Skip to main content
Top
Published in: Magnetic Resonance Materials in Physics, Biology and Medicine 5/2020

01-10-2020 | Magnetic Resonance Imaging | Research Article

Automated multi-atlas segmentation of gluteus maximus from Dixon and T1-weighted magnetic resonance images

Authors: Martin A. Belzunce, Johann Henckel, Anastasia Fotiadou, Anna Di Laura, Alister Hart

Published in: Magnetic Resonance Materials in Physics, Biology and Medicine | Issue 5/2020

Login to get access

Abstract

Objective

To design, develop and evaluate an automated multi-atlas method for segmentation and volume quantification of gluteus maximus from Dixon and T1-weighted images.

Materials and methods

The multi-atlas segmentation method uses an atlas library constructed from 15 Dixon MRI scans of healthy subjects. A non-rigid registration between each atlas and the target, followed by majority voting label fusion, is used in the segmentation. We propose a region of interest (ROI) to standardize the measurement of muscle bulk. The method was evaluated using the dice similarity coefficient (DSC) and the relative volume difference (RVD) as metrics, for Dixon and T1-weighted target images.

Results

The mean(± SD) DSC was 0.94 ± 0.01 for Dixon images, while 0.93 ± 0.02 for T1-weighted. The RVD between the automated and manual segmentation had a mean(± SD) value of 1.5 ± 4.3% for Dixon and 1.5 ± 4.8% for T1-weighted images. In the muscle bulk ROI, the DSC was 0.95 ± 0.01 and the RVD was 0.6 ± 3.8%.

Conclusion

The method allows an accurate fully automated segmentation of gluteus maximus for Dixon and T1-weighted images and provides a relatively accurate volume measurement in shorter times (~ 20 min) than the current gold-standard manual segmentations (2 h). Visual inspection of the segmentation would be required when higher accuracy is needed.
Literature
1.
go back to reference Anderson FC, Pandy MG (2003) Individual muscle contributions to support in normal walking. Gait Posture 17:159–169PubMedCrossRef Anderson FC, Pandy MG (2003) Individual muscle contributions to support in normal walking. Gait Posture 17:159–169PubMedCrossRef
2.
go back to reference Bartlett JL, Sumner B, Ellis RG, Kram R (2014) Activity and functions of the human gluteal muscles in walking, running, sprinting, and climbing. Am J Phys Anthropol 153:124–131PubMedCrossRef Bartlett JL, Sumner B, Ellis RG, Kram R (2014) Activity and functions of the human gluteal muscles in walking, running, sprinting, and climbing. Am J Phys Anthropol 153:124–131PubMedCrossRef
3.
go back to reference Lieberman DE, Raichlen DA, Pontzer H, Bramble DM, Cutright-Smith E (2006) The human gluteus maximus and its role in running. J Exp Biol 209:444–454CrossRef Lieberman DE, Raichlen DA, Pontzer H, Bramble DM, Cutright-Smith E (2006) The human gluteus maximus and its role in running. J Exp Biol 209:444–454CrossRef
4.
go back to reference Ward SR, Winters TM, Blemker SS (2010) The architectural design of the gluteal muscle group: implications for movement and rehabilitation. J Orthop Sport Phys Ther 40:95–102CrossRef Ward SR, Winters TM, Blemker SS (2010) The architectural design of the gluteal muscle group: implications for movement and rehabilitation. J Orthop Sport Phys Ther 40:95–102CrossRef
5.
go back to reference Zacharias A, Pizzari T, English DJ, Kapakoulakis T, Green RA (2016) Hip abductor muscle volume in hip osteoarthritis and matched controls. Osteoarthr Cartil 24:1727–1735CrossRef Zacharias A, Pizzari T, English DJ, Kapakoulakis T, Green RA (2016) Hip abductor muscle volume in hip osteoarthritis and matched controls. Osteoarthr Cartil 24:1727–1735CrossRef
6.
go back to reference Grimaldi A, Richardson C, Stanton W, Durbridge G, Donnelly W, Hides J (2009) The association between degenerative hip joint pathology and size of the gluteus medius, gluteus minimus and piriformis muscles. Man Ther 14:605–610PubMedCrossRef Grimaldi A, Richardson C, Stanton W, Durbridge G, Donnelly W, Hides J (2009) The association between degenerative hip joint pathology and size of the gluteus medius, gluteus minimus and piriformis muscles. Man Ther 14:605–610PubMedCrossRef
7.
go back to reference Uemura K, Takao M, Sakai T, Nishii T, Sugano N (2016) Volume increases of the gluteus maximus, gluteus medius, and thigh muscles after hip arthroplasty. J Arthroplasty 31:906–912.e1PubMedCrossRef Uemura K, Takao M, Sakai T, Nishii T, Sugano N (2016) Volume increases of the gluteus maximus, gluteus medius, and thigh muscles after hip arthroplasty. J Arthroplasty 31:906–912.e1PubMedCrossRef
8.
go back to reference Smith MMF, Bonacci J, Mendis MD, Christie C, Rotstein A, Hides JA (2017) Gluteus medius activation during running is a risk factor for season hamstring injuries in elite footballers. J Sci Med Sport 20:159–163CrossRef Smith MMF, Bonacci J, Mendis MD, Christie C, Rotstein A, Hides JA (2017) Gluteus medius activation during running is a risk factor for season hamstring injuries in elite footballers. J Sci Med Sport 20:159–163CrossRef
9.
go back to reference Sakamaki M, Bemben MG, Abe T (2011) Legs and trunk muscle hypertrophy following walk training with restricted leg muscle blood flow. J Sports Sci Med 10:338–340PubMedPubMedCentral Sakamaki M, Bemben MG, Abe T (2011) Legs and trunk muscle hypertrophy following walk training with restricted leg muscle blood flow. J Sports Sci Med 10:338–340PubMedPubMedCentral
11.
go back to reference O’Brien TD, Reeves ND, Baltzopoulos V, Jones DA, Maganaris CN (2009) Strong relationships exist between muscle volume, joint power and whole-body external mechanical power in adults and children. Exp Physiol 94:731–738PubMedCrossRef O’Brien TD, Reeves ND, Baltzopoulos V, Jones DA, Maganaris CN (2009) Strong relationships exist between muscle volume, joint power and whole-body external mechanical power in adults and children. Exp Physiol 94:731–738PubMedCrossRef
12.
go back to reference Akagi R, Suzuki M, Kawaguchi E, Miyamoto N, Yamada Y, Ema R (2018) Muscle size-strength relationship including ultrasonographic echo intensity and voluntary activation level of a muscle group. Arch Gerontol Geriatr 75:185–190PubMedCrossRef Akagi R, Suzuki M, Kawaguchi E, Miyamoto N, Yamada Y, Ema R (2018) Muscle size-strength relationship including ultrasonographic echo intensity and voluntary activation level of a muscle group. Arch Gerontol Geriatr 75:185–190PubMedCrossRef
13.
go back to reference Dawes H, Smith C, Collett J, Wade D, Howells K, Ramsbottom R, Izadi H, Sackley C (2005) A pilot study to investigate explosive leg extensor power and walking performance after stroke. J Sports Sci Med 4:556–562PubMedPubMedCentral Dawes H, Smith C, Collett J, Wade D, Howells K, Ramsbottom R, Izadi H, Sackley C (2005) A pilot study to investigate explosive leg extensor power and walking performance after stroke. J Sports Sci Med 4:556–562PubMedPubMedCentral
14.
go back to reference Bassey EJ, Fiatarone MA, O’Neill EF, Kelly M, Evans WJ, Lipsitz LA (1992) Leg extensor power and functional performance in very old men and women. Clin Sci (Lond) 82:321–327CrossRef Bassey EJ, Fiatarone MA, O’Neill EF, Kelly M, Evans WJ, Lipsitz LA (1992) Leg extensor power and functional performance in very old men and women. Clin Sci (Lond) 82:321–327CrossRef
15.
go back to reference Cronin J, Sleivert G (2005) Challenges in understanding the influence of maximal power training on improving athletic performance. Sport Med 35:213–234CrossRef Cronin J, Sleivert G (2005) Challenges in understanding the influence of maximal power training on improving athletic performance. Sport Med 35:213–234CrossRef
16.
go back to reference Bley TA, Wieben O, François CJ, Brittain JH, Reeder SB (2010) Fat and water magnetic resonance imaging. J Magn Reson Imaging 31:4–18PubMedCrossRef Bley TA, Wieben O, François CJ, Brittain JH, Reeder SB (2010) Fat and water magnetic resonance imaging. J Magn Reson Imaging 31:4–18PubMedCrossRef
17.
go back to reference Xiang QS, An L (1997) Water-fat imaging with direct phase encoding. J Magn Reson Imaging 7:1002–1015PubMedCrossRef Xiang QS, An L (1997) Water-fat imaging with direct phase encoding. J Magn Reson Imaging 7:1002–1015PubMedCrossRef
18.
20.
go back to reference Wokke BH, Bos C, Reijnierse M, Van Rijswijk CS, Eggers H, Webb A, Verschuuren JJ, Kan HE (2013) Comparison of dixon and T1-weighted MR methods to assess the degree of fat infiltration in duchenne muscular dystrophy patients. J Magn Reson Imaging 38:619–624PubMedCrossRef Wokke BH, Bos C, Reijnierse M, Van Rijswijk CS, Eggers H, Webb A, Verschuuren JJ, Kan HE (2013) Comparison of dixon and T1-weighted MR methods to assess the degree of fat infiltration in duchenne muscular dystrophy patients. J Magn Reson Imaging 38:619–624PubMedCrossRef
21.
go back to reference Barnouin Y, Butler-Browne G, Voit T, Reversat D, Azzabou N, Leroux G, Behin A, McPhee JS, Carlier PG, Hogrel JY (2014) Manual segmentation of individual muscles of the quadriceps femoris using MRI: a reappraisal. J Magn Reson Imaging 40:239–247PubMedCrossRef Barnouin Y, Butler-Browne G, Voit T, Reversat D, Azzabou N, Leroux G, Behin A, McPhee JS, Carlier PG, Hogrel JY (2014) Manual segmentation of individual muscles of the quadriceps femoris using MRI: a reappraisal. J Magn Reson Imaging 40:239–247PubMedCrossRef
22.
go back to reference Karlsson A, Rosander J, Romu T, Tallberg J, Grönqvist A, Borga M, Dahlqvist Leinhard O (2015) Automatic and quantitative assessment of regional muscle volume by multi-atlas segmentation using whole-body water-fat MRI. J Magn Reson Imaging 41:1558–1569PubMedCrossRef Karlsson A, Rosander J, Romu T, Tallberg J, Grönqvist A, Borga M, Dahlqvist Leinhard O (2015) Automatic and quantitative assessment of regional muscle volume by multi-atlas segmentation using whole-body water-fat MRI. J Magn Reson Imaging 41:1558–1569PubMedCrossRef
23.
go back to reference Kovanlikaya A, Mittelman SD, Ward A, Geffner ME, Dorey F, Gilsanz V (2005) Obesity and fat quantification in lean tissues using three-point Dixon MR imaging. Pediatr Radiol 35:601–607PubMedCrossRef Kovanlikaya A, Mittelman SD, Ward A, Geffner ME, Dorey F, Gilsanz V (2005) Obesity and fat quantification in lean tissues using three-point Dixon MR imaging. Pediatr Radiol 35:601–607PubMedCrossRef
24.
go back to reference Belavý DL, Miokovic T, Rittweger J, Felsenberg D (2011) Estimation of changes in volume of individual lower-limb muscles using magnetic resonance imaging (during bed-rest). Physiol Meas 32:35–50PubMedCrossRef Belavý DL, Miokovic T, Rittweger J, Felsenberg D (2011) Estimation of changes in volume of individual lower-limb muscles using magnetic resonance imaging (during bed-rest). Physiol Meas 32:35–50PubMedCrossRef
25.
go back to reference Nordez A, Jolivet E, Südhoff I, Bonneau D, De Guise JA, Skalli W (2009) Comparison of methods to assess quadriceps muscle volume using magnetic resonance imaging. J Magn Reson Imaging 30:1116–1123PubMedCrossRef Nordez A, Jolivet E, Südhoff I, Bonneau D, De Guise JA, Skalli W (2009) Comparison of methods to assess quadriceps muscle volume using magnetic resonance imaging. J Magn Reson Imaging 30:1116–1123PubMedCrossRef
26.
go back to reference Voronov AV (2003) Anatomical cross-sectional areas and volumes of the muscles of the lower extremities. Hum Physiol 29:201–211CrossRef Voronov AV (2003) Anatomical cross-sectional areas and volumes of the muscles of the lower extremities. Hum Physiol 29:201–211CrossRef
27.
go back to reference Mersmann F, Bohm S, Schroll A, Arampatzis A (2014) Validation of a simplified method for muscle volume assessment. J Biomech 47:1348–1352PubMedCrossRef Mersmann F, Bohm S, Schroll A, Arampatzis A (2014) Validation of a simplified method for muscle volume assessment. J Biomech 47:1348–1352PubMedCrossRef
28.
go back to reference Pedoia V, Majumdar S, Link TM (2016) Segmentation of joint and musculoskeletal tissue in the study of arthritis. Magn Reson Mater Phy 29:207–221CrossRef Pedoia V, Majumdar S, Link TM (2016) Segmentation of joint and musculoskeletal tissue in the study of arthritis. Magn Reson Mater Phy 29:207–221CrossRef
29.
go back to reference Baudin PY, Azzabou N, Carlier PG, Paragios N (2012) Automatic skeletal muscle segmentation through random walks and graph-based seed placement. In: Proceedings—international symposium on biomedical imaging. IEEE, pp 1036–1039 Baudin PY, Azzabou N, Carlier PG, Paragios N (2012) Automatic skeletal muscle segmentation through random walks and graph-based seed placement. In: Proceedings—international symposium on biomedical imaging. IEEE, pp 1036–1039
30.
go back to reference Orgiu S, Lafortuna CL, Rastelli F, Cadioli M, Falini A, Rizzo G (2016) Automatic muscle and fat segmentation in the thigh from T 1-weighted MRI. J Magn Reson Imaging 43:601–610PubMedCrossRef Orgiu S, Lafortuna CL, Rastelli F, Cadioli M, Falini A, Rizzo G (2016) Automatic muscle and fat segmentation in the thigh from T 1-weighted MRI. J Magn Reson Imaging 43:601–610PubMedCrossRef
32.
go back to reference Heckemann RA, Hajnal JV, Aljabar P, Rueckert D, Hammers A (2006) Automatic anatomical brain MRI segmentation combining label propagation and decision fusion. Neuroimage 33:115–126PubMedCrossRef Heckemann RA, Hajnal JV, Aljabar P, Rueckert D, Hammers A (2006) Automatic anatomical brain MRI segmentation combining label propagation and decision fusion. Neuroimage 33:115–126PubMedCrossRef
34.
go back to reference Le Troter A, Fouré A, Guye M, Confort-Gouny S, Mattei JP, Gondin J, Salort-Campana E, Bendahan D (2016) Volume measurements of individual muscles in human quadriceps femoris using atlas-based segmentation approaches. Magn Reson Mater Phy 29:245–257CrossRef Le Troter A, Fouré A, Guye M, Confort-Gouny S, Mattei JP, Gondin J, Salort-Campana E, Bendahan D (2016) Volume measurements of individual muscles in human quadriceps femoris using atlas-based segmentation approaches. Magn Reson Mater Phy 29:245–257CrossRef
35.
go back to reference Scheys L, Loeckx D, Spaepen A, Suetens P, Jonkers I (2009) Atlas-based non-rigid image registration to automatically define line-of-action muscle models: a validation study. J Biomech 42:565–572PubMedCrossRef Scheys L, Loeckx D, Spaepen A, Suetens P, Jonkers I (2009) Atlas-based non-rigid image registration to automatically define line-of-action muscle models: a validation study. J Biomech 42:565–572PubMedCrossRef
36.
go back to reference Ghosh S, Ray N, Boulanger P (2017) A structured deep-learning based approach for the automated segmentation of human leg muscle from 3D MRI. In: 2017 14th Conf. Comput. Robot Vis. IEEE, pp 117–123 Ghosh S, Ray N, Boulanger P (2017) A structured deep-learning based approach for the automated segmentation of human leg muscle from 3D MRI. In: 2017 14th Conf. Comput. Robot Vis. IEEE, pp 117–123
37.
go back to reference Ogier A, Sdika M, Foure A, Le Troter A, Bendahan D (2017) Individual muscle segmentation in MR images: a 3D propagation through 2D non-linear registration approaches. In: Proceedings of annual international conference of the IEEE engineering in medicine and biology society. EMBS. IEEE, pp 317–320 Ogier A, Sdika M, Foure A, Le Troter A, Bendahan D (2017) Individual muscle segmentation in MR images: a 3D propagation through 2D non-linear registration approaches. In: Proceedings of annual international conference of the IEEE engineering in medicine and biology society. EMBS. IEEE, pp 317–320
38.
go back to reference Ranzini MBM, Ebner M, Cardoso MJ, Fotiadou A, Vercauteren T, Henckel J, Hart A, Ourselin S, Modat M (2018) Joint multimodal segmentation of clinical CT and MR from hip arthroplasty patients. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics). Springer, Cham, pp 72–84 Ranzini MBM, Ebner M, Cardoso MJ, Fotiadou A, Vercauteren T, Henckel J, Hart A, Ourselin S, Modat M (2018) Joint multimodal segmentation of clinical CT and MR from hip arthroplasty patients. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics). Springer, Cham, pp 72–84
39.
go back to reference Klemt C, Modat M, Pichat J, Cardoso MJ, Henckel J, Hart A, Ourselin S (2015) Automatic assessment of volume asymmetries applied to hip abductor muscles in patients with hip arthroplasty. Proc. SPIE 9413, Medical Imaging 2015: Image Processing, 94131M Klemt C, Modat M, Pichat J, Cardoso MJ, Henckel J, Hart A, Ourselin S (2015) Automatic assessment of volume asymmetries applied to hip abductor muscles in patients with hip arthroplasty. Proc. SPIE 9413, Medical Imaging 2015: Image Processing, 94131M
40.
go back to reference Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, Gee JC (2010) N4ITK: improved N3 bias correction. IEEE Trans Med Imaging 29:1310–1320PubMedPubMedCentralCrossRef Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, Gee JC (2010) N4ITK: improved N3 bias correction. IEEE Trans Med Imaging 29:1310–1320PubMedPubMedCentralCrossRef
41.
go back to reference Rueckert D, Sonoda LI, Hayes C, Hill DLG, Leach MO, Hawkes DJ (1999) Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans Med Imaging 18:712–721PubMedCrossRef Rueckert D, Sonoda LI, Hayes C, Hill DLG, Leach MO, Hawkes DJ (1999) Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans Med Imaging 18:712–721PubMedCrossRef
42.
go back to reference Marstal K, Berendsen F, Staring M, Klein S (2016) SimpleElastix: a user-friendly, multi-lingual library for medical image registration. In: 2016 IEEE conference on computer vision and pattern recognition work. IEEE, pp 574–582 Marstal K, Berendsen F, Staring M, Klein S (2016) SimpleElastix: a user-friendly, multi-lingual library for medical image registration. In: 2016 IEEE conference on computer vision and pattern recognition work. IEEE, pp 574–582
44.
go back to reference Avants BB, Yushkevich P, Pluta J, Minkoff D, Korczykowski M, Detre J, Gee JC (2010) The optimal template effect in hippocampus studies of diseased populations. Neuroimage 49:2457–2466PubMedCrossRef Avants BB, Yushkevich P, Pluta J, Minkoff D, Korczykowski M, Detre J, Gee JC (2010) The optimal template effect in hippocampus studies of diseased populations. Neuroimage 49:2457–2466PubMedCrossRef
45.
go back to reference Klein S, Pluim JPW, Staring M, Viergever MA (2009) Adaptive stochastic gradient descent optimisation for image registration. Int J Comput Vis 81:227–239CrossRef Klein S, Pluim JPW, Staring M, Viergever MA (2009) Adaptive stochastic gradient descent optimisation for image registration. Int J Comput Vis 81:227–239CrossRef
46.
go back to reference Aljabar P, Heckemann RA, Hammers A, Hajnal JV, Rueckert D (2009) Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy. Neuroimage 46:726–738PubMedCrossRef Aljabar P, Heckemann RA, Hammers A, Hajnal JV, Rueckert D (2009) Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy. Neuroimage 46:726–738PubMedCrossRef
47.
go back to reference Xu L, Krzyzak A, Suen CY (1992) Methods of combining multiple classifiers and their applications to handwriting recognition. IEEE Trans Syst Man Cybern 22:418–435CrossRef Xu L, Krzyzak A, Suen CY (1992) Methods of combining multiple classifiers and their applications to handwriting recognition. IEEE Trans Syst Man Cybern 22:418–435CrossRef
48.
go back to reference Kolk S, Klawer EME, Schepers J, Weerdesteyn V, Visser EP, Verdonschot N (2015) Muscle activity during walking measured using 3D MRI segmentations and [18F]-fluorodeoxyglucose in combination with positron emission tomography. Med Sci Sports Exerc 47:1896–1905PubMedCrossRef Kolk S, Klawer EME, Schepers J, Weerdesteyn V, Visser EP, Verdonschot N (2015) Muscle activity during walking measured using 3D MRI segmentations and [18F]-fluorodeoxyglucose in combination with positron emission tomography. Med Sci Sports Exerc 47:1896–1905PubMedCrossRef
50.
go back to reference Warfield SK, Zou KH, Wells WM (2004) Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Trans Med Imaging 23:903–921PubMedPubMedCentralCrossRef Warfield SK, Zou KH, Wells WM (2004) Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Trans Med Imaging 23:903–921PubMedPubMedCentralCrossRef
51.
go back to reference Jorge Cardoso M, Leung K, Modat M, Keihaninejad S, Cash D, Barnes J, Fox NC, Ourselin S (2013) STEPS: similarity and truth estimation for propagated segmentations and its application to hippocampal segmentation and brain parcelation. Med Image Anal 17:671–684PubMedCrossRef Jorge Cardoso M, Leung K, Modat M, Keihaninejad S, Cash D, Barnes J, Fox NC, Ourselin S (2013) STEPS: similarity and truth estimation for propagated segmentations and its application to hippocampal segmentation and brain parcelation. Med Image Anal 17:671–684PubMedCrossRef
52.
go back to reference Bojorquez JZ, Bricq S, Walker PM, Lalande A (2015) Automatic classification of tissues using T1 and T2 relaxation times from prostate MRI: a step towards generation of PET/MR attenuation map. In: 2015 IEEE international conference on image processing. IEEE, pp 1185–1189 Bojorquez JZ, Bricq S, Walker PM, Lalande A (2015) Automatic classification of tissues using T1 and T2 relaxation times from prostate MRI: a step towards generation of PET/MR attenuation map. In: 2015 IEEE international conference on image processing. IEEE, pp 1185–1189
53.
go back to reference Yang YX, Chong MS, Tay L, Yew S, Yeo A, Tan CH (2016) Automated assessment of thigh composition using machine learning for Dixon magnetic resonance images. Magn Reson Mater Phy 29:723–731CrossRef Yang YX, Chong MS, Tay L, Yew S, Yeo A, Tan CH (2016) Automated assessment of thigh composition using machine learning for Dixon magnetic resonance images. Magn Reson Mater Phy 29:723–731CrossRef
54.
go back to reference Wang G, Li W, Ourselin S, Vercauteren T (2018) Automatic brain tumor segmentation using cascaded anisotropic convolutional neural networks. In: Crimi A, Bakas S, Kuijf H, Menze B, Reyes M (eds) Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes 2017. Lecture notes in computer science, vol 10670. Springer, Cham Wang G, Li W, Ourselin S, Vercauteren T (2018) Automatic brain tumor segmentation using cascaded anisotropic convolutional neural networks.  In: Crimi A, Bakas S, Kuijf H, Menze B, Reyes M (eds) Brainlesion: glioma, multiple sclerosis, stroke and traumatic brain injuries. BrainLes 2017. Lecture notes in computer science, vol 10670. Springer, Cham
56.
57.
go back to reference Liu F, Zhou Z, Jang H, Samsonov A, Zhao G, Kijowski R (2018) Deep convolutional neural network and 3D deformable approach for tissue segmentation in musculoskeletal magnetic resonance imaging. Magn Reson Med 79:2379–2391PubMedCrossRef Liu F, Zhou Z, Jang H, Samsonov A, Zhao G, Kijowski R (2018) Deep convolutional neural network and 3D deformable approach for tissue segmentation in musculoskeletal magnetic resonance imaging. Magn Reson Med 79:2379–2391PubMedCrossRef
Metadata
Title
Automated multi-atlas segmentation of gluteus maximus from Dixon and T1-weighted magnetic resonance images
Authors
Martin A. Belzunce
Johann Henckel
Anastasia Fotiadou
Anna Di Laura
Alister Hart
Publication date
01-10-2020
Publisher
Springer International Publishing
Published in
Magnetic Resonance Materials in Physics, Biology and Medicine / Issue 5/2020
Print ISSN: 0968-5243
Electronic ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-020-00839-3

Other articles of this Issue 5/2020

Magnetic Resonance Materials in Physics, Biology and Medicine 5/2020 Go to the issue