Skip to main content
Top
Published in: Magnetic Resonance Materials in Physics, Biology and Medicine 1/2020

Open Access 01-02-2020 | Magnetic Resonance Imaging | Research Article

Consensus-based technical recommendations for clinical translation of renal ASL MRI

Authors: Fabio Nery, Charlotte E. Buchanan, Anita A. Harteveld, Aghogho Odudu, Octavia Bane, Eleanor F. Cox, Katja Derlin, H. Michael Gach, Xavier Golay, Marcel Gutberlet, Christoffer Laustsen, Alexandra Ljimani, Ananth J. Madhuranthakam, Ivan Pedrosa, Pottumarthi V. Prasad, Philip M. Robson, Kanishka Sharma, Steven Sourbron, Manuel Taso, David L. Thomas, Danny J. J. Wang, Jeff L. Zhang, David C. Alsop, Sean B. Fain, Susan T. Francis, María A. Fernández-Seara

Published in: Magnetic Resonance Materials in Physics, Biology and Medicine | Issue 1/2020

Login to get access

Abstract

Objectives

This study aimed at developing technical recommendations for the acquisition, processing and analysis of renal ASL data in the human kidney at 1.5 T and 3 T field strengths that can promote standardization of renal perfusion measurements and facilitate the comparability of results across scanners and in multi-centre clinical studies.

Methods

An international panel of 23 renal ASL experts followed a modified Delphi process, including on-line surveys and two in-person meetings, to formulate a series of consensus statements regarding patient preparation, hardware, acquisition protocol, analysis steps and data reporting.

Results

Fifty-nine statements achieved consensus, while agreement could not be reached on two statements related to patient preparation. As a default protocol, the panel recommends pseudo-continuous (PCASL) or flow-sensitive alternating inversion recovery (FAIR) labelling with a single-slice spin-echo EPI readout with background suppression and a simple but robust quantification model.

Discussion

This approach is considered robust and reproducible and can provide renal perfusion images of adequate quality and SNR for most applications. If extended kidney coverage is desirable, a 2D multislice readout is recommended. These recommendations are based on current available evidence and expert opinion. Nonetheless they are expected to be updated as more data become available, since the renal ASL literature is rapidly expanding.
Appendix
Available only for authorised users
Literature
1.
go back to reference Evans RG, Gardiner BS, Smith DW, O’Connor PM (2008) Methods for studying the physiology of kidney oxygenation. Clin Exp Pharmacol Physiol 35:1405–1412PubMed Evans RG, Gardiner BS, Smith DW, O’Connor PM (2008) Methods for studying the physiology of kidney oxygenation. Clin Exp Pharmacol Physiol 35:1405–1412PubMed
2.
go back to reference Singh P, Ricksten S-E, Bragadottir G, Redfors B, Nordquist L (2013) Renal oxygenation and haemodynamics in acute kidney injury and chronic kidney disease. Clin Exp Pharmacol Physiol 40:138–147PubMedPubMedCentral Singh P, Ricksten S-E, Bragadottir G, Redfors B, Nordquist L (2013) Renal oxygenation and haemodynamics in acute kidney injury and chronic kidney disease. Clin Exp Pharmacol Physiol 40:138–147PubMedPubMedCentral
3.
go back to reference Ow CPC, Ngo JP, Ullah MM, Hilliard LM, Evans RG (2018) Renal hypoxia in kidney disease: cause or consequence? Acta Physiol 222:e12999 Ow CPC, Ngo JP, Ullah MM, Hilliard LM, Evans RG (2018) Renal hypoxia in kidney disease: cause or consequence? Acta Physiol 222:e12999
4.
go back to reference Detre JA, Leigh JS, Williams DS, Koretsky AP (1992) Perfusion imaging. Magn Reson Med 23:37–45PubMed Detre JA, Leigh JS, Williams DS, Koretsky AP (1992) Perfusion imaging. Magn Reson Med 23:37–45PubMed
5.
go back to reference Williams DS, Detre JA, Leigh JS, Koretsky AP (1992) Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci 89:212–216PubMedPubMedCentral Williams DS, Detre JA, Leigh JS, Koretsky AP (1992) Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci 89:212–216PubMedPubMedCentral
6.
go back to reference Roberts DA, Detre JA, Bolinger L, Insko EK, Lenkinski RE, Pentecost MJ, Leigh JS (1995) Renal perfusion in humans: MR imaging with spin tagging of arterial water. Radiology 196:281–286PubMed Roberts DA, Detre JA, Bolinger L, Insko EK, Lenkinski RE, Pentecost MJ, Leigh JS (1995) Renal perfusion in humans: MR imaging with spin tagging of arterial water. Radiology 196:281–286PubMed
7.
go back to reference Schieda N, Blaichman JI, Costa AF, Glikstein R, Hurrell C, James M, Jabehdar Maralani P, Shabana W, Tang A, Tsampalieros A, van der Pol C, Hiremath S (2018) Gadolinium-based contrast agents in kidney disease: comprehensive Review and Clinical Practice Guideline Issued by the Canadian Association of Radiologists. Can Assoc Radiol J 69:136–150PubMed Schieda N, Blaichman JI, Costa AF, Glikstein R, Hurrell C, James M, Jabehdar Maralani P, Shabana W, Tang A, Tsampalieros A, van der Pol C, Hiremath S (2018) Gadolinium-based contrast agents in kidney disease: comprehensive Review and Clinical Practice Guideline Issued by the Canadian Association of Radiologists. Can Assoc Radiol J 69:136–150PubMed
8.
go back to reference Odudu A, Nery F, Harteveld AA, Evans RG, Pendse D, Buchanan CE, Francis ST, Fernández-Seara MA (2018) Arterial spin labelling MRI to measure renal perfusion: a systematic review and statement paper. Nephrol Dial Transplant 33:ii15–ii21. Odudu A, Nery F, Harteveld AA, Evans RG, Pendse D, Buchanan CE, Francis ST, Fernández-Seara MA (2018) Arterial spin labelling MRI to measure renal perfusion: a systematic review and statement paper. Nephrol Dial Transplant 33:ii15–ii21.
9.
go back to reference Becker AS, Rossi C (2017) Renal arterial spin labeling magnetic resonance imaging. Nephron 135:1–5PubMed Becker AS, Rossi C (2017) Renal arterial spin labeling magnetic resonance imaging. Nephron 135:1–5PubMed
10.
go back to reference Nery F, Gordon I, Thomas D (2018) Non-invasive renal perfusion imaging using arterial spin labeling MRI: challenges and opportunities. Diagnostics 8:2PubMedCentral Nery F, Gordon I, Thomas D (2018) Non-invasive renal perfusion imaging using arterial spin labeling MRI: challenges and opportunities. Diagnostics 8:2PubMedCentral
12.
go back to reference Buchanan CE, Cox EF, Francis ST (2018) Evaluation of 2D imaging schemes for pulsed arterial spin labeling of the human kidney cortex. Diagnostics 8:43PubMedCentral Buchanan CE, Cox EF, Francis ST (2018) Evaluation of 2D imaging schemes for pulsed arterial spin labeling of the human kidney cortex. Diagnostics 8:43PubMedCentral
13.
go back to reference Eckerbom P, Hansell P, Cox E, Buchanan C, Weis J, Palm F, Francis S, Liss P (2019) Multiparametric assessment of renal physiology in healthy volunteers using noninvasive magnetic resonance imaging. Am J Physiol Physiol 316:F693–F702 Eckerbom P, Hansell P, Cox E, Buchanan C, Weis J, Palm F, Francis S, Liss P (2019) Multiparametric assessment of renal physiology in healthy volunteers using noninvasive magnetic resonance imaging. Am J Physiol Physiol 316:F693–F702
15.
go back to reference BT Haddock ST Francis HBW Larsson UB Andersen 2018 Assessment of perfusion and oxygenation of the human renal cortex and medulla by quantitative MRI during Handgrip Exercise J Am Soc Nephrol BT Haddock ST Francis HBW Larsson UB Andersen 2018 Assessment of perfusion and oxygenation of the human renal cortex and medulla by quantitative MRI during Handgrip Exercise J Am Soc Nephrol
16.
go back to reference Haddock B, Larsson HBW, Francis S, Andersen UB (2019) Human renal response to furosemide: Simultaneous oxygenation and perfusion measurements in cortex and medulla. Acta Physiol 0:e13292. Haddock B, Larsson HBW, Francis S, Andersen UB (2019) Human renal response to furosemide: Simultaneous oxygenation and perfusion measurements in cortex and medulla. Acta Physiol 0:e13292.
17.
go back to reference Hellms S, Gueler F, Gutberlet M, Schebb NH, Rund K, Kielstein JT, VoChieu V, Rauhut S, Greite R, Martirosian P, Haller H, Wacker F, Derlin K (2019) Single‐dose diclofenac in healthy volunteers can cause decrease in renal perfusion measured by functional magnetic resonance imaging. J Pharm Pharmacol 0:jphp.13105. Hellms S, Gueler F, Gutberlet M, Schebb NH, Rund K, Kielstein JT, VoChieu V, Rauhut S, Greite R, Martirosian P, Haller H, Wacker F, Derlin K (2019) Single‐dose diclofenac in healthy volunteers can cause decrease in renal perfusion measured by functional magnetic resonance imaging. J Pharm Pharmacol 0:jphp.13105.
18.
go back to reference Nery F, De Vita E, Clark CA, Gordon I, Thomas DL (2019) Robust kidney perfusion mapping in pediatric chronic kidney disease using single-shot 3D-GRASE ASL with optimized retrospective motion correction. Magn Reson Med 81:2972–2984PubMed Nery F, De Vita E, Clark CA, Gordon I, Thomas DL (2019) Robust kidney perfusion mapping in pediatric chronic kidney disease using single-shot 3D-GRASE ASL with optimized retrospective motion correction. Magn Reson Med 81:2972–2984PubMed
19.
go back to reference Prasad PV, Li L-P, Thacker JM, Li W, Hack B, Kohn O, Sprague SM (2019) Cortical perfusion and tubular function as evaluated by magnetic resonance imaging correlates with annual loss in renal function in moderate chronic kidney disease. Am J Nephrol 49:114–124PubMed Prasad PV, Li L-P, Thacker JM, Li W, Hack B, Kohn O, Sprague SM (2019) Cortical perfusion and tubular function as evaluated by magnetic resonance imaging correlates with annual loss in renal function in moderate chronic kidney disease. Am J Nephrol 49:114–124PubMed
20.
go back to reference Shirvani S, Tokarczuk P, Statton B, Quinlan M, Berry A, Tomlinson J, Weale P, Kühn B, O’Regan DP (2019) Motion-corrected multiparametric renal arterial spin labelling at 3 T: reproducibility and effect of vasodilator challenge. Eur Radiol 29:232–240PubMed Shirvani S, Tokarczuk P, Statton B, Quinlan M, Berry A, Tomlinson J, Weale P, Kühn B, O’Regan DP (2019) Motion-corrected multiparametric renal arterial spin labelling at 3 T: reproducibility and effect of vasodilator challenge. Eur Radiol 29:232–240PubMed
21.
go back to reference Taso M, Guidon A, Alsop DC (2019) Influence of background suppression and retrospective realignment on free-breathing renal perfusion measurement using pseudo-continuous ASL. Magn Reson Med 81:2439–2449PubMed Taso M, Guidon A, Alsop DC (2019) Influence of background suppression and retrospective realignment on free-breathing renal perfusion measurement using pseudo-continuous ASL. Magn Reson Med 81:2439–2449PubMed
22.
go back to reference Taso M, Zhao L, Guidon A, Litwiller DV, Alsop DC (2019) Volumetric abdominal perfusion measurement using a pseudo-randomly sampled 3D fast-spin-echo (FSE) arterial spin labeling (ASL) sequence and compressed sensing reconstruction. Magn Reson Med 82:680–692PubMed Taso M, Zhao L, Guidon A, Litwiller DV, Alsop DC (2019) Volumetric abdominal perfusion measurement using a pseudo-randomly sampled 3D fast-spin-echo (FSE) arterial spin labeling (ASL) sequence and compressed sensing reconstruction. Magn Reson Med 82:680–692PubMed
23.
go back to reference Dai W, Garcia DM, de Bazelaire C, Alsop DC (2008) Continuous flow driven inversion for arterial spin labelling using pulsed radiofrequency and gradient fields. Magn Reson Med 60:1488–1497PubMedPubMedCentral Dai W, Garcia DM, de Bazelaire C, Alsop DC (2008) Continuous flow driven inversion for arterial spin labelling using pulsed radiofrequency and gradient fields. Magn Reson Med 60:1488–1497PubMedPubMedCentral
24.
go back to reference Wu W-C, Fernández-Seara M, Detre JA, Wehrli FW, Wang J (2007) A theoretical and experimental investigation of the tagging efficiency of pseudocontinuous arterial spin labeling. Magn Reson Med 58:1020–1027PubMed Wu W-C, Fernández-Seara M, Detre JA, Wehrli FW, Wang J (2007) A theoretical and experimental investigation of the tagging efficiency of pseudocontinuous arterial spin labeling. Magn Reson Med 58:1020–1027PubMed
25.
go back to reference Kwong KK, Chesler DA, Weisskoff RM, Donahue KM, Davis TL, Ostergaard L, Campbell TA, Rosen BR (1995) Mr perfusion studies with t1-weighted echo planar imaging. Magn Reson Med 34:878–887PubMed Kwong KK, Chesler DA, Weisskoff RM, Donahue KM, Davis TL, Ostergaard L, Campbell TA, Rosen BR (1995) Mr perfusion studies with t1-weighted echo planar imaging. Magn Reson Med 34:878–887PubMed
26.
go back to reference Kim SG, Tsekos NV (1997) Perfusion imaging by a flow-sensitive alternating inversion recovery (FAIR) technique: application to functional brain imaging. Magn Reson Med 37:425–435PubMed Kim SG, Tsekos NV (1997) Perfusion imaging by a flow-sensitive alternating inversion recovery (FAIR) technique: application to functional brain imaging. Magn Reson Med 37:425–435PubMed
27.
go back to reference Wong EC, Buxton RB, Frank LR (1998) Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II). Magn Reson Med 39:702–708PubMed Wong EC, Buxton RB, Frank LR (1998) Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II). Magn Reson Med 39:702–708PubMed
28.
go back to reference Luh WM, Wong EC, Bandettini PA, Hyde JS (1999) QUIPSS II with thin-slice TI1 periodic saturation: a method for improving accuracy of quantitative perfusion imaging using pulsed arterial spin labeling. Magn Reson Med 41:1246–1254PubMed Luh WM, Wong EC, Bandettini PA, Hyde JS (1999) QUIPSS II with thin-slice TI1 periodic saturation: a method for improving accuracy of quantitative perfusion imaging using pulsed arterial spin labeling. Magn Reson Med 41:1246–1254PubMed
29.
go back to reference Helmer O (1967) Analysis of the future: the delphi method. Rand Corp. Helmer O (1967) Analysis of the future: the delphi method. Rand Corp.
30.
go back to reference Hsu C-C, Sandford BA (2007) The Delphi Technique: Making Sense Of Consensus. Pract Assessment, Res Eval 12:1–8 Hsu C-C, Sandford BA (2007) The Delphi Technique: Making Sense Of Consensus. Pract Assessment, Res Eval 12:1–8
32.
go back to reference Mendichovszky I, Pullens P, Dekkers I, Nery F, Bane O, Pohlmann A, de Boer A, Ljimani A, Odudu A, Buchanan C, Sharma K, Laustsen C, Harteveld A, Golay X, Pedrosa I, Alsop D, Fain S, Caroli A, Prasad P, Francis S, Sigmund E, Fernández-Seara M, Sourbron S (2019) Technical recommendations for clinical translation of renal MRI: a consensus project of the Cooperation in Science and Technology Action PARENCHIMA. Magn Reson Mater Phy. https://doi.org/10.1007/s10334-019-00784-w CrossRef Mendichovszky I, Pullens P, Dekkers I, Nery F, Bane O, Pohlmann A, de Boer A, Ljimani A, Odudu A, Buchanan C, Sharma K, Laustsen C, Harteveld A, Golay X, Pedrosa I, Alsop D, Fain S, Caroli A, Prasad P, Francis S, Sigmund E, Fernández-Seara M, Sourbron S (2019) Technical recommendations for clinical translation of renal MRI: a consensus project of the Cooperation in Science and Technology Action PARENCHIMA. Magn Reson Mater Phy. https://​doi.​org/​10.​1007/​s10334-019-00784-w CrossRef
33.
go back to reference Taylor SA, Avni F, Cronin CG, Hoeffel C, Kim SH, Laghi A, Napolitano M, Petit P, Rimola J, Tolan DJ, Torkzad MR, Zappa M, Bhatnagar G, Puylaert CAJ, Stoker J (2017) The first joint ESGAR/ ESPR consensus statement on the technical performance of cross-sectional small bowel and colonic imaging. Eur Radiol 27:2570–2582PubMed Taylor SA, Avni F, Cronin CG, Hoeffel C, Kim SH, Laghi A, Napolitano M, Petit P, Rimola J, Tolan DJ, Torkzad MR, Zappa M, Bhatnagar G, Puylaert CAJ, Stoker J (2017) The first joint ESGAR/ ESPR consensus statement on the technical performance of cross-sectional small bowel and colonic imaging. Eur Radiol 27:2570–2582PubMed
34.
go back to reference Muller BG, Van Den Bos W, Brausi M, Cornud F, Gontero P, Kirkham A, Pinto PA, Polascik TJ, Rastinehad AR, De Reijke TM, De La Rosette JJ, Ukimura O, Villers A, Walz J, Wijkstra H, Marberger M (2014) Role of multiparametric magnetic resonance imaging (MRI) in focal therapy for prostate cancer: a Delphi consensus project. BJU Int 114:698–707PubMed Muller BG, Van Den Bos W, Brausi M, Cornud F, Gontero P, Kirkham A, Pinto PA, Polascik TJ, Rastinehad AR, De Reijke TM, De La Rosette JJ, Ukimura O, Villers A, Walz J, Wijkstra H, Marberger M (2014) Role of multiparametric magnetic resonance imaging (MRI) in focal therapy for prostate cancer: a Delphi consensus project. BJU Int 114:698–707PubMed
35.
go back to reference Katragadda C, Finnane A, Soyer HP, Marghoob AA, Halpern A, Malvehy J, Kittler H, Hofmann-Wellenhof R, Da Silva D, Abraham I, Curiel-Lewandrowski C (2017) Technique standards for skin lesion imaging a delphi consensus statement. JAMA Dermatology 153:207–213PubMed Katragadda C, Finnane A, Soyer HP, Marghoob AA, Halpern A, Malvehy J, Kittler H, Hofmann-Wellenhof R, Da Silva D, Abraham I, Curiel-Lewandrowski C (2017) Technique standards for skin lesion imaging a delphi consensus statement. JAMA Dermatology 153:207–213PubMed
36.
go back to reference Armstrong LE (2007) Assessing hydration status: the elusive gold standard. J Am Coll Nutr 26:575S–584SPubMed Armstrong LE (2007) Assessing hydration status: the elusive gold standard. J Am Coll Nutr 26:575S–584SPubMed
37.
go back to reference Wabel P, Chamney P, Moissl U, Jirka T (2009) Importance of whole-body bioimpedance spectroscopy for the management of fluid balance. Blood Purif. pp 75–80 Wabel P, Chamney P, Moissl U, Jirka T (2009) Importance of whole-body bioimpedance spectroscopy for the management of fluid balance. Blood Purif. pp 75–80
38.
go back to reference Wang J, Zhang Y, Yang X, Wang X, Zhang J, Fang J, Jiang X (2012) Hemodynamic effects of furosemide on renal perfusion as evaluated by ASL-MRI. Acad Radiol 19:1194–1200PubMed Wang J, Zhang Y, Yang X, Wang X, Zhang J, Fang J, Jiang X (2012) Hemodynamic effects of furosemide on renal perfusion as evaluated by ASL-MRI. Acad Radiol 19:1194–1200PubMed
39.
go back to reference He X, Aghayev A, Gumus S, Ty Bae K (2014) Estimation of single-kidney glomerular filtration rate without exogenous contrast agent. Magn Reson Med 71:257–266PubMed He X, Aghayev A, Gumus S, Ty Bae K (2014) Estimation of single-kidney glomerular filtration rate without exogenous contrast agent. Magn Reson Med 71:257–266PubMed
40.
go back to reference Boss A, Martirosian P, Graf H, Claussen CD, Schlemmer HP, Schick F (2005) High resolution MR perfusion imaging of the kidneys at 3 Tesla without administration of contrast media. Rofo 177:1625–1630PubMed Boss A, Martirosian P, Graf H, Claussen CD, Schlemmer HP, Schick F (2005) High resolution MR perfusion imaging of the kidneys at 3 Tesla without administration of contrast media. Rofo 177:1625–1630PubMed
41.
go back to reference Gillis KA, McComb C, Foster JE, Taylor AHM, Patel RK, Morris STW, Jardine AG, Schneider MP, Roditi GH, Delles C, Mark PB (2014) Inter-study reproducibility of arterial spin labelling magnetic resonance imaging for measurement of renal perfusion in healthy volunteers at 3 Tesla. BMC Nephrol 15:23PubMedPubMedCentral Gillis KA, McComb C, Foster JE, Taylor AHM, Patel RK, Morris STW, Jardine AG, Schneider MP, Roditi GH, Delles C, Mark PB (2014) Inter-study reproducibility of arterial spin labelling magnetic resonance imaging for measurement of renal perfusion in healthy volunteers at 3 Tesla. BMC Nephrol 15:23PubMedPubMedCentral
42.
go back to reference Heusch P, Wittsack HJ, Blondin D, Ljimani A, Nguyen-Quang M, Martirosian P, Zenginli H, Bilk P, Kröpil P, Heusner TA, Antoch G, Lanzman RS (2014) Functional evaluation of transplanted kidneys using arterial spin labeling MRI. J Magn Reson Imaging 40:84–89PubMed Heusch P, Wittsack HJ, Blondin D, Ljimani A, Nguyen-Quang M, Martirosian P, Zenginli H, Bilk P, Kröpil P, Heusner TA, Antoch G, Lanzman RS (2014) Functional evaluation of transplanted kidneys using arterial spin labeling MRI. J Magn Reson Imaging 40:84–89PubMed
43.
go back to reference Cutajar M, Thomas DL, Banks T, Clark CA, Golay X, Gordon I (2012) Repeatability of renal arterial spin labelling MRI in healthy subjects. Magn Reson Mater Phy 25:145–153 Cutajar M, Thomas DL, Banks T, Clark CA, Golay X, Gordon I (2012) Repeatability of renal arterial spin labelling MRI in healthy subjects. Magn Reson Mater Phy 25:145–153
44.
go back to reference Cox EF, Buchanan CE, Bradley CR, Prestwich B, Mahmoud H, Taal M, Selby NM, Francis ST (2017) Multiparametric renal magnetic resonance imaging: Validation, interventions, and alterations in chronic kidney disease. Front Physiol 8:696PubMedPubMedCentral Cox EF, Buchanan CE, Bradley CR, Prestwich B, Mahmoud H, Taal M, Selby NM, Francis ST (2017) Multiparametric renal magnetic resonance imaging: Validation, interventions, and alterations in chronic kidney disease. Front Physiol 8:696PubMedPubMedCentral
45.
go back to reference Shimizu K, Kosaka N, Fujiwara Y, Matsuda T, Yamamoto T, Tsuchida T, Tsuchiyama K, Oyama N, Kimura H (2017) Arterial transit time-corrected renal blood flow measurement with pulsed continuous arterial spin labeling MR imaging. Magn Reson Med Sci 16:38–44PubMed Shimizu K, Kosaka N, Fujiwara Y, Matsuda T, Yamamoto T, Tsuchida T, Tsuchiyama K, Oyama N, Kimura H (2017) Arterial transit time-corrected renal blood flow measurement with pulsed continuous arterial spin labeling MR imaging. Magn Reson Med Sci 16:38–44PubMed
46.
go back to reference Ordidge RJ, Wylezinska M, Hugg JW, Butterworth E, Franconi F (1996) Frequency offset corrected inversion (FOCI) pulses for use in localized spectroscopy. Magn Reson Med 36:562–566PubMed Ordidge RJ, Wylezinska M, Hugg JW, Butterworth E, Franconi F (1996) Frequency offset corrected inversion (FOCI) pulses for use in localized spectroscopy. Magn Reson Med 36:562–566PubMed
47.
go back to reference Wang X, Greer JS, Dimitrov IE, Pezeshk P, Chhabra A, Madhuranthakam AJ (2018) Frequency offset corrected inversion pulse for B0 and B1 insensitive fat suppression at 3T: application to MR neurography of brachial plexus. J Magn Reson Imaging 48:1104–1111PubMed Wang X, Greer JS, Dimitrov IE, Pezeshk P, Chhabra A, Madhuranthakam AJ (2018) Frequency offset corrected inversion pulse for B0 and B1 insensitive fat suppression at 3T: application to MR neurography of brachial plexus. J Magn Reson Imaging 48:1104–1111PubMed
48.
go back to reference Tan H, Koktzoglou I, Prasad PV (2014) Renal perfusion imaging with two-dimensional navigator gated arterial spin labeling. Magn Reson Med 71:570–579PubMedPubMedCentral Tan H, Koktzoglou I, Prasad PV (2014) Renal perfusion imaging with two-dimensional navigator gated arterial spin labeling. Magn Reson Med 71:570–579PubMedPubMedCentral
49.
go back to reference Cai Y, Li Z, Zuo P, Pfeuffer J, Li Y, Liu F, Liu R (2017) Diagnostic value of renal perfusion in patients with chronic kidney disease using 3D arterial spin labeling. J Magn Reson Imaging 46:589–594PubMed Cai Y, Li Z, Zuo P, Pfeuffer J, Li Y, Liu F, Liu R (2017) Diagnostic value of renal perfusion in patients with chronic kidney disease using 3D arterial spin labeling. J Magn Reson Imaging 46:589–594PubMed
50.
go back to reference Wong EC, Buxton RB, Frank LR (1998) A theoretical and experimental comparison of continuous and pulsed arterial spin labeling techniques for quantitative perfusion imaging. Magn Reson Med 40:348–355PubMed Wong EC, Buxton RB, Frank LR (1998) A theoretical and experimental comparison of continuous and pulsed arterial spin labeling techniques for quantitative perfusion imaging. Magn Reson Med 40:348–355PubMed
51.
go back to reference Zhao L, Vidorreta M, Soman S, Detre JA, Alsop DC (2017) Improving the robustness of pseudo-continuous arterial spin labeling to off-resonance and pulsatile flow velocity. Magn Reson Med 78:1342–1351PubMed Zhao L, Vidorreta M, Soman S, Detre JA, Alsop DC (2017) Improving the robustness of pseudo-continuous arterial spin labeling to off-resonance and pulsatile flow velocity. Magn Reson Med 78:1342–1351PubMed
52.
go back to reference Greer JS, Wang Y, Pedrosa I, Madhuranthakam AJ (2019) Pseudo-continuous arterial spin labeled renal perfusion imaging at 3T with improved robustness to off-resonance. Proc. ISMRM 27th Annu. Meet. Exhib. Montr. QC, Canada. p 4959 Greer JS, Wang Y, Pedrosa I, Madhuranthakam AJ (2019) Pseudo-continuous arterial spin labeled renal perfusion imaging at 3T with improved robustness to off-resonance. Proc. ISMRM 27th Annu. Meet. Exhib. Montr. QC, Canada. p 4959
53.
go back to reference Echeverria-Chasco R, Vidorreta M, Aramendía-Vidaurreta V, Bastarrika G, Fernández-Seara MA (2019) Optimization of pseudo continuous arterial spin labeling for renal ASL. Proc. ISMRM 27th Annu. Meet. Exhib. Montr. QC, Canada. p 4954 Echeverria-Chasco R, Vidorreta M, Aramendía-Vidaurreta V, Bastarrika G, Fernández-Seara MA (2019) Optimization of pseudo continuous arterial spin labeling for renal ASL. Proc. ISMRM 27th Annu. Meet. Exhib. Montr. QC, Canada. p 4954
54.
go back to reference Alsop DC, Detre JA, Golay X, Günther M, Hendrikse J, Hernandez-Garcia L, Lu H, Macintosh BJ, Parkes LM, Smits M, Van Osch MJP, Wang DJJ, Wong EC, Zaharchuk G (2015) Recommended implementation of arterial spin-labeled Perfusion MRI for clinical applications: a consensus of the ISMRM perfusion Study group and the European consortium for ASL in dementia. Magn Reson Med 73:102–116PubMed Alsop DC, Detre JA, Golay X, Günther M, Hendrikse J, Hernandez-Garcia L, Lu H, Macintosh BJ, Parkes LM, Smits M, Van Osch MJP, Wang DJJ, Wong EC, Zaharchuk G (2015) Recommended implementation of arterial spin-labeled Perfusion MRI for clinical applications: a consensus of the ISMRM perfusion Study group and the European consortium for ASL in dementia. Magn Reson Med 73:102–116PubMed
55.
go back to reference Robson PM, Madhuranthakam AJ, Dai W, Pedrosa I, Rofsky NM, Alsop DC (2009) Strategies for reducing respiratory motion artifacts in renal perfusion imaging with arterial spin labeling. Magn Reson Med 61:1374–1387PubMedPubMedCentral Robson PM, Madhuranthakam AJ, Dai W, Pedrosa I, Rofsky NM, Alsop DC (2009) Strategies for reducing respiratory motion artifacts in renal perfusion imaging with arterial spin labeling. Magn Reson Med 61:1374–1387PubMedPubMedCentral
56.
go back to reference Wu W-C, Su M-Y, Chang C-C, Tseng W-YI, Liu K-L (2011) Renal perfusion 3-T MR imaging: a comparative study of arterial spin labeling and dynamic contrast-enhanced techniques. Radiology 261:845–853PubMed Wu W-C, Su M-Y, Chang C-C, Tseng W-YI, Liu K-L (2011) Renal perfusion 3-T MR imaging: a comparative study of arterial spin labeling and dynamic contrast-enhanced techniques. Radiology 261:845–853PubMed
57.
go back to reference Robson PM, Madhuranthakam AJ, Smith MP, Sun MRM, Dai W, Rofsky NM, Pedrosa I, Alsop DC (2016) Volumetric arterial spin-labeled perfusion imaging of the kidneys with a three-dimensional fast spin echo acquisition. Acad Radiol 23:144–154PubMed Robson PM, Madhuranthakam AJ, Smith MP, Sun MRM, Dai W, Rofsky NM, Pedrosa I, Alsop DC (2016) Volumetric arterial spin-labeled perfusion imaging of the kidneys with a three-dimensional fast spin echo acquisition. Acad Radiol 23:144–154PubMed
58.
go back to reference Mora-Gutiérrez JM, Garcia-Fernandez N, Slon Roblero MF, Páramo JA, Escalada FJ, Wang DJ, Benito A, Fernández-Seara MA (2017) Arterial spin labeling MRI is able to detect early hemodynamic changes in diabetic nephropathy. J Magn Reson Imaging 1–8. Mora-Gutiérrez JM, Garcia-Fernandez N, Slon Roblero MF, Páramo JA, Escalada FJ, Wang DJ, Benito A, Fernández-Seara MA (2017) Arterial spin labeling MRI is able to detect early hemodynamic changes in diabetic nephropathy. J Magn Reson Imaging 1–8.
59.
go back to reference Song H, Ruan D, Liu W, Stenger VA, Pohmann R, Fernández-Seara MA, Nair T, Jung S, Luo J, Motai Y, Ma J, Hazle JD, Gach HM (2017) Respiratory motion prediction and prospective correction for free-breathing arterial spin-labeled perfusion MRI of the kidneys. Med Phys 44:962–973PubMed Song H, Ruan D, Liu W, Stenger VA, Pohmann R, Fernández-Seara MA, Nair T, Jung S, Luo J, Motai Y, Ma J, Hazle JD, Gach HM (2017) Respiratory motion prediction and prospective correction for free-breathing arterial spin-labeled perfusion MRI of the kidneys. Med Phys 44:962–973PubMed
60.
go back to reference Rapacchi S, Smith RX, Wang Y, Yan L, Sigalov V, Krasileva KE, Karpouzas G, Plotnik A, Sayre J, Hernandez E, Verma A, Burkly L, Wisniacki N, Torrington J, He X, Hu P, Chiao PC, Wang DJJ (2015) Towards the identification of multi-parametric quantitative MRI biomarkers in lupus nephritis. Magn Reson Imaging 33:1066–1074PubMed Rapacchi S, Smith RX, Wang Y, Yan L, Sigalov V, Krasileva KE, Karpouzas G, Plotnik A, Sayre J, Hernandez E, Verma A, Burkly L, Wisniacki N, Torrington J, He X, Hu P, Chiao PC, Wang DJJ (2015) Towards the identification of multi-parametric quantitative MRI biomarkers in lupus nephritis. Magn Reson Imaging 33:1066–1074PubMed
62.
go back to reference Martirosian P, Klose U, Mader I, Schick F (2004) FAIR true-FISP perfusion imaging of the kidneys. Magn Reson Med 51:353–361PubMed Martirosian P, Klose U, Mader I, Schick F (2004) FAIR true-FISP perfusion imaging of the kidneys. Magn Reson Med 51:353–361PubMed
63.
go back to reference Gardener AG, Francis ST (2010) Multislice perfusion of the kidneys using parallel imaging: image acquisition and analysis strategies. Magn Reson Med 63:1627–1636PubMed Gardener AG, Francis ST (2010) Multislice perfusion of the kidneys using parallel imaging: image acquisition and analysis strategies. Magn Reson Med 63:1627–1636PubMed
64.
go back to reference de Bazelaire C, Rofsky NM, Duhamel G, Michaelson MD, George D, Alsop DC (2005) Arterial spin labeling blood flow magnetic resonance imaging for the characterization of metastatic renal cell carcinoma. Acad Radiol 12:347–357PubMed de Bazelaire C, Rofsky NM, Duhamel G, Michaelson MD, George D, Alsop DC (2005) Arterial spin labeling blood flow magnetic resonance imaging for the characterization of metastatic renal cell carcinoma. Acad Radiol 12:347–357PubMed
65.
go back to reference Golay X, Petersen ET, Hui F (2005) Pulsed star labeling of arterial regions (PULSAR): a robust regional perfusion technique for high field imaging. Magn Reson Med 53:15–21PubMed Golay X, Petersen ET, Hui F (2005) Pulsed star labeling of arterial regions (PULSAR): a robust regional perfusion technique for high field imaging. Magn Reson Med 53:15–21PubMed
66.
go back to reference Günther M (2006) Efficient visualization of vascular territories in the human brain by cycled arterial spin labeling MRI. Magn Reson Med 56:671–675PubMed Günther M (2006) Efficient visualization of vascular territories in the human brain by cycled arterial spin labeling MRI. Magn Reson Med 56:671–675PubMed
67.
go back to reference Ye FQ, Berman KF, Ellmore T, Esposito G, Van Horn JD, Yang Y, Duyn J, Smith AM, Frank JA, Weinberger DR, McLaughlin AC (2000) H2–15-O PET validation of steady-state arterial spin tagging cerebral blood flow measurements in humans. Magn Reson Med 44:450–456PubMed Ye FQ, Berman KF, Ellmore T, Esposito G, Van Horn JD, Yang Y, Duyn J, Smith AM, Frank JA, Weinberger DR, McLaughlin AC (2000) H2–15-O PET validation of steady-state arterial spin tagging cerebral blood flow measurements in humans. Magn Reson Med 44:450–456PubMed
68.
go back to reference Maleki N, Dai W, Alsop DC (2012) Optimization of background suppression for arterial spin labeling perfusion imaging. Magn Reson Mater Phy 25:127–133 Maleki N, Dai W, Alsop DC (2012) Optimization of background suppression for arterial spin labeling perfusion imaging. Magn Reson Mater Phy 25:127–133
69.
go back to reference Garcia DM, Duhamel G, Alsop DC (2005) Efficiency of inversion pulses for background suppressed arterial spin labeling. Magn Reson Med 54:366–372PubMed Garcia DM, Duhamel G, Alsop DC (2005) Efficiency of inversion pulses for background suppressed arterial spin labeling. Magn Reson Med 54:366–372PubMed
70.
go back to reference Chavhan GB, Babyn PS, Vasanawala SS (2013) Abdominal MR imaging in children: motion compensation, sequence optimization, and protocol organization. Radiographics 33:703–719PubMed Chavhan GB, Babyn PS, Vasanawala SS (2013) Abdominal MR imaging in children: motion compensation, sequence optimization, and protocol organization. Radiographics 33:703–719PubMed
71.
go back to reference Dong J, Yang L, Su T, Yang X, Chen B, Zhang J, Wang X, Jiang X (2013) Quantitative assessment of acute kidney injury by noninvasive arterial spin labeling perfusion MRI: a pilot study. Sci China Life Sci 56:745–750PubMed Dong J, Yang L, Su T, Yang X, Chen B, Zhang J, Wang X, Jiang X (2013) Quantitative assessment of acute kidney injury by noninvasive arterial spin labeling perfusion MRI: a pilot study. Sci China Life Sci 56:745–750PubMed
72.
go back to reference Conlin CC, Oesingmann N, Bolster B, Huang Y, Lee VS, Zhang JL (2017) Renal plasma flow (RPF) measured with multiple-inversion-time arterial spin labeling (ASL) and tracer kinetic analysis: Validation against a dynamic contrast-enhancement method. Magn Reson Imaging 37:51–55PubMed Conlin CC, Oesingmann N, Bolster B, Huang Y, Lee VS, Zhang JL (2017) Renal plasma flow (RPF) measured with multiple-inversion-time arterial spin labeling (ASL) and tracer kinetic analysis: Validation against a dynamic contrast-enhancement method. Magn Reson Imaging 37:51–55PubMed
73.
go back to reference Niles DJ, Artz NS, Djamali A, Sadowski EA, Grist TM, Fain SB (2016) Longitudinal assessment of renal perfusion and oxygenation in transplant donor-recipient pairs using arterial spin labeling and blood oxygen level-dependent magnetic resonance imaging. Invest Radiol 51:113–120PubMedPubMedCentral Niles DJ, Artz NS, Djamali A, Sadowski EA, Grist TM, Fain SB (2016) Longitudinal assessment of renal perfusion and oxygenation in transplant donor-recipient pairs using arterial spin labeling and blood oxygen level-dependent magnetic resonance imaging. Invest Radiol 51:113–120PubMedPubMedCentral
74.
go back to reference Rossi C, Artunc F, Martirosian P, Schlemmer H-P, Schick F, Boss A (2012) Histogram analysis of renal arterial spin labeling perfusion data reveals differences between volunteers and patients with mild chronic kidney disease. Invest Radiol 47:490–496PubMed Rossi C, Artunc F, Martirosian P, Schlemmer H-P, Schick F, Boss A (2012) Histogram analysis of renal arterial spin labeling perfusion data reveals differences between volunteers and patients with mild chronic kidney disease. Invest Radiol 47:490–496PubMed
75.
go back to reference Fenchel M, Martirosian P, Langanke J, Giersch J, Miller S, Stauder NI, Kramer U, Claussen CD, Schick F (2006) Perfusion MR imaging with FAIR true FISP spin labeling in patients with and without renal artery stenosis: initial experience. Radiology 238:1013–1021PubMed Fenchel M, Martirosian P, Langanke J, Giersch J, Miller S, Stauder NI, Kramer U, Claussen CD, Schick F (2006) Perfusion MR imaging with FAIR true FISP spin labeling in patients with and without renal artery stenosis: initial experience. Radiology 238:1013–1021PubMed
76.
go back to reference Artz NS, Sadowski EA, Wentland AL, Grist TM, Seo S, Djamali A, Fain SB (2011) Arterial spin labeling MRI for assessment of perfusion in native and transplanted kidneys. Magn Reson Imaging 29:74–82PubMed Artz NS, Sadowski EA, Wentland AL, Grist TM, Seo S, Djamali A, Fain SB (2011) Arterial spin labeling MRI for assessment of perfusion in native and transplanted kidneys. Magn Reson Imaging 29:74–82PubMed
77.
go back to reference Song R, Tipirneni A, Johnson P, Loeffler RB, Hillenbrand CM (2011) Evaluation of respiratory liver and kidney movements for MRI navigator gating. J Magn Reson Imaging 33:143–148PubMedPubMedCentral Song R, Tipirneni A, Johnson P, Loeffler RB, Hillenbrand CM (2011) Evaluation of respiratory liver and kidney movements for MRI navigator gating. J Magn Reson Imaging 33:143–148PubMedPubMedCentral
78.
go back to reference Siva S, Pham D, Gill S, Bressel M, Dang K, Devereux T, Kron T, Foroudi F (2013) An analysis of respiratory induced kidney motion on four-dimensional computed tomography and its implications for stereotactic kidney radiotherapy. Radiat Oncol 8:248PubMedPubMedCentral Siva S, Pham D, Gill S, Bressel M, Dang K, Devereux T, Kron T, Foroudi F (2013) An analysis of respiratory induced kidney motion on four-dimensional computed tomography and its implications for stereotactic kidney radiotherapy. Radiat Oncol 8:248PubMedPubMedCentral
79.
go back to reference Mutsaerts HJMM, Petr J, Thomas DL, Vita E de, Cash DM, Osch MJP van, Golay X, Groot PFC, Ourselin S, Swieten J van, Laforce R, Tagliavini F, Borroni B, Galimberti D, Rowe JB, Graff C, Pizzini FB, Finger E, Sorbi S, Castelo Branco M, Rohrer JD, Masellis M, MacIntosh BJ (2017) Comparison of arterial spin labeling registration strategies in the multi-center GENetic frontotemporal dementia initiative (GENFI). J Magn Reson Imaging 1–10. Mutsaerts HJMM, Petr J, Thomas DL, Vita E de, Cash DM, Osch MJP van, Golay X, Groot PFC, Ourselin S, Swieten J van, Laforce R, Tagliavini F, Borroni B, Galimberti D, Rowe JB, Graff C, Pizzini FB, Finger E, Sorbi S, Castelo Branco M, Rohrer JD, Masellis M, MacIntosh BJ (2017) Comparison of arterial spin labeling registration strategies in the multi-center GENetic frontotemporal dementia initiative (GENFI). J Magn Reson Imaging 1–10.
80.
go back to reference Alsop DC, Detre JA (1996) Reduced transit-time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow. J Cereb Blood Flow Metab 16:1236–1249PubMed Alsop DC, Detre JA (1996) Reduced transit-time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow. J Cereb Blood Flow Metab 16:1236–1249PubMed
81.
go back to reference Buxton RB, Frank LR, Wong EC, Siewert B, Warach S, Edelman RR (1998) A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med 40:383–396PubMed Buxton RB, Frank LR, Wong EC, Siewert B, Warach S, Edelman RR (1998) A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med 40:383–396PubMed
82.
go back to reference Yuasa Y, Kundel HL (1985) Magnetic resonance imaging following unilateral occlusion of the renal circulation in rabbits. Radiology 154:151–156PubMed Yuasa Y, Kundel HL (1985) Magnetic resonance imaging following unilateral occlusion of the renal circulation in rabbits. Radiology 154:151–156PubMed
83.
go back to reference Kundel HL, Schlakman B, Joseph PM, Fishman JE, Summers R (1986) Water content and NMR relaxation time gradients in the rabbit kidney. Invest Radiol 21:12–17PubMed Kundel HL, Schlakman B, Joseph PM, Fishman JE, Summers R (1986) Water content and NMR relaxation time gradients in the rabbit kidney. Invest Radiol 21:12–17PubMed
85.
go back to reference Liu HS, Jawad AF, Laney N, Hartung EA, Furth SL, Detre JA (2019) Effect of blood T1 estimation strategy on arterial spin labeled cerebral blood flow quantification in children and young adults with kidney disease. J Neuroradiol 46:29–35PubMed Liu HS, Jawad AF, Laney N, Hartung EA, Furth SL, Detre JA (2019) Effect of blood T1 estimation strategy on arterial spin labeled cerebral blood flow quantification in children and young adults with kidney disease. J Neuroradiol 46:29–35PubMed
86.
go back to reference Song R, Loeffler RB, Hillenbrand CM (2010) Improved renal perfusion measurement with a dual navigator-gated Q2TIPS fair technique. Magn Reson Med 64:1352–1359PubMedPubMedCentral Song R, Loeffler RB, Hillenbrand CM (2010) Improved renal perfusion measurement with a dual navigator-gated Q2TIPS fair technique. Magn Reson Med 64:1352–1359PubMedPubMedCentral
87.
go back to reference Karger N, Biederer J, Lusse S, Grimm J, Steffens J-C, Heller M, Gluer C-C (2000) Quantitation of renal perfusion using arterial spin labeling with FAIR-UFLARE. Magn Reson Imaging 18:641–647PubMed Karger N, Biederer J, Lusse S, Grimm J, Steffens J-C, Heller M, Gluer C-C (2000) Quantitation of renal perfusion using arterial spin labeling with FAIR-UFLARE. Magn Reson Imaging 18:641–647PubMed
88.
go back to reference Noda Y, Ito K, Kanki A, Tamada T, Yamamoto A, Kazuya Y, Higaki A (2015) Measurement of renal cortical thickness using noncontrast-enhanced steady-state free precession MRI with spatially selective inversion recovery pulse: Association with renal function. J Magn Reson Imaging 41:1615–1621PubMed Noda Y, Ito K, Kanki A, Tamada T, Yamamoto A, Kazuya Y, Higaki A (2015) Measurement of renal cortical thickness using noncontrast-enhanced steady-state free precession MRI with spatially selective inversion recovery pulse: Association with renal function. J Magn Reson Imaging 41:1615–1621PubMed
89.
go back to reference Takata T, Koda M, Sugihara T, Sugihara S, Okamoto T, Miyoshi K, Hodotsuka M, Fujise Y, Matono T, Okano J, Hosho K, Iyama T, Fukui T, Fukuda S, Munemura C, Isomoto H (2016) Left renal cortical thickness measured by ultrasound can predict early progression of chronic kidney disease. Nephron 132:25–32PubMed Takata T, Koda M, Sugihara T, Sugihara S, Okamoto T, Miyoshi K, Hodotsuka M, Fujise Y, Matono T, Okano J, Hosho K, Iyama T, Fukui T, Fukuda S, Munemura C, Isomoto H (2016) Left renal cortical thickness measured by ultrasound can predict early progression of chronic kidney disease. Nephron 132:25–32PubMed
90.
go back to reference Korkmaz M, Aras B, Güneyli S, Yılmaz M (2018) Clinical significance of renal cortical thickness in patients with chronic kidney disease. Ultrasonography 37:50–54PubMed Korkmaz M, Aras B, Güneyli S, Yılmaz M (2018) Clinical significance of renal cortical thickness in patients with chronic kidney disease. Ultrasonography 37:50–54PubMed
91.
go back to reference Otsuka T, Kaneko Y, Sato Y, Kaseda R, Aoyagi R, Yamamoto S, Goto S, Narita I (2018) Kidney morphological parameters measured using noncontrast-enhanced steady-state free precession MRI with spatially selective inversion recovery pulse correlate with eGFR in patients with advanced CKD. Clin Exp Nephrol 22:45–54PubMed Otsuka T, Kaneko Y, Sato Y, Kaseda R, Aoyagi R, Yamamoto S, Goto S, Narita I (2018) Kidney morphological parameters measured using noncontrast-enhanced steady-state free precession MRI with spatially selective inversion recovery pulse correlate with eGFR in patients with advanced CKD. Clin Exp Nephrol 22:45–54PubMed
92.
go back to reference O’Neill WC (2000) Sonographic evaluation of renal failure. Am J Kidney Dis 35:1021–1038PubMed O’Neill WC (2000) Sonographic evaluation of renal failure. Am J Kidney Dis 35:1021–1038PubMed
93.
go back to reference Wang JH, Skeans MA, Israni AK (2016) Current status of kidney transplant outcomes: dying to survive. Adv Chronic Kidney Dis 23:281–286PubMed Wang JH, Skeans MA, Israni AK (2016) Current status of kidney transplant outcomes: dying to survive. Adv Chronic Kidney Dis 23:281–286PubMed
94.
go back to reference Sadowski EA, Djamali A, Wentland AL, Muehrer R, Becker BN, Grist TM, Fain SB (2010) Blood oxygen level-dependent and perfusion magnetic resonance imaging: detecting differences in oxygen bioavailability and blood flow in transplanted kidneys. Magn Reson Imaging 28:56–64PubMed Sadowski EA, Djamali A, Wentland AL, Muehrer R, Becker BN, Grist TM, Fain SB (2010) Blood oxygen level-dependent and perfusion magnetic resonance imaging: detecting differences in oxygen bioavailability and blood flow in transplanted kidneys. Magn Reson Imaging 28:56–64PubMed
95.
go back to reference Moore JE, Maier SE, Ku DN, Boesiger P (1994) Hemodynamics in the abdominal aorta: a comparison of in vitro and in vivo measurements. J Appl Physiol 76:1520–1527PubMed Moore JE, Maier SE, Ku DN, Boesiger P (1994) Hemodynamics in the abdominal aorta: a comparison of in vitro and in vivo measurements. J Appl Physiol 76:1520–1527PubMed
96.
go back to reference Bradley CR, Buchanan CE, Cox EF, Francis ST (2018) Assessment of optimal technique for measurement of medullary perfusion. Proc. ISMRM 26th Annu. Meet. Exhib. Paris, Fr. 4600 Bradley CR, Buchanan CE, Cox EF, Francis ST (2018) Assessment of optimal technique for measurement of medullary perfusion. Proc. ISMRM 26th Annu. Meet. Exhib. Paris, Fr. 4600
97.
go back to reference Herscovitch P, Raichle ME (1985) What is the correct value for the brain-blood partition coefficient for water? J Cereb Blood Flow Metab 5:65–69PubMed Herscovitch P, Raichle ME (1985) What is the correct value for the brain-blood partition coefficient for water? J Cereb Blood Flow Metab 5:65–69PubMed
98.
go back to reference Zhang X, Petersen ET, Ghariq E, De Vis JB, Webb AG, Teeuwisse WM, Hendrikse J, Van Osch MJP (2013) In vivo blood T1 measurements at 1.5 T, 3 T, and 7 T. Magn Reson Med 70:1082–1086PubMed Zhang X, Petersen ET, Ghariq E, De Vis JB, Webb AG, Teeuwisse WM, Hendrikse J, Van Osch MJP (2013) In vivo blood T1 measurements at 1.5 T, 3 T, and 7 T. Magn Reson Med 70:1082–1086PubMed
Metadata
Title
Consensus-based technical recommendations for clinical translation of renal ASL MRI
Authors
Fabio Nery
Charlotte E. Buchanan
Anita A. Harteveld
Aghogho Odudu
Octavia Bane
Eleanor F. Cox
Katja Derlin
H. Michael Gach
Xavier Golay
Marcel Gutberlet
Christoffer Laustsen
Alexandra Ljimani
Ananth J. Madhuranthakam
Ivan Pedrosa
Pottumarthi V. Prasad
Philip M. Robson
Kanishka Sharma
Steven Sourbron
Manuel Taso
David L. Thomas
Danny J. J. Wang
Jeff L. Zhang
David C. Alsop
Sean B. Fain
Susan T. Francis
María A. Fernández-Seara
Publication date
01-02-2020
Publisher
Springer International Publishing
Published in
Magnetic Resonance Materials in Physics, Biology and Medicine / Issue 1/2020
Print ISSN: 0968-5243
Electronic ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-019-00800-z

Other articles of this Issue 1/2020

Magnetic Resonance Materials in Physics, Biology and Medicine 1/2020 Go to the issue