Skip to main content
Top
Published in: Magnetic Resonance Materials in Physics, Biology and Medicine 5/2020

Open Access 01-10-2020 | Research Article

Dynamic contrast-enhanced QSM for perfusion imaging: a systematic comparison of ΔR2*- and QSM-based contrast agent concentration time curves in blood and tissue

Authors: Emelie Lind, Linda Knutsson, Freddy Ståhlberg, Ronnie Wirestam

Published in: Magnetic Resonance Materials in Physics, Biology and Medicine | Issue 5/2020

Login to get access

Abstract

Objective

In dynamic susceptibility contrast MRI (DSC-MRI), an arterial input function (AIF) is required to quantify perfusion. However, estimation of the concentration of contrast agent (CA) from magnitude MRI signal data is challenging. A reasonable alternative would be to quantify CA concentration using quantitative susceptibility mapping (QSM), as the CA alters the magnetic susceptibility in proportion to its concentration.

Material and methods

AIFs with reasonable appearance, selected on the basis of conventional criteria related to timing, shape, and peak concentration, were registered from both ΔR2* and QSM images and mutually compared by visual inspection. Both ΔR2*- and QSM-based AIFs were used for perfusion calculations based on tissue concentration data from ΔR2*as well as QSM images.

Results

AIFs based on ΔR2* and QSM data showed very similar shapes and the estimated cerebral blood flow values and mean transit times were similar. Analysis of corresponding ΔR2* versus QSM-based concentration estimates yielded a transverse relaxivity estimate of 89 s−1 mM−1, for voxels identified as useful AIF candidate in ΔR2* images according to the conventional criteria.

Discussion

Interestingly, arterial concentration time curves based on ΔR2* versus QSM data, for a standard DSC-MRI experiment, were generally very similar in shape, and the relaxivity obtained in voxels representing blood was similar to tissue relaxivity obtained in previous studies.
Literature
1.
go back to reference Knutsson L, Ståhlberg F, Wirestam R (2010) Absolute quantification of perfusion using dynamic susceptibility contrast MRI: pitfalls and possibilities. Magn Reson Mater Phy 23(1):1–21CrossRef Knutsson L, Ståhlberg F, Wirestam R (2010) Absolute quantification of perfusion using dynamic susceptibility contrast MRI: pitfalls and possibilities. Magn Reson Mater Phy 23(1):1–21CrossRef
2.
go back to reference Akbudak E, Kotys M, Conturo T (2004) Quadraticity and hematocrit dependence of ΔR2* AIF signals at 3T: a blood phantom study under physiologic conditions. Syllabus of the ISMRM workshop on quantitative cerebral perfusion imaging using MRI; a technical perspective. Venice, Italy, pp 10–11 Akbudak E, Kotys M, Conturo T (2004) Quadraticity and hematocrit dependence of ΔR2* AIF signals at 3T: a blood phantom study under physiologic conditions. Syllabus of the ISMRM workshop on quantitative cerebral perfusion imaging using MRI; a technical perspective. Venice, Italy, pp 10–11
3.
go back to reference Kjølby BF, Østergaard L, Kiselev VG (2006) Theoretical model of intravascular paramagnetic tracers effect on tissue relaxation. Magn Reson Med 56(1):187–197PubMedCrossRef Kjølby BF, Østergaard L, Kiselev VG (2006) Theoretical model of intravascular paramagnetic tracers effect on tissue relaxation. Magn Reson Med 56(1):187–197PubMedCrossRef
4.
go back to reference van Osch MJ, Vonken EJ, Viergever MA, van der Grond J, Bakker CJ (2003) Measuring the arterial input function with gradient echo sequences. Magn Reson Med 49(6):1067–1076PubMedCrossRef van Osch MJ, Vonken EJ, Viergever MA, van der Grond J, Bakker CJ (2003) Measuring the arterial input function with gradient echo sequences. Magn Reson Med 49(6):1067–1076PubMedCrossRef
5.
go back to reference Kjølby BF, Mikkelsen IK, Pedersen M, Østergaard L, Kiselev VG (2009) Analysis of partial volume effects on arterial input functions using gradient echo: a simulation study. Magn Reson Med 61(6):1300–1309PubMedCrossRef Kjølby BF, Mikkelsen IK, Pedersen M, Østergaard L, Kiselev VG (2009) Analysis of partial volume effects on arterial input functions using gradient echo: a simulation study. Magn Reson Med 61(6):1300–1309PubMedCrossRef
6.
go back to reference van Osch MJ, Vonken EJ, Bakker CJ, Viergever MA (2001) Correcting partial volume artifacts of the arterial input function in quantitative cerebral perfusion MRI. Magn Reson Med 45(3):477–485PubMedCrossRef van Osch MJ, Vonken EJ, Bakker CJ, Viergever MA (2001) Correcting partial volume artifacts of the arterial input function in quantitative cerebral perfusion MRI. Magn Reson Med 45(3):477–485PubMedCrossRef
7.
go back to reference Rausch M, Scheffler K, Rudin M, Radü EW (2000) Analysis of input functions from different arterial branches with gamma variate functions and cluster analysis for quantitative blood volume measurements. Magn Reson Imaging 18(10):1235–1243PubMedCrossRef Rausch M, Scheffler K, Rudin M, Radü EW (2000) Analysis of input functions from different arterial branches with gamma variate functions and cluster analysis for quantitative blood volume measurements. Magn Reson Imaging 18(10):1235–1243PubMedCrossRef
8.
go back to reference Bonekamp D, Barker PB, Leigh R, van Zijl PC, Li X (2015) Susceptibility-based analysis of dynamic gadolinium bolus perfusion MRI. Magn Reson Med 73(2):544–554PubMedCrossRef Bonekamp D, Barker PB, Leigh R, van Zijl PC, Li X (2015) Susceptibility-based analysis of dynamic gadolinium bolus perfusion MRI. Magn Reson Med 73(2):544–554PubMedCrossRef
9.
go back to reference Conturo TE, Akbudak E, Kotys MS, Chen ML, Chun SJ, Hsu RM, Sweeney CC, Markham J (2005) Arterial input functions for dynamic susceptibility contrast MRI: requirements and signal options. J Magn Reson Imaging 22(6):697–703PubMedCrossRef Conturo TE, Akbudak E, Kotys MS, Chen ML, Chun SJ, Hsu RM, Sweeney CC, Markham J (2005) Arterial input functions for dynamic susceptibility contrast MRI: requirements and signal options. J Magn Reson Imaging 22(6):697–703PubMedCrossRef
10.
go back to reference Foottit C, Cron GO, Hogan MJ, Nguyen TB, Cameron I (2010) Determination of the venous output function from MR signal phase: feasibility for quantitative DCE-MRI in human brain. Magn Reson Med 63(3):772–781PubMedCrossRef Foottit C, Cron GO, Hogan MJ, Nguyen TB, Cameron I (2010) Determination of the venous output function from MR signal phase: feasibility for quantitative DCE-MRI in human brain. Magn Reson Med 63(3):772–781PubMedCrossRef
11.
go back to reference Garpebring A, Wirestam R, Yu J, Asklund T, Karlsson M (2011) Phase-based arterial input functions in humans applied to dynamic contrast-enhanced MRI: potential usefulness and limitations. Magn Reson Mater Phy 24(4):233–245CrossRef Garpebring A, Wirestam R, Yu J, Asklund T, Karlsson M (2011) Phase-based arterial input functions in humans applied to dynamic contrast-enhanced MRI: potential usefulness and limitations. Magn Reson Mater Phy 24(4):233–245CrossRef
12.
go back to reference Lind E, Knutsson L, Kämpe R, Ståhlberg F, Wirestam R (2017) Assessment of MRI contrast agent concentration by quantitative susceptibility mapping (QSM): application to estimation of cerebral blood volume during steady state. Magn Reson Mater Phy 30(6):555–566CrossRef Lind E, Knutsson L, Kämpe R, Ståhlberg F, Wirestam R (2017) Assessment of MRI contrast agent concentration by quantitative susceptibility mapping (QSM): application to estimation of cerebral blood volume during steady state. Magn Reson Mater Phy 30(6):555–566CrossRef
13.
go back to reference Liu J, Liu T, de Rochefort L, Ledoux J, Khalidov I, Chen W, Tsiouris AJ, Wisnieff C, Spincemaille P, Prince MR, Wang Y (2012) Morphology enabled dipole inversion for quantitative susceptibility mapping using structural consistency between the magnitude image and the susceptibility map. Neuroimage 59(3):2560–2568PubMedCrossRef Liu J, Liu T, de Rochefort L, Ledoux J, Khalidov I, Chen W, Tsiouris AJ, Wisnieff C, Spincemaille P, Prince MR, Wang Y (2012) Morphology enabled dipole inversion for quantitative susceptibility mapping using structural consistency between the magnitude image and the susceptibility map. Neuroimage 59(3):2560–2568PubMedCrossRef
14.
go back to reference Xu B, Spincemaille P, Liu T, Prince MR, Dutruel S, Gupta A, Thimmappa ND, Wang Y (2015) Quantification of cerebral perfusion using dynamic quantitative susceptibility mapping. Magn Reson Med 73(4):1540–1548PubMedCrossRef Xu B, Spincemaille P, Liu T, Prince MR, Dutruel S, Gupta A, Thimmappa ND, Wang Y (2015) Quantification of cerebral perfusion using dynamic quantitative susceptibility mapping. Magn Reson Med 73(4):1540–1548PubMedCrossRef
15.
go back to reference Haacke EM, Brown RW, Thompson MR, Venkatesan R (1999) Magnetic resonance imaging: physical principles and sequence design. Wiley, New York Haacke EM, Brown RW, Thompson MR, Venkatesan R (1999) Magnetic resonance imaging: physical principles and sequence design. Wiley, New York
16.
go back to reference Deistung A, Schweser F, Reichenbach JR (2017) Overview of quantitative susceptibility mapping. NMR Biomed 30(4):e3569CrossRef Deistung A, Schweser F, Reichenbach JR (2017) Overview of quantitative susceptibility mapping. NMR Biomed 30(4):e3569CrossRef
17.
go back to reference Akbudak E, Hsu RM, Li Y, Conturo TE (1998) ΔR* and Δφ contrast agent perfusion effects in blood: quantitation and linearity assessment. In: Proceedings of the 6th scientific meeting, International Society for Magnetic Resonance in medicine, Sydney, Australia, p 1197 Akbudak E, Hsu RM, Li Y, Conturo TE (1998) ΔR* and Δφ contrast agent perfusion effects in blood: quantitation and linearity assessment. In: Proceedings of the 6th scientific meeting, International Society for Magnetic Resonance in medicine, Sydney, Australia, p 1197
18.
go back to reference de Rochefort L, Nguyen T, Brown R, Spincemaille P, Choi G, Weinsaft J, Prince MR, Wang Y (2008) In vivo quantification of contrast agent concentration using the induced magnetic field for time-resolved arterial input function measurement with MRI. Med phys 35(12):5328–5339PubMedCrossRef de Rochefort L, Nguyen T, Brown R, Spincemaille P, Choi G, Weinsaft J, Prince MR, Wang Y (2008) In vivo quantification of contrast agent concentration using the induced magnetic field for time-resolved arterial input function measurement with MRI. Med phys 35(12):5328–5339PubMedCrossRef
19.
go back to reference Olsson E, Wirestam R, Lind E (2018) MRI-based quantification of magnetic susceptibility in gel phantoms: assessment of measurement and calculation accuracy. Radiol Res Pract 2018:6709525PubMedPubMedCentral Olsson E, Wirestam R, Lind E (2018) MRI-based quantification of magnetic susceptibility in gel phantoms: assessment of measurement and calculation accuracy. Radiol Res Pract 2018:6709525PubMedPubMedCentral
20.
go back to reference Knutsson L, Lindgren E, Ahlgren A, van Osch MJ, Bloch KM, Surova Y, Ståhlberg F, van Westen D, Wirestam R (2014) Dynamic susceptibility contrast MRI with a prebolus contrast agent administration design for improved absolute quantification of perfusion. Magn Reson Med 72(4):996–1006PubMedCrossRef Knutsson L, Lindgren E, Ahlgren A, van Osch MJ, Bloch KM, Surova Y, Ståhlberg F, van Westen D, Wirestam R (2014) Dynamic susceptibility contrast MRI with a prebolus contrast agent administration design for improved absolute quantification of perfusion. Magn Reson Med 72(4):996–1006PubMedCrossRef
21.
go back to reference Knutsson L, Lindgren E, Ahlgren A, van Osch MJ, Markenroth Bloch K, Surova Y, Ståhlberg F, van Westen D, Wirestam R (2015) Reduction of arterial partial volume effects for improved absolute quantification of DSC-MRI perfusion estimates: comparison between tail scaling and prebolus administration. J Magn Reson imaging 41(4):903–908PubMedCrossRef Knutsson L, Lindgren E, Ahlgren A, van Osch MJ, Markenroth Bloch K, Surova Y, Ståhlberg F, van Westen D, Wirestam R (2015) Reduction of arterial partial volume effects for improved absolute quantification of DSC-MRI perfusion estimates: comparison between tail scaling and prebolus administration. J Magn Reson imaging 41(4):903–908PubMedCrossRef
22.
go back to reference Lindgren E, Wirestam R, Markenroth Bloch K, Ahlgren A, van Osch MJ, van Westen D, Surova Y, Ståhlberg F, Knutsson L (2014) Absolute quantification of perfusion by dynamic susceptibility contrast MRI using Bookend and VASO steady-state CBV calibration: a comparison with pseudo-continuous ASL. Magn Reson Mater Phy 27(6):487–499CrossRef Lindgren E, Wirestam R, Markenroth Bloch K, Ahlgren A, van Osch MJ, van Westen D, Surova Y, Ståhlberg F, Knutsson L (2014) Absolute quantification of perfusion by dynamic susceptibility contrast MRI using Bookend and VASO steady-state CBV calibration: a comparison with pseudo-continuous ASL. Magn Reson Mater Phy 27(6):487–499CrossRef
23.
go back to reference Wirestam R, Lind E, Ahlgren A, Ståhlberg F, Knutsson L (2016) Dynamic susceptibility contrast perfusion MRI using phase-based venous output functions: comparison with pseudo-continuous arterial spin labelling and assessment of contrast agent concentration in large veins. Magn Reson Mater Phy 29(6):823–831CrossRef Wirestam R, Lind E, Ahlgren A, Ståhlberg F, Knutsson L (2016) Dynamic susceptibility contrast perfusion MRI using phase-based venous output functions: comparison with pseudo-continuous arterial spin labelling and assessment of contrast agent concentration in large veins. Magn Reson Mater Phy 29(6):823–831CrossRef
24.
go back to reference de Rochefort L, Liu T, Kressler B, Liu J, Spincemaille P, Lebon V, Wu J, Wang Y (2010) Quantitative susceptibility map reconstruction from MR phase data using Bayesian regularization: validation and application to brain imaging. Magn Reson Med 63(1):194–206PubMedCrossRef de Rochefort L, Liu T, Kressler B, Liu J, Spincemaille P, Lebon V, Wu J, Wang Y (2010) Quantitative susceptibility map reconstruction from MR phase data using Bayesian regularization: validation and application to brain imaging. Magn Reson Med 63(1):194–206PubMedCrossRef
25.
go back to reference Liu T, Liu J, de Rochefort L, Spincemaille P, Khalidov I, Ledoux JR, Wang Y (2011) Morphology enabled dipole inversion (MEDI) from a single-angle acquisition: comparison with COSMOS in human brain imaging. Magn Reson Med 66(3):777–783PubMedCrossRef Liu T, Liu J, de Rochefort L, Spincemaille P, Khalidov I, Ledoux JR, Wang Y (2011) Morphology enabled dipole inversion (MEDI) from a single-angle acquisition: comparison with COSMOS in human brain imaging. Magn Reson Med 66(3):777–783PubMedCrossRef
26.
go back to reference Liu T, Wisnieff C, Lou M, Chen W, Spincemaille P, Wang Y (2013) Nonlinear formulation of the magnetic field to source relationship for robust quantitative susceptibility mapping. Magn Reson Med 69(2):467–476PubMedCrossRef Liu T, Wisnieff C, Lou M, Chen W, Spincemaille P, Wang Y (2013) Nonlinear formulation of the magnetic field to source relationship for robust quantitative susceptibility mapping. Magn Reson Med 69(2):467–476PubMedCrossRef
27.
go back to reference Liu T, Khalidov I, de Rochefort L, Spincemaille P, Liu J, Tsiouris AJ, Wang Y (2011) A novel background field removal method for MRI using projection onto dipole fields (PDF). NMR Biomed 24(9):1129–1136PubMedPubMedCentralCrossRef Liu T, Khalidov I, de Rochefort L, Spincemaille P, Liu J, Tsiouris AJ, Wang Y (2011) A novel background field removal method for MRI using projection onto dipole fields (PDF). NMR Biomed 24(9):1129–1136PubMedPubMedCentralCrossRef
28.
go back to reference Thilmann O (2004) LUPE: An extensible modular framework for evaluation of DSC-acquired perfusion images. In: Proceedings of the 21st Annual Meeting of the ESMRMB Magn Reson Mater Phy 16 (electronic suppl 1):537 Thilmann O (2004) LUPE: An extensible modular framework for evaluation of DSC-acquired perfusion images. In: Proceedings of the 21st Annual Meeting of the ESMRMB Magn Reson Mater Phy 16 (electronic suppl 1):537
29.
go back to reference Rempp KA, Brix G, Wenz F, Becker CR, Gückel F, Lorenz WJ (1994) Quantification of regional cerebral blood flow and volume with dynamic susceptibility contrast-enhanced MR imaging. Radiology 193(3):637–641PubMedCrossRef Rempp KA, Brix G, Wenz F, Becker CR, Gückel F, Lorenz WJ (1994) Quantification of regional cerebral blood flow and volume with dynamic susceptibility contrast-enhanced MR imaging. Radiology 193(3):637–641PubMedCrossRef
30.
go back to reference Zierler KL (1962) Theoretical basis of indicator-dilution methods for measuring flow and volume. Circ Res 10(3):393–407CrossRef Zierler KL (1962) Theoretical basis of indicator-dilution methods for measuring flow and volume. Circ Res 10(3):393–407CrossRef
31.
go back to reference Ruh A, Kiselev VG (2019) Larmor frequency dependence on structural anisotropy of magnetically heterogenous media. J Magn Reson 307:106584PubMedCrossRef Ruh A, Kiselev VG (2019) Larmor frequency dependence on structural anisotropy of magnetically heterogenous media. J Magn Reson 307:106584PubMedCrossRef
32.
go back to reference Leenders KL, Perani D, Lammertsma AA, Heather JD, Buckingham P, Healy MJ, Gibbs JM, Wise RJ, Hatazawa J, Herold S, Beaney RP, Brooks DJ, Spinks T, Rhodes C, Frackowiak RSJ, Jones T (1990) Cerebral blood flow, blood volume and oxygen utilization. Normal values and effect of age. Brain 113 (1):27–47. Leenders KL, Perani D, Lammertsma AA, Heather JD, Buckingham P, Healy MJ, Gibbs JM, Wise RJ, Hatazawa J, Herold S, Beaney RP, Brooks DJ, Spinks T, Rhodes C, Frackowiak RSJ, Jones T (1990) Cerebral blood flow, blood volume and oxygen utilization. Normal values and effect of age. Brain 113 (1):27–47.
33.
go back to reference Bleeker EJ, van Buchem MA, van Osch MJ (2009) Optimal location for arterial input function measurements near the middle cerebral artery in first-pass perfusion MRI. J Cereb Blood Flow Metab 29(4):840–852PubMedCrossRef Bleeker EJ, van Buchem MA, van Osch MJ (2009) Optimal location for arterial input function measurements near the middle cerebral artery in first-pass perfusion MRI. J Cereb Blood Flow Metab 29(4):840–852PubMedCrossRef
34.
go back to reference Bleeker EJ, van Buchem MA, Webb AG, van Osch MJ (2010) Phase-based arterial input function measurements for dynamic susceptibility contrast MRI. Magn Reson Med 64(2):358–368PubMedCrossRef Bleeker EJ, van Buchem MA, Webb AG, van Osch MJ (2010) Phase-based arterial input function measurements for dynamic susceptibility contrast MRI. Magn Reson Med 64(2):358–368PubMedCrossRef
35.
go back to reference Kellner E, Mader I, Reisert M, Urbach H, Kiselev VG (2018) Arterial input function in a dedicated slice for cerebral perfusion measurements in humans. Magn Reson Mater Phy 31(3):439–448CrossRef Kellner E, Mader I, Reisert M, Urbach H, Kiselev VG (2018) Arterial input function in a dedicated slice for cerebral perfusion measurements in humans. Magn Reson Mater Phy 31(3):439–448CrossRef
36.
go back to reference Chen JJ, Smith MR, Frayne R (2005) The impact of partial-volume effects in dynamic susceptibility contrast magnetic resonance perfusion imaging. J Magn Reson Imaging 22(3):390–399PubMedCrossRef Chen JJ, Smith MR, Frayne R (2005) The impact of partial-volume effects in dynamic susceptibility contrast magnetic resonance perfusion imaging. J Magn Reson Imaging 22(3):390–399PubMedCrossRef
37.
go back to reference Cron GO, Wallace JC, Stevens WD, Fortin T, Pappas BA, Wilkins RC, Kelcz F, Santyr GE (2005) A comparison of T2*-weighted magnitude and phase imaging for measuring the arterial input function in the rat aorta following intravenous injection of gadolinium contrast agent. Magn Reson Imaging 23(5):619–627PubMedCrossRef Cron GO, Wallace JC, Stevens WD, Fortin T, Pappas BA, Wilkins RC, Kelcz F, Santyr GE (2005) A comparison of T2*-weighted magnitude and phase imaging for measuring the arterial input function in the rat aorta following intravenous injection of gadolinium contrast agent. Magn Reson Imaging 23(5):619–627PubMedCrossRef
38.
go back to reference Xu Y, Haacke EM (2006) The role of voxel aspect ratio in determining apparent vascular phase behavior in susceptibility weighted imaging. Magn Reson Imaging 24(2):155–160PubMedCrossRef Xu Y, Haacke EM (2006) The role of voxel aspect ratio in determining apparent vascular phase behavior in susceptibility weighted imaging. Magn Reson Imaging 24(2):155–160PubMedCrossRef
39.
go back to reference Haacke EM, Tang J, Neelavalli J, Cheng YC (2010) Susceptibility mapping as a means to visualize veins and quantify oxygen saturation. J Magn Reson Imaging 32(3):663–676PubMedPubMedCentralCrossRef Haacke EM, Tang J, Neelavalli J, Cheng YC (2010) Susceptibility mapping as a means to visualize veins and quantify oxygen saturation. J Magn Reson Imaging 32(3):663–676PubMedPubMedCentralCrossRef
40.
go back to reference Kiselev VG (2001) On the theoretical basis of perfusion measurements by dynamic susceptibility contrast MRI. Magn Reson Med 46(6):1113–1122PubMedCrossRef Kiselev VG (2001) On the theoretical basis of perfusion measurements by dynamic susceptibility contrast MRI. Magn Reson Med 46(6):1113–1122PubMedCrossRef
41.
go back to reference Xu C, Kiselev VG, Möller HE, Fiebach JB (2013) Dynamic hysteresis between gradient echo and spin echo attenuations in dynamic susceptibility contrast imaging. Magn Reson Med 69(4):981–991PubMedCrossRef Xu C, Kiselev VG, Möller HE, Fiebach JB (2013) Dynamic hysteresis between gradient echo and spin echo attenuations in dynamic susceptibility contrast imaging. Magn Reson Med 69(4):981–991PubMedCrossRef
42.
go back to reference Kosior JC, Frayne R (2010) Perfusion parameters derived from bolus-tracking perfusion imaging are immune to tracer recirculation. J Magn Reson Imaging 31(3):753–756PubMedCrossRef Kosior JC, Frayne R (2010) Perfusion parameters derived from bolus-tracking perfusion imaging are immune to tracer recirculation. J Magn Reson Imaging 31(3):753–756PubMedCrossRef
43.
go back to reference Kiselev VG, Novikov DS (2018) Transverse NMR relaxation in biological tissues. Neuroimage 182:149–168PubMedCrossRef Kiselev VG, Novikov DS (2018) Transverse NMR relaxation in biological tissues. Neuroimage 182:149–168PubMedCrossRef
44.
go back to reference Marques JP, Bowtell RW (2008) Using forward calculations of the magnetic field perturbation due to a realistic vascular model to explore the BOLD effect. NMR Biomed 21(6):553–565PubMedCrossRef Marques JP, Bowtell RW (2008) Using forward calculations of the magnetic field perturbation due to a realistic vascular model to explore the BOLD effect. NMR Biomed 21(6):553–565PubMedCrossRef
45.
go back to reference Yablonskiy DA, Sukstanskii AL, He X (2013) Blood oxygenation level-dependent (BOLD)-based techniques for the quantification of brain hemodynamic and metabolic properties—theoretical models and experimental approaches. NMR Biomed 26(8):963–986PubMedCrossRef Yablonskiy DA, Sukstanskii AL, He X (2013) Blood oxygenation level-dependent (BOLD)-based techniques for the quantification of brain hemodynamic and metabolic properties—theoretical models and experimental approaches. NMR Biomed 26(8):963–986PubMedCrossRef
46.
go back to reference Liu Z, Spincemaille P, Yao Y, Zhang Y, Wang Y (2018) MEDI+0 morphology enabled dipole inversion with automatic uniform cerebrospinal fluid zero reference for quantitative susceptibility mapping. Magn Reson Med 79(5):2795–2803PubMedCrossRef Liu Z, Spincemaille P, Yao Y, Zhang Y, Wang Y (2018) MEDI+0 morphology enabled dipole inversion with automatic uniform cerebrospinal fluid zero reference for quantitative susceptibility mapping. Magn Reson Med 79(5):2795–2803PubMedCrossRef
Metadata
Title
Dynamic contrast-enhanced QSM for perfusion imaging: a systematic comparison of ΔR2*- and QSM-based contrast agent concentration time curves in blood and tissue
Authors
Emelie Lind
Linda Knutsson
Freddy Ståhlberg
Ronnie Wirestam
Publication date
01-10-2020
Publisher
Springer International Publishing
Published in
Magnetic Resonance Materials in Physics, Biology and Medicine / Issue 5/2020
Print ISSN: 0968-5243
Electronic ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-020-00831-x

Other articles of this Issue 5/2020

Magnetic Resonance Materials in Physics, Biology and Medicine 5/2020 Go to the issue