Skip to main content
Top
Published in: Magnetic Resonance Materials in Physics, Biology and Medicine 5/2016

01-10-2016 | Research Article

Automated assessment of thigh composition using machine learning for Dixon magnetic resonance images

Authors: Yu Xin Yang, Mei Sian Chong, Laura Tay, Suzanne Yew, Audrey Yeo, Cher Heng Tan

Published in: Magnetic Resonance Materials in Physics, Biology and Medicine | Issue 5/2016

Login to get access

Abstract

Objectives

To develop and validate a machine learning based automated segmentation method that jointly analyzes the four contrasts provided by Dixon MRI technique for improved thigh composition segmentation accuracy.

Materials and methods

The automatic detection of body composition is formulized as a three-class classification issue. Each image voxel in the training dataset is assigned with a correct label. A voxel classifier is trained and subsequently used to predict unseen data. Morphological operations are finally applied to generate volumetric segmented images for different structures. We applied this algorithm on datasets of (1) four contrast images, (2) water and fat images, and (3) unsuppressed images acquired from 190 subjects.

Results

The proposed method using four contrasts achieved most accurate and robust segmentation compared to the use of combined fat and water images and the use of unsuppressed image, average Dice coefficients of 0.94 ± 0.03, 0.96 ± 0.03, 0.80 ± 0.03, and 0.97 ± 0.01 has been achieved to bone region, subcutaneous adipose tissue (SAT), inter-muscular adipose tissue (IMAT), and muscle respectively.

Conclusion

Our proposed method based on machine learning produces accurate tissue quantification and showed an effective use of large information provided by the four contrast images from Dixon MRI.
Literature
2.
go back to reference Do Lee C, Blair SN, Jackson AS (1999) Cardiorespiratory fitness, body composition, and all-cause and cardiovascular disease mortality in men. Am J Clin Nutr 69(3):373–380 Do Lee C, Blair SN, Jackson AS (1999) Cardiorespiratory fitness, body composition, and all-cause and cardiovascular disease mortality in men. Am J Clin Nutr 69(3):373–380
3.
go back to reference Park SW, Goodpaster BH, Strotmeyer ES, de Rekeneire N, Harris TB, Schwartz AV, Tylavsky FA, Newman AB (2006) Decreased muscle strength and quality in older adults with type 2 diabetes. The health, aging, and body composition study. Diabetes 55(6):1813–1818CrossRefPubMed Park SW, Goodpaster BH, Strotmeyer ES, de Rekeneire N, Harris TB, Schwartz AV, Tylavsky FA, Newman AB (2006) Decreased muscle strength and quality in older adults with type 2 diabetes. The health, aging, and body composition study. Diabetes 55(6):1813–1818CrossRefPubMed
4.
go back to reference Collaboration PS (2009) Body-mass index and cause-specific mortality in 900,000 adults: collaborative analyses of 57 prospective studies. Lancet 373(9669):1083–1096CrossRef Collaboration PS (2009) Body-mass index and cause-specific mortality in 900,000 adults: collaborative analyses of 57 prospective studies. Lancet 373(9669):1083–1096CrossRef
5.
go back to reference Finucane MM, Stevens GA, Cowan MJ, Danaei G, Lin JK, Paciorek CJ, Singh GM, Gutierrez HR, Lu Y, Bahalim AN (2011) National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9· 1 million participants. Lancet 377(9765):557–567CrossRefPubMedPubMedCentral Finucane MM, Stevens GA, Cowan MJ, Danaei G, Lin JK, Paciorek CJ, Singh GM, Gutierrez HR, Lu Y, Bahalim AN (2011) National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9· 1 million participants. Lancet 377(9765):557–567CrossRefPubMedPubMedCentral
6.
go back to reference Lim JP, Leung BP, Ding YY, Tay L, Ismail NH, Yeo A, Yew S, Chong MS (2015) Monocyte chemoattractant protein-1: a proinflammatory cytokine elevated in sarcopenic obesity. Clin Interv Aging 10:605–609PubMedPubMedCentral Lim JP, Leung BP, Ding YY, Tay L, Ismail NH, Yeo A, Yew S, Chong MS (2015) Monocyte chemoattractant protein-1: a proinflammatory cytokine elevated in sarcopenic obesity. Clin Interv Aging 10:605–609PubMedPubMedCentral
7.
go back to reference Wang C, Bai L (2012) Sarcopenia in the elderly: basic and clinical issues. Geriatr Gerontol Int 12(3):388–396CrossRefPubMed Wang C, Bai L (2012) Sarcopenia in the elderly: basic and clinical issues. Geriatr Gerontol Int 12(3):388–396CrossRefPubMed
8.
go back to reference Addison O, Marcus RL, LaStayo PC, Ryan AS (2014) Intermuscular fat: a review of the consequences and causes. Int J Endocrinol Addison O, Marcus RL, LaStayo PC, Ryan AS (2014) Intermuscular fat: a review of the consequences and causes. Int J Endocrinol
9.
10.
go back to reference Armao D, Guyon JP, Firat Z, Brown MA, Semelka RC (2006) Accurate quantification of visceral adipose tissue (VAT) using water-saturation MRI and computer segmentation: preliminary results. J Magn Reson Imaging 23(5):736–741CrossRefPubMed Armao D, Guyon JP, Firat Z, Brown MA, Semelka RC (2006) Accurate quantification of visceral adipose tissue (VAT) using water-saturation MRI and computer segmentation: preliminary results. J Magn Reson Imaging 23(5):736–741CrossRefPubMed
11.
go back to reference Makrogiannis S, Serai S, Fishbein KW, Schreiber C, Ferrucci L, Spencer RG (2012) Automated quantification of muscle and fat in the thigh from water-, fat-, and nonsuppressed MR images. J Magn Reson Imaging 35(5):1152–1161CrossRefPubMed Makrogiannis S, Serai S, Fishbein KW, Schreiber C, Ferrucci L, Spencer RG (2012) Automated quantification of muscle and fat in the thigh from water-, fat-, and nonsuppressed MR images. J Magn Reson Imaging 35(5):1152–1161CrossRefPubMed
12.
go back to reference Kullberg J, Johansson L, Ahlström H, Courivaud F, Koken P, Eggers H, Börnert P (2009) Automated assessment of whole-body adipose tissue depots from continuously moving bed MRI: a feasibility study. J Magn Reson Imaging 30(1):185–193CrossRefPubMed Kullberg J, Johansson L, Ahlström H, Courivaud F, Koken P, Eggers H, Börnert P (2009) Automated assessment of whole-body adipose tissue depots from continuously moving bed MRI: a feasibility study. J Magn Reson Imaging 30(1):185–193CrossRefPubMed
13.
go back to reference Sadananthan SA, Prakash B, Leow MKS, Khoo CM, Chou H, Venkataraman K, Khoo EY, Lee YS, Gluckman PD, Tai ES (2015) Automated segmentation of visceral and subcutaneous (deep and superficial) adipose tissues in normal and overweight men. J Magn Reson Imaging 41(4):924–934CrossRefPubMed Sadananthan SA, Prakash B, Leow MKS, Khoo CM, Chou H, Venkataraman K, Khoo EY, Lee YS, Gluckman PD, Tai ES (2015) Automated segmentation of visceral and subcutaneous (deep and superficial) adipose tissues in normal and overweight men. J Magn Reson Imaging 41(4):924–934CrossRefPubMed
14.
go back to reference Wald D, Teucher B, Dinkel J, Kaaks R, Delorme S, Boeing H, Seidensaal K, Meinzer HP, Heimann T (2012) Automatic quantification of subcutaneous and visceral adipose tissue from whole-body magnetic resonance images suitable for large cohort studies. J Magn Reson Imaging 36(6):1421–1434CrossRefPubMed Wald D, Teucher B, Dinkel J, Kaaks R, Delorme S, Boeing H, Seidensaal K, Meinzer HP, Heimann T (2012) Automatic quantification of subcutaneous and visceral adipose tissue from whole-body magnetic resonance images suitable for large cohort studies. J Magn Reson Imaging 36(6):1421–1434CrossRefPubMed
15.
go back to reference Leinhard OD, Johansson A, Rydell J, Smedby Ö, NystrÖm F, Lundberg P, Borga M (2008) Quantitative abdominal fat estimation using MRI. In: Pattern recognition, 2008. ICPR 2008. 19th International Conference on, 2008. IEEE, pp 1–4 Leinhard OD, Johansson A, Rydell J, Smedby Ö, NystrÖm F, Lundberg P, Borga M (2008) Quantitative abdominal fat estimation using MRI. In: Pattern recognition, 2008. ICPR 2008. 19th International Conference on, 2008. IEEE, pp 1–4
16.
go back to reference Karlsson A, Rosander J, Romu T, Tallberg J, Grönqvist A, Borga M, Dahlqvist Leinhard O (2015) Automatic and quantitative assessment of regional muscle volume by multi-atlas segmentation using whole-body water–fat MRI. J Magn Reson Imaging 41(6):1558–1569CrossRefPubMed Karlsson A, Rosander J, Romu T, Tallberg J, Grönqvist A, Borga M, Dahlqvist Leinhard O (2015) Automatic and quantitative assessment of regional muscle volume by multi-atlas segmentation using whole-body water–fat MRI. J Magn Reson Imaging 41(6):1558–1569CrossRefPubMed
17.
go back to reference Wang D, Shi L, Chu WC, Hu M, Tomlinson B, Huang W-H, Wang T, Heng PA, Yeung DK, Ahuja AT (2015) Fully automatic and nonparametric quantification of adipose tissue in fat–water separation MR imaging. Med Biol Eng Comput 53(11):1247–1254CrossRefPubMed Wang D, Shi L, Chu WC, Hu M, Tomlinson B, Huang W-H, Wang T, Heng PA, Yeung DK, Ahuja AT (2015) Fully automatic and nonparametric quantification of adipose tissue in fat–water separation MR imaging. Med Biol Eng Comput 53(11):1247–1254CrossRefPubMed
18.
go back to reference Joshi AA, Hu HH, Leahy RM, Goran MI, Nayak KS (2013) Automatic intra-subject registration-based segmentation of abdominal fat from water–fat MRI. J Magn Reson Imaging 37(2):423–430CrossRefPubMed Joshi AA, Hu HH, Leahy RM, Goran MI, Nayak KS (2013) Automatic intra-subject registration-based segmentation of abdominal fat from water–fat MRI. J Magn Reson Imaging 37(2):423–430CrossRefPubMed
19.
go back to reference Kullberg J, Karlsson AK, Stokland E, Svensson PA, Dahlgren J (2010) Adipose tissue distribution in children: automated quantification using water and fat MRI. J Magn Reson Imaging 32(1):204–210CrossRefPubMed Kullberg J, Karlsson AK, Stokland E, Svensson PA, Dahlgren J (2010) Adipose tissue distribution in children: automated quantification using water and fat MRI. J Magn Reson Imaging 32(1):204–210CrossRefPubMed
20.
go back to reference Valentinitsch A, Karampinos DC, Alizai H, Subburaj K, Kumar D, Link MT, Majumdar S (2013) Automated unsupervised multi-parametric classification of adipose tissue depots in skeletal muscle. J Magn Reson Imaging 37(4):917–927CrossRefPubMed Valentinitsch A, Karampinos DC, Alizai H, Subburaj K, Kumar D, Link MT, Majumdar S (2013) Automated unsupervised multi-parametric classification of adipose tissue depots in skeletal muscle. J Magn Reson Imaging 37(4):917–927CrossRefPubMed
21.
go back to reference Tustison NJ, Avants BB, Cook P, Zheng Y, Egan A, Yushkevich P, Gee JC (2010) N4ITK: improved N3 bias correction. IEEE Trans Med Imaging 29(6):1310–1320CrossRefPubMedPubMedCentral Tustison NJ, Avants BB, Cook P, Zheng Y, Egan A, Yushkevich P, Gee JC (2010) N4ITK: improved N3 bias correction. IEEE Trans Med Imaging 29(6):1310–1320CrossRefPubMedPubMedCentral
22.
go back to reference Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vision 1(4):321–331CrossRef Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vision 1(4):321–331CrossRef
23.
go back to reference Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3):1116–1128CrossRefPubMed Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3):1116–1128CrossRefPubMed
24.
go back to reference Huang G-B, Zhu Q-Y, Siew C-K (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1):489–501CrossRef Huang G-B, Zhu Q-Y, Siew C-K (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1):489–501CrossRef
25.
go back to reference Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26(3):297–302CrossRef Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26(3):297–302CrossRef
26.
go back to reference MATLAB (2010) Version 7.11.1 edn. The MathWorks Inc., Natick, Massachusetts MATLAB (2010) Version 7.11.1 edn. The MathWorks Inc., Natick, Massachusetts
27.
go back to reference Conover WJ (1998) Practical nonparametric statistics Conover WJ (1998) Practical nonparametric statistics
28.
go back to reference StataCorp (2015) Stata statistical software: release 14. StataCorp LP, College Station StataCorp (2015) Stata statistical software: release 14. StataCorp LP, College Station
29.
go back to reference Hall LO, Bensaid AM, Clarke LP, Velthuizen RP, Silbiger MS, Bezdek JC (1992) A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain. IEEE Trans Neural Netw 3(5):672–682CrossRefPubMed Hall LO, Bensaid AM, Clarke LP, Velthuizen RP, Silbiger MS, Bezdek JC (1992) A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain. IEEE Trans Neural Netw 3(5):672–682CrossRefPubMed
30.
go back to reference Rajon DA, Jokisch DW, Patton PW, Shah AP, Watchman CJ, Bolch WE (2002) Voxel effects within digital images of trabecular bone and their consequences on chord-length distribution measurements. Phys Med Biol 47(10):1741CrossRefPubMed Rajon DA, Jokisch DW, Patton PW, Shah AP, Watchman CJ, Bolch WE (2002) Voxel effects within digital images of trabecular bone and their consequences on chord-length distribution measurements. Phys Med Biol 47(10):1741CrossRefPubMed
Metadata
Title
Automated assessment of thigh composition using machine learning for Dixon magnetic resonance images
Authors
Yu Xin Yang
Mei Sian Chong
Laura Tay
Suzanne Yew
Audrey Yeo
Cher Heng Tan
Publication date
01-10-2016
Publisher
Springer Berlin Heidelberg
Published in
Magnetic Resonance Materials in Physics, Biology and Medicine / Issue 5/2016
Print ISSN: 0968-5243
Electronic ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-016-0547-2

Other articles of this Issue 5/2016

Magnetic Resonance Materials in Physics, Biology and Medicine 5/2016 Go to the issue