210PubMed Disis ML, Bernhard H, Shiota FM, Hand SL, Gralow JR, Huseby ES, Gillis S, Cheever MA (1996) Granulocyte-macrophage colony-stimulating factor: an effective adjuvant for protein and peptide-based vaccines. Blood 88(1):202–210PubMed
26.
go back to reference Disis ML, Gralow JR, Bernhard H, Hand SL, Rubin WD, Cheever MA (1996) Peptide-based, but not whole protein, vaccines elicit immunity to HER-2/neu, oncogenic self-protein. J Immunol 156(9):3151–3158PubMed Disis ML, Gralow JR, Bernhard H, Hand SL, Rubin WD, Cheever MA (1996) Peptide-based, but not whole protein, vaccines elicit immunity to HER-2/neu, oncogenic self-protein. J Immunol 156(9):3151–3158PubMed
27.
go back to reference Disis ML, Shiota FM, Cheever MA (1998) Human HER-2/neu protein immunization circumvents tolerance to rat neu: a vaccine strategy for ‘self’ tumour antigens. Immunology 93(2):192–199PubMedCrossRef Disis ML, Shiota FM, Cheever MA (1998) Human HER-2/neu protein immunization circumvents tolerance to rat neu: a vaccine strategy for ‘self’ tumour antigens. Immunology 93(2):192–199PubMedCrossRef
28.
go back to reference Hess AD, Thoburn C, Chen W, Miura Y, Van der Wall E (2001) The N-terminal flanking region of the invariant chain peptide augments the immunogenicity of a cryptic “self” epitope from a tumor-associated antigen. Clin Immunol 101(1):67–76PubMedCrossRef Hess AD, Thoburn C, Chen W, Miura Y, Van der Wall E (2001) The N-terminal flanking region of the invariant chain peptide augments the immunogenicity of a cryptic “self” epitope from a tumor-associated antigen. Clin Immunol 101(1):67–76PubMedCrossRef
29.
go back to reference Bhattachary R, Bukkapatnam R, Prawoko I, Soto J, Morgan M, Salup RR (2002) Efficacy of vaccination with plasmid DNA encoding for HER2/neu or HER2/neu-eGFP fusion protein against prostate cancer in rats. Int Immunopharmacol 2(6):783–796PubMedCrossRef Bhattachary R, Bukkapatnam R, Prawoko I, Soto J, Morgan M, Salup RR (2002) Efficacy of vaccination with plasmid DNA encoding for HER2/neu or HER2/neu-eGFP fusion protein against prostate cancer in rats. Int Immunopharmacol 2(6):783–796PubMedCrossRef
30.
go back to reference Nelson EL, Smith J (2004) Alphaviral-based strategies for the immunotherapy of cancer. In: Morse M, Lyerly HK, Clay T (eds) Handbook of cancer vaccines. Humana Press, Totowa, NJ, pp 203–224 Nelson EL, Smith J (2004) Alphaviral-based strategies for the immunotherapy of cancer. In: Morse M, Lyerly HK, Clay T (eds) Handbook of cancer vaccines. Humana Press, Totowa, NJ, pp 203–224
31.
go back to reference Pushko P, Parker M, Ludwig GV, Davis NL, Johnston RE, Smith JF (1997) Replicon-helper systems from attenuated Venezuelan equine encephalitis virus: expression of heterologous genes in vitro and immunization against heterologous pathogens in vivo. Virology 239(2):389–401PubMedCrossRef Pushko P, Parker M, Ludwig GV, Davis NL, Johnston RE, Smith JF (1997) Replicon-helper systems from attenuated Venezuelan equine encephalitis virus: expression of heterologous genes in vitro and immunization against heterologous pathogens in vivo. Virology 239(2):389–401PubMedCrossRef
32.
go back to reference MacDonald GH, Johnston RE (2000) Role of dendritic cell targeting in Venezuelan equine encephalitis virus pathogenesis. J Virol 74(2):914–922PubMedCrossRef MacDonald GH, Johnston RE (2000) Role of dendritic cell targeting in Venezuelan equine encephalitis virus pathogenesis. J Virol 74(2):914–922PubMedCrossRef
33.
go back to reference Moran TP, Collier M, McKinnon KP, Davis NL, Johnston RE, Serody JS (2005) A novel viral system for generating antigen-specific T cells. J Immunol 175(5):3431–3438PubMed Moran TP, Collier M, McKinnon KP, Davis NL, Johnston RE, Serody JS (2005) A novel viral system for generating antigen-specific T cells. J Immunol 175(5):3431–3438PubMed
34.
go back to reference Nishimoto KP, Laust AK, Wang K, Kamrud KI, Hubby B, Smith JF, Nelson EL (2006) Restricted and selective tropism of a Venezuelan equine encephalitis virus-derived replicon vector for human dendritic cells. Viral Immunol (in press) Nishimoto KP, Laust AK, Wang K, Kamrud KI, Hubby B, Smith JF, Nelson EL (2006) Restricted and selective tropism of a Venezuelan equine encephalitis virus-derived replicon vector for human dendritic cells. Viral Immunol (in press)
35.
go back to reference Liljestrom P, Garoff H (1991) A new generation of animal cell expression vectors based on the Semliki Forest virus replicon. Biotechnology (NY) 9(12):1356–1361CrossRef Liljestrom P, Garoff H (1991) A new generation of animal cell expression vectors based on the Semliki Forest virus replicon. Biotechnology (NY) 9(12):1356–1361CrossRef
36.
go back to reference Nelson EL, Prieto D, Alexander TG, Pushko P, Lofts LA, Rayner JO, Kamrud KI, Fralish B, Smith JF (2003) Venezuelan equine encephalitis replicon immunization overcomes intrinsic tolerance and elicits effective anti-tumor immunity to the ‘self’ tumor-associated antigen, neu in a rat mammary tumor model. Breast Cancer Res Treat 82(3):169–183PubMedCrossRef Nelson EL, Prieto D, Alexander TG, Pushko P, Lofts LA, Rayner JO, Kamrud KI, Fralish B, Smith JF (2003) Venezuelan equine encephalitis replicon immunization overcomes intrinsic tolerance and elicits effective anti-tumor immunity to the ‘self’ tumor-associated antigen, neu in a rat mammary tumor model. Breast Cancer Res Treat 82(3):169–183PubMedCrossRef
37.
go back to reference Wang X, Wang JP, Maughan MF, Lachman LB (2005) Alphavirus replicon particles containing the gene for HER2/neu inhibit breast cancer growth and tumorigenesis. Breast Cancer Res 7(1):R145–155PubMedCrossRef Wang X, Wang JP, Maughan MF, Lachman LB (2005) Alphavirus replicon particles containing the gene for HER2/neu inhibit breast cancer growth and tumorigenesis. Breast Cancer Res 7(1):R145–155PubMedCrossRef
38.
go back to reference Velders MP, McElhiney S, Cassetti MC, Eiben GL, Higgins T, Kovacs GR, Elmishad AG, Kast WM, Smith LR (2001) Eradication of established tumors by vaccination with Venezuelan equine encephalitis virus replicon particles delivering human papillomavirus 16 E7 RNA. Cancer Res 61(21):7861–7867PubMed Velders MP, McElhiney S, Cassetti MC, Eiben GL, Higgins T, Kovacs GR, Elmishad AG, Kast WM, Smith LR (2001) Eradication of established tumors by vaccination with Venezuelan equine encephalitis virus replicon particles delivering human papillomavirus 16 E7 RNA. Cancer Res 61(21):7861–7867PubMed
39.
go back to reference Cassetti MC, McElhiney SP, Shahabi V, Pullen JK, Le Poole IC, Eiben GL, Smith LR, Kast WM (2004) Antitumor efficacy of Venezuelan equine encephalitis virus replicon particles encoding mutated HPV16 E6 and E7 genes. Vaccine 22(3–4):520–527PubMedCrossRef Cassetti MC, McElhiney SP, Shahabi V, Pullen JK, Le Poole IC, Eiben GL, Smith LR, Kast WM (2004) Antitumor efficacy of Venezuelan equine encephalitis virus replicon particles encoding mutated HPV16 E6 and E7 genes. Vaccine 22(3–4):520–527PubMedCrossRef
40.
go back to reference Goldberg SM, Bartido SM, Gardner JP, Guevara-Patino JA, Montgomery SC, Perales MA, Maughan MF, Dempsey J, Donovan GP, Olson WC et al. (2005) Comparison of two cancer vaccines targeting tyrosinase: plasmid DNA and recombinant alphavirus replicon particles. Clin Cancer Res 11(22):8114–8121PubMedCrossRef Goldberg SM, Bartido SM, Gardner JP, Guevara-Patino JA, Montgomery SC, Perales MA, Maughan MF, Dempsey J, Donovan GP, Olson WC et al. (2005) Comparison of two cancer vaccines targeting tyrosinase: plasmid DNA and recombinant alphavirus replicon particles. Clin Cancer Res 11(22):8114–8121PubMedCrossRef
41.
go back to reference Mendiratta SK, Thai G, Eslahi NK, Thull NM, Matar M, Bronte V, Pericle F (2001) Therapeutic tumor immunity induced by polyimmunization with melanoma antigens gp100 and TRP-2. Cancer Res 61(3):859–863PubMed Mendiratta SK, Thai G, Eslahi NK, Thull NM, Matar M, Bronte V, Pericle F (2001) Therapeutic tumor immunity induced by polyimmunization with melanoma antigens gp100 and TRP-2. Cancer Res 61(3):859–863PubMed
42.
go back to reference Bellone M, Cantarella D, Castiglioni P, Crosti MC, Ronchetti A, Moro M, Garancini MP, Casorati G, Dellabona P (2000) Relevance of the tumor antigen in the validation of three vaccination strategies for melanoma. J Immunol 165(5):2651–2656PubMed Bellone M, Cantarella D, Castiglioni P, Crosti MC, Ronchetti A, Moro M, Garancini MP, Casorati G, Dellabona P (2000) Relevance of the tumor antigen in the validation of three vaccination strategies for melanoma. J Immunol 165(5):2651–2656PubMed
43.
go back to reference Bronte V, Apolloni E, Ronca R, Zamboni P, Overwijk WW, Surman DR, Restifo NP, Zanovello P (2000) Genetic vaccination with “self” tyrosinase-related protein 2 causes melanoma eradication but not vitiligo. Cancer Res 60(2):253–258PubMed Bronte V, Apolloni E, Ronca R, Zamboni P, Overwijk WW, Surman DR, Restifo NP, Zanovello P (2000) Genetic vaccination with “self” tyrosinase-related protein 2 causes melanoma eradication but not vitiligo. Cancer Res 60(2):253–258PubMed
44.
go back to reference Attia MA, DeOme KB, Weiss DW (1965) Immunology of spontaneous mammary carcinomas in mice II. Resistance to a rapidly and a slowly developing tumor. Cancer Res 25:451–457PubMed Attia MA, DeOme KB, Weiss DW (1965) Immunology of spontaneous mammary carcinomas in mice II. Resistance to a rapidly and a slowly developing tumor. Cancer Res 25:451–457PubMed
45.
go back to reference Houghton AN (1994) Cancer antigens: immune recognition of self and altered self. J Exp Med 180(1):1–4PubMedCrossRef Houghton AN (1994) Cancer antigens: immune recognition of self and altered self. J Exp Med 180(1):1–4PubMedCrossRef
46.
go back to reference Tuttle TM, Anderson BW, Thompson WE, Lee JE, Sahin A, Smith TL, Grabstein KH, Wharton JT, Ioannides CG, Murray JL (1998) Proliferative and cytokine responses to class II HER-2/neu-associated peptides in breast cancer patients. Clin Cancer Res 4(8):2015–2024PubMed Tuttle TM, Anderson BW, Thompson WE, Lee JE, Sahin A, Smith TL, Grabstein KH, Wharton JT, Ioannides CG, Murray JL (1998) Proliferative and cytokine responses to class II HER-2/neu-associated peptides in breast cancer patients. Clin Cancer Res 4(8):2015–2024PubMed
47.
go back to reference Disis ML, Grabstein KH, Sleath PR, Cheever MA (1999) Generation of immunity to the HER-2/neu oncogenic protein in patients with breast and ovarian cancer using a peptide-based vaccine. Clin Cancer Res 5(6):1289–1297PubMed Disis ML, Grabstein KH, Sleath PR, Cheever MA (1999) Generation of immunity to the HER-2/neu oncogenic protein in patients with breast and ovarian cancer using a peptide-based vaccine. Clin Cancer Res 5(6):1289–1297PubMed
48.
go back to reference Knutson KL, Disis ML (2002) Clonal diversity of the T-cell population responding to a dominant HLA-A2 epitope of HER-2/neu after active immunization in an ovarian cancer patient. Hum Immunol 63(7):547–557PubMedCrossRef Knutson KL, Disis ML (2002) Clonal diversity of the T-cell population responding to a dominant HLA-A2 epitope of HER-2/neu after active immunization in an ovarian cancer patient. Hum Immunol 63(7):547–557PubMedCrossRef
49.
go back to reference Brossart P, Stuhler G, Flad T, Stevanovic S, Rammensee HG, Kanz L, Brugger W (1998) Her-2/neu-derived peptides are tumor-associated antigens expressed by human renal cell and colon carcinoma lines and are recognized by in vitro induced specific cytotoxic T lymphocytes. Cancer Res 58(4):732–736PubMed Brossart P, Stuhler G, Flad T, Stevanovic S, Rammensee HG, Kanz L, Brugger W (1998) Her-2/neu-derived peptides are tumor-associated antigens expressed by human renal cell and colon carcinoma lines and are recognized by in vitro induced specific cytotoxic T lymphocytes. Cancer Res 58(4):732–736PubMed
50.
go back to reference Kono K, Takahashi A, Amemiya H, Ichihara F, Sugai H, Iizuka H, Fujii H, Matsumoto Y (2002) Frequencies of HER-2/neu overexpression relating to HLA haplotype in patients with gastric cancer. Int J Cancer 98(2):216–220PubMedCrossRef Kono K, Takahashi A, Amemiya H, Ichihara F, Sugai H, Iizuka H, Fujii H, Matsumoto Y (2002) Frequencies of HER-2/neu overexpression relating to HLA haplotype in patients with gastric cancer. Int J Cancer 98(2):216–220PubMedCrossRef
51.
go back to reference Perez SA, Sotiropoulou PA, Sotiriadou NN, Mamalaki A, Gritzapis AD, Echner H, Voelter W, Pawelec G, Papamichail M, Baxevanis CN (2002) HER-2/neu-derived peptide 884–899 is expressed by human breast, colorectal and pancreatic adenocarcinomas and is recognized by in-vitro-induced specific CD4(+) T cell clones. Cancer Immunol Immunother 50(11):615–624PubMedCrossRef Perez SA, Sotiropoulou PA, Sotiriadou NN, Mamalaki A, Gritzapis AD, Echner H, Voelter W, Pawelec G, Papamichail M, Baxevanis CN (2002) HER-2/neu-derived peptide 884–899 is expressed by human breast, colorectal and pancreatic adenocarcinomas and is recognized by in-vitro-induced specific CD4(+) T cell clones. Cancer Immunol Immunother 50(11):615–624PubMedCrossRef
52.
go back to reference Scardino A, Alves P, Gross DA, Tourdot S, Graff-Dubois S, Angevin E, Firat H, Chouaib S, Lemonnier F, Nadler LM et al. (2001) Identification of HER-2/neu immunogenic epitopes presented by renal cell carcinoma and other human epithelial tumors. Eur J Immunol 31(11):3261–3270PubMedCrossRef Scardino A, Alves P, Gross DA, Tourdot S, Graff-Dubois S, Angevin E, Firat H, Chouaib S, Lemonnier F, Nadler LM et al. (2001) Identification of HER-2/neu immunogenic epitopes presented by renal cell carcinoma and other human epithelial tumors. Eur J Immunol 31(11):3261–3270PubMedCrossRef
53.
go back to reference Schwaab T, Lewis LD, Cole BF, Deo Y, Fanger MW, Wallace P, Guyre PM, Kaufman PA, Heaney JA, Schned AR et al. (2001) Phase I pilot trial of the bispecific antibody MDXH210 (anti-Fc gamma RI X anti-HER-2/neu) in patients whose prostate cancer overexpresses HER-2/neu. J Immunother 24(1):79–87PubMedCrossRef Schwaab T, Lewis LD, Cole BF, Deo Y, Fanger MW, Wallace P, Guyre PM, Kaufman PA, Heaney JA, Schned AR et al. (2001) Phase I pilot trial of the bispecific antibody MDXH210 (anti-Fc gamma RI X anti-HER-2/neu) in patients whose prostate cancer overexpresses HER-2/neu. J Immunother 24(1):79–87PubMedCrossRef
54.
go back to reference Pegram M, Slamon D (2000) Biological rationale for HER2/neu (c-erbB2) as a target for monoclonal antibody therapy. Semin Oncol 27(5 Suppl 9):13–19PubMed Pegram M, Slamon D (2000) Biological rationale for HER2/neu (c-erbB2) as a target for monoclonal antibody therapy. Semin Oncol 27(5 Suppl 9):13–19PubMed
55.
go back to reference Ricci C, Polito L, Nanni P, Landuzzi L, Astolfi A, Nicoletti G, Rossi I, De Giovanni C, Bolognesi A, Lollini PL (2002) HER/erbB receptors as therapeutic targets of immunotoxins in human rhabdomyosarcoma cells. J Immunother 25(4):314–323PubMedCrossRef Ricci C, Polito L, Nanni P, Landuzzi L, Astolfi A, Nicoletti G, Rossi I, De Giovanni C, Bolognesi A, Lollini PL (2002) HER/erbB receptors as therapeutic targets of immunotoxins in human rhabdomyosarcoma cells. J Immunother 25(4):314–323PubMedCrossRef
56.
go back to reference Yamamoto T, Ikawa S, Akiyama T, Semba K, Nomura N, Miyajima N, Saito T, Toyoshima K (1986) Similarity of protein encoded by the human c-erb-B-2 gene to epidermal growth factor receptor. Nature 319(6050):230–234PubMedCrossRef Yamamoto T, Ikawa S, Akiyama T, Semba K, Nomura N, Miyajima N, Saito T, Toyoshima K (1986) Similarity of protein encoded by the human c-erb-B-2 gene to epidermal growth factor receptor. Nature 319(6050):230–234PubMedCrossRef
57.
go back to reference Baxevanis CN, Sotiriadou NN, Gritzapis AD, Sotiropoulou PA, Perez SA, Cacoullos NT, Papamichail M (2006) Immunogenic HER-2/neu peptides as tumor vaccines. Cancer Immunol Immunother 55(1):85–95PubMedCrossRef Baxevanis CN, Sotiriadou NN, Gritzapis AD, Sotiropoulou PA, Perez SA, Cacoullos NT, Papamichail M (2006) Immunogenic HER-2/neu peptides as tumor vaccines. Cancer Immunol Immunother 55(1):85–95PubMedCrossRef
58.
go back to reference Choudhury A, Kiessling R (2004) Her-2/neu as a paradigm of a tumor-specific target for therapy. Breast Dis 20:25–31PubMed Choudhury A, Kiessling R (2004) Her-2/neu as a paradigm of a tumor-specific target for therapy. Breast Dis 20:25–31PubMed
59.
go back to reference Curigliano G, Spitaleri G, Pietri E, Rescigno M, de Braud F, Cardillo A, Munzone E, Rocca A, Bonizzi G, Brichard V et al. (2006) Breast cancer vaccines: a clinical reality or fairy tale? Ann Oncol 17(5):750–762PubMedCrossRef Curigliano G, Spitaleri G, Pietri E, Rescigno M, de Braud F, Cardillo A, Munzone E, Rocca A, Bonizzi G, Brichard V et al. (2006) Breast cancer vaccines: a clinical reality or fairy tale? Ann Oncol 17(5):750–762PubMedCrossRef
60.
go back to reference Disis ML, Schiffman K, Salazar LG, Almand B, Knutson KL (2003) HER-2/neu vaccines. Cancer Chemother Biol Response Modif 21:275–285PubMed Disis ML, Schiffman K, Salazar LG, Almand B, Knutson KL (2003) HER-2/neu vaccines. Cancer Chemother Biol Response Modif 21:275–285PubMed
61.
go back to reference Emens LA, Reilly RT, Jaffee EM (2005) Breast cancer vaccines: maximizing cancer treatment by tapping into host immunity. Endocr Relat Cancer 12(1):1–17PubMedCrossRef Emens LA, Reilly RT, Jaffee EM (2005) Breast cancer vaccines: maximizing cancer treatment by tapping into host immunity. Endocr Relat Cancer 12(1):1–17PubMedCrossRef
62.
go back to reference Sauer G, Kurzeder C, Heilmann V, Kreienberg R, Deissler H (2005) Immunotherapy and cancer vaccines in the management of breast cancer. Curr Pharm Des 11(27):3475–3483PubMedCrossRef Sauer G, Kurzeder C, Heilmann V, Kreienberg R, Deissler H (2005) Immunotherapy and cancer vaccines in the management of breast cancer. Curr Pharm Des 11(27):3475–3483PubMedCrossRef
63.
go back to reference Machiels JP, Reilly RT, Emens LA, Ercolini AM, Lei RY, Weintraub D, Okoye FI, Jaffee EM (2001) Cyclophosphamide, doxorubicin, and paclitaxel enhance the antitumor immune response of granulocyte/macrophage-colony stimulating factor-secreting whole-cell vaccines in HER-2/neu tolerized mice. Cancer Res 61(9):3689–3697PubMed Machiels JP, Reilly RT, Emens LA, Ercolini AM, Lei RY, Weintraub D, Okoye FI, Jaffee EM (2001) Cyclophosphamide, doxorubicin, and paclitaxel enhance the antitumor immune response of granulocyte/macrophage-colony stimulating factor-secreting whole-cell vaccines in HER-2/neu tolerized mice. Cancer Res 61(9):3689–3697PubMed
64.
go back to reference Wolpoe ME, Lutz ER, Ercolini AM, Murata S, Ivie SE, Garrett ES, Emens LA, Jaffee EM, Reilly RT (2003) HER-2/neu-specific monoclonal antibodies collaborate with HER-2/neu-targeted granulocyte macrophage colony-stimulating factor secreting whole cell vaccination to augment CD8+ T cell effector function and tumor-free survival in Her-2/neu-transgenic mice. J Immunol 171(4):2161–2169PubMed Wolpoe ME, Lutz ER, Ercolini AM, Murata S, Ivie SE, Garrett ES, Emens LA, Jaffee EM, Reilly RT (2003) HER-2/neu-specific monoclonal antibodies collaborate with HER-2/neu-targeted granulocyte macrophage colony-stimulating factor secreting whole cell vaccination to augment CD8+ T cell effector function and tumor-free survival in Her-2/neu-transgenic mice. J Immunol 171(4):2161–2169PubMed
65.
go back to reference Zitvogel L, Tesniere A, Kroemer G (2006) Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat Rev Immunol 6(10):715–727PubMedCrossRef Zitvogel L, Tesniere A, Kroemer G (2006) Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat Rev Immunol 6(10):715–727PubMedCrossRef
67.
go back to reference Strater J, Hinz U, Hasel C, Bhanot U, Mechtersheimer G, Lehnert T, Moller P (2005) Impaired CD95 expression predisposes for recurrence in curatively resected colon carcinoma: clinical evidence for immunoselection and CD95L mediated control of minimal residual disease. Gut 54(5):661–665PubMedCrossRef Strater J, Hinz U, Hasel C, Bhanot U, Mechtersheimer G, Lehnert T, Moller P (2005) Impaired CD95 expression predisposes for recurrence in curatively resected colon carcinoma: clinical evidence for immunoselection and CD95L mediated control of minimal residual disease. Gut 54(5):661–665PubMedCrossRef
68.
go back to reference Pawelec G (2004) Immunotherapy and immunoselection—tumour escape as the final hurdle. FEBS Lett 567(1):63–66PubMedCrossRef Pawelec G (2004) Immunotherapy and immunoselection—tumour escape as the final hurdle. FEBS Lett 567(1):63–66PubMedCrossRef
69.
go back to reference Garcia-Lora A, Algarra I, Garrido F (2003) MHC class I antigens, immune surveillance, and tumor immune escape. J Cell Physiol 195(3):346–355PubMedCrossRef Garcia-Lora A, Algarra I, Garrido F (2003) MHC class I antigens, immune surveillance, and tumor immune escape. J Cell Physiol 195(3):346–355PubMedCrossRef
70.
go back to reference Garcia-Lora A, Algarra I, Gaforio JJ, Ruiz-Cabello F, Garrido F (2001) Immunoselection by T lymphocytes generates repeated MHC class I-deficient metastatic tumor variants. Int J Cancer 91(1):109–119PubMedCrossRef Garcia-Lora A, Algarra I, Gaforio JJ, Ruiz-Cabello F, Garrido F (2001) Immunoselection by T lymphocytes generates repeated MHC class I-deficient metastatic tumor variants. Int J Cancer 91(1):109–119PubMedCrossRef
71.
go back to reference Dunn GP, Koebel CM, Schreiber RD (2006) Interferons, immunity and cancer immunoediting. Nat Rev Immunol 6(11):836–848PubMedCrossRef Dunn GP, Koebel CM, Schreiber RD (2006) Interferons, immunity and cancer immunoediting. Nat Rev Immunol 6(11):836–848PubMedCrossRef
72.
go back to reference Knutson KL, Lu H, Stone B, Reiman JM, Behrens MD, Prosperi CM, Gad EA, Smorlesi A, Disis ML (2006) Immunoediting of cancers may lead to epithelial to mesenchymal transition. J Immunol 177(3):1526–1533PubMed Knutson KL, Lu H, Stone B, Reiman JM, Behrens MD, Prosperi CM, Gad EA, Smorlesi A, Disis ML (2006) Immunoediting of cancers may lead to epithelial to mesenchymal transition. J Immunol 177(3):1526–1533PubMed
73.
go back to reference Smyth MJ, Dunn GP, Schreiber RD (2006) Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. Adv Immunol 90:1–50PubMed Smyth MJ, Dunn GP, Schreiber RD (2006) Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. Adv Immunol 90:1–50PubMed
74.
go back to reference Manjili MH, Arnouk H, Knutson KL, Kmieciak M, Disis ML, Subjeck JR, Kazim AL (2006) Emergence of immune escape variant of mammary tumors that has distinct proteomic profile and a reduced ability to induce “danger signals”. Breast Cancer Res Treat 96(3):233–241PubMedCrossRef Manjili MH, Arnouk H, Knutson KL, Kmieciak M, Disis ML, Subjeck JR, Kazim AL (2006) Emergence of immune escape variant of mammary tumors that has distinct proteomic profile and a reduced ability to induce “danger signals”. Breast Cancer Res Treat 96(3):233–241PubMedCrossRef
75.
go back to reference Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3(11):991–998PubMedCrossRef Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3(11):991–998PubMedCrossRef
76.
go back to reference Gardner JP, Durso RJ, Jacques S, Arrigale RR, Maughan M, Donovan GP, Schulke N, Israel RJ, Olson WC (2005) Novel prime-boost combinations of PSMA-based vaccines for prostate cancer. In: 41st Annual Meeting ASCO: May 13–17, 2005; Orlando, FL; Abstract 2572 Gardner JP, Durso RJ, Jacques S, Arrigale RR, Maughan M, Donovan GP, Schulke N, Israel RJ, Olson WC (2005) Novel prime-boost combinations of PSMA-based vaccines for prostate cancer. In: 41st Annual Meeting ASCO: May 13–17, 2005; Orlando, FL; Abstract 2572
77.
go back to reference Caley IJ, Betts MR, Davis NL, Swanstrom R, Frelinger JA, Johnston RE (1999) Venezuelan equine encephalitis virus vectors expressing HIV-1 proteins: vector design strategies for improved vaccine efficacy. Vaccine 17(23–24):3124–3135PubMedCrossRef Caley IJ, Betts MR, Davis NL, Swanstrom R, Frelinger JA, Johnston RE (1999) Venezuelan equine encephalitis virus vectors expressing HIV-1 proteins: vector design strategies for improved vaccine efficacy. Vaccine 17(23–24):3124–3135PubMedCrossRef
78.
go back to reference Caley IJ, Betts MR, Irlbeck DM, Davis NL, Swanstrom R, Frelinger JA, Johnston RE (1997) Humoral, mucosal, and cellular immunity in response to a human immunodeficiency virus type 1 immunogen expressed by a Venezuelan equine encephalitis virus vaccine vector. J Virol 71(4):3031–3038PubMed Caley IJ, Betts MR, Irlbeck DM, Davis NL, Swanstrom R, Frelinger JA, Johnston RE (1997) Humoral, mucosal, and cellular immunity in response to a human immunodeficiency virus type 1 immunogen expressed by a Venezuelan equine encephalitis virus vaccine vector. J Virol 71(4):3031–3038PubMed
79.
go back to reference Davis NL, Caley IJ, Brown KW, Betts MR, Irlbeck DM, McGrath KM, Connell MJ, Montefiori DC, Frelinger JA, Swanstrom R et al. (2000) Vaccination of macaques against pathogenic simian immunodeficiency virus with Venezuelan equine encephalitis virus replicon particles [published erratum appears in J Virol 2000 Apr; 74(7):3430]. J Virol 74(1):371–378 Davis NL, Caley IJ, Brown KW, Betts MR, Irlbeck DM, McGrath KM, Connell MJ, Montefiori DC, Frelinger JA, Swanstrom R et al. (2000) Vaccination of macaques against pathogenic simian immunodeficiency virus with Venezuelan equine encephalitis virus replicon particles [published erratum appears in J Virol 2000 Apr; 74(7):3430]. J Virol 74(1):371–378
80.
go back to reference Davis NL, West A, Reap E, MacDonald G, Collier M, Dryga S, Maughan M, Connell M, Walker C, McGrath K et al. (2002) Alphavirus replicon particles as candidate HIV vaccines. IUBMB Life 53(4–5):209–211PubMedCrossRef Davis NL, West A, Reap E, MacDonald G, Collier M, Dryga S, Maughan M, Connell M, Walker C, McGrath K et al. (2002) Alphavirus replicon particles as candidate HIV vaccines. IUBMB Life 53(4–5):209–211PubMedCrossRef
81.
go back to reference Wilson JA, Hart MK (2001) Protection from Ebola virus mediated by cytotoxic T lymphocytes specific for the viral nucleoprotein. J Virol 75(6):2660–2664PubMedCrossRef Wilson JA, Hart MK (2001) Protection from Ebola virus mediated by cytotoxic T lymphocytes specific for the viral nucleoprotein. J Virol 75(6):2660–2664PubMedCrossRef
Metadata
Title
VRP immunotherapy targeting neu: treatment efficacy and evidence for immunoediting in a stringent rat mammary tumor model
Authors
Amanda K. Laust
Brandon W. Sur
Kehui Wang
Bolyn Hubby
Jonathan F. Smith
Edward L. Nelson
Publication date
01-12-2007
Publisher
Springer US
Published in
Breast Cancer Research and Treatment / Issue 3/2007
Print ISSN: 0167-6806
Electronic ISSN: 1573-7217
DOI
https://doi.org/10.1007/s10549-007-9517-8

Other articles of this Issue 3/2007

Breast Cancer Research and Treatment 3/2007 Go to the issue

Preclinical Study/Clinical Trial/Epidemiology/Invited Commentary

G:C > A:T mutations and potential epigenetic regulation of p53 in breast cancer

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine