Skip to main content
Top
Published in: Magnetic Resonance Materials in Physics, Biology and Medicine 1/2020

Open Access 01-02-2020 | Magnetic Resonance Imaging | Review

Image registration in dynamic renal MRI—current status and prospects

Authors: Frank G. Zöllner, Amira Šerifović-Trbalić, Gordian Kabelitz, Marek Kociński, Andrzej Materka, Peter Rogelj

Published in: Magnetic Resonance Materials in Physics, Biology and Medicine | Issue 1/2020

Login to get access

Abstract

Magnetic resonance imaging (MRI) modalities have achieved an increasingly important role in the clinical work-up of chronic kidney diseases (CKD). This comprises among others assessment of hemodynamic parameters by arterial spin labeling (ASL) or dynamic contrast-enhanced (DCE-) MRI. Especially in the latter, images or volumes of the kidney are acquired over time for up to several minutes. Therefore, they are hampered by motion, e.g., by pulsation, peristaltic, or breathing motion. This motion can hinder subsequent image analysis to estimate hemodynamic parameters like renal blood flow or glomerular filtration rate (GFR). To overcome motion artifacts in time-resolved renal MRI, a wide range of strategies have been proposed. Renal image registration approaches could be grouped into (1) image acquisition techniques, (2) post-processing methods, or (3) a combination of image acquisition and post-processing approaches. Despite decades of progress, the translation in clinical practice is still missing. The aim of the present article is to discuss the existing literature on renal image registration techniques and show today’s limitations of the proposed techniques that hinder clinical translation. This paper includes transformation, criterion function, and search types as traditional components and emerging registration technologies based on deep learning. The current trend points towards faster registrations and more accurate results. However, a standardized evaluation of image registration in renal MRI is still missing.
Literature
1.
go back to reference Selby NM, Blankestijn PJ, Boor P, Combe C, Eckardt KU, Eikefjord E, Garcia-Fernandez N, Golay X, Gordon I, Grenier N, Hockings PD, Jensen JD, Joles JA, Kalra PA, Kramer BK, Mark PB, Mendichovszky IA, Nikolic O, Odudu A, Ong ACM, Ortiz A, Pruijm M, Remuzzi G, Rorvik J, de Seigneux S, Simms RJ, Slatinska J, Summers P, Taal MW, Thoeny HC, Vallee JP, Wolf M, Caroli A, Sourbron S (2018) Magnetic resonance imaging biomarkers for chronic kidney disease: a position paper from the European Cooperation in Science and Technology Action PARENCHIMA. Nephrol Dial Transplant 33(suppl_2):ii4–ii14CrossRefPubMedPubMedCentral Selby NM, Blankestijn PJ, Boor P, Combe C, Eckardt KU, Eikefjord E, Garcia-Fernandez N, Golay X, Gordon I, Grenier N, Hockings PD, Jensen JD, Joles JA, Kalra PA, Kramer BK, Mark PB, Mendichovszky IA, Nikolic O, Odudu A, Ong ACM, Ortiz A, Pruijm M, Remuzzi G, Rorvik J, de Seigneux S, Simms RJ, Slatinska J, Summers P, Taal MW, Thoeny HC, Vallee JP, Wolf M, Caroli A, Sourbron S (2018) Magnetic resonance imaging biomarkers for chronic kidney disease: a position paper from the European Cooperation in Science and Technology Action PARENCHIMA. Nephrol Dial Transplant 33(suppl_2):ii4–ii14CrossRefPubMedPubMedCentral
2.
go back to reference Zöllner FG, Svarstad E, Munthe-Kaas AZ, Schad LR, Lundervold A, Rorvik J (2012) Assessment of kidney volumes from MRI: acquisition and segmentation techniques. AJR Am J Roentgenol 199(5):1060–1069CrossRefPubMed Zöllner FG, Svarstad E, Munthe-Kaas AZ, Schad LR, Lundervold A, Rorvik J (2012) Assessment of kidney volumes from MRI: acquisition and segmentation techniques. AJR Am J Roentgenol 199(5):1060–1069CrossRefPubMed
3.
go back to reference Caroli A, Schneider M, Friedli I, Ljimani A, De Seigneux S, Boor P, Gullapudi L, Kazmi I, Mendichovszky IA, Notohamiprodjo M, Selby NM, Thoeny HC, Grenier N, Vallee JP (2018) Diffusion-weighted magnetic resonance imaging to assess diffuse renal pathology: a systematic review and statement paper. Nephrol Dial Transplant 33(suppl_2):ii29–ii40CrossRefPubMedPubMedCentral Caroli A, Schneider M, Friedli I, Ljimani A, De Seigneux S, Boor P, Gullapudi L, Kazmi I, Mendichovszky IA, Notohamiprodjo M, Selby NM, Thoeny HC, Grenier N, Vallee JP (2018) Diffusion-weighted magnetic resonance imaging to assess diffuse renal pathology: a systematic review and statement paper. Nephrol Dial Transplant 33(suppl_2):ii29–ii40CrossRefPubMedPubMedCentral
4.
go back to reference Odudu A, Nery F, Harteveld AA, Evans RG, Pendse D, Buchanan CE, Francis ST, Fernandez-Seara MA (2018) Arterial spin labelling MRI to measure renal perfusion: a systematic review and statement paper. Nephrol Dial Transplant 33(suppl_2):ii15–ii21CrossRefPubMedPubMedCentral Odudu A, Nery F, Harteveld AA, Evans RG, Pendse D, Buchanan CE, Francis ST, Fernandez-Seara MA (2018) Arterial spin labelling MRI to measure renal perfusion: a systematic review and statement paper. Nephrol Dial Transplant 33(suppl_2):ii15–ii21CrossRefPubMedPubMedCentral
5.
go back to reference Jones RA, Votaw JR, Salman K, Sharma P, Lurie C, Kalb B, Martin DR (2011) Magnetic resonance imaging evaluation of renal structure and function related to disease: technical review of image acquisition, postprocessing, and mathematical modeling steps. J Magn Reson Imaging 33(6):1270–1283CrossRefPubMed Jones RA, Votaw JR, Salman K, Sharma P, Lurie C, Kalb B, Martin DR (2011) Magnetic resonance imaging evaluation of renal structure and function related to disease: technical review of image acquisition, postprocessing, and mathematical modeling steps. J Magn Reson Imaging 33(6):1270–1283CrossRefPubMed
6.
go back to reference Viergever MA, Maintz JBA, Klein S, Murphy K, Staring M, Pluim JPW (2016) A survey of medical image registration—under review. Med Image Anal 33:140–144CrossRefPubMed Viergever MA, Maintz JBA, Klein S, Murphy K, Staring M, Pluim JPW (2016) A survey of medical image registration—under review. Med Image Anal 33:140–144CrossRefPubMed
7.
go back to reference Brox I (2007) Motion correction of the kidneys in dynamic contrast enhanced MRI for quantification of renal structure and function. University of Bergen, Bergen Brox I (2007) Motion correction of the kidneys in dynamic contrast enhanced MRI for quantification of renal structure and function. University of Bergen, Bergen
8.
go back to reference Robson PM, Madhuranthakam AJ, Smith MP, Sun MR, Dai W, Rofsky NM, Pedrosa I, Alsop DC (2016) Volumetric arterial spin-labeled perfusion imaging of the kidneys with a three-dimensional fast spin echo acquisition. Acad Radiol 23(2):144–154CrossRefPubMed Robson PM, Madhuranthakam AJ, Smith MP, Sun MR, Dai W, Rofsky NM, Pedrosa I, Alsop DC (2016) Volumetric arterial spin-labeled perfusion imaging of the kidneys with a three-dimensional fast spin echo acquisition. Acad Radiol 23(2):144–154CrossRefPubMed
9.
go back to reference Attenberger UI, Sourbron SP, Michaely HJ, Reiser MF, Schoenberg SO (2010) Retrospective respiratory triggering renal perfusion MRI. Acta Radiol 51(10):1163–1171CrossRefPubMed Attenberger UI, Sourbron SP, Michaely HJ, Reiser MF, Schoenberg SO (2010) Retrospective respiratory triggering renal perfusion MRI. Acta Radiol 51(10):1163–1171CrossRefPubMed
10.
go back to reference Eikefjord E, Andersen E, Hodneland E, Zöllner F, Lundervold A, Svarstad E, Rorvik J (2015) Use of 3D DCE-MRI for the estimation of renal perfusion and glomerular filtration rate: an intrasubject comparison of FLASH and KWIC with a comprehensive framework for evaluation. Am J Roentgenol 204(3):W273–W281CrossRef Eikefjord E, Andersen E, Hodneland E, Zöllner F, Lundervold A, Svarstad E, Rorvik J (2015) Use of 3D DCE-MRI for the estimation of renal perfusion and glomerular filtration rate: an intrasubject comparison of FLASH and KWIC with a comprehensive framework for evaluation. Am J Roentgenol 204(3):W273–W281CrossRef
11.
go back to reference Pipe JG (1999) Motion correction with PROPELLER MRI: application to head motion and free-breathing cardiac imaging. Magn Reson Med 42(5):963–969CrossRefPubMed Pipe JG (1999) Motion correction with PROPELLER MRI: application to head motion and free-breathing cardiac imaging. Magn Reson Med 42(5):963–969CrossRefPubMed
12.
go back to reference Lietzmann F, Zöllner FG, Michaely HJ, Schad LR (2010) Examination of self-navigating MR-sequences for perfusion imaging of the kidneys. Z Med Phys 20(2):124–133CrossRefPubMed Lietzmann F, Zöllner FG, Michaely HJ, Schad LR (2010) Examination of self-navigating MR-sequences for perfusion imaging of the kidneys. Z Med Phys 20(2):124–133CrossRefPubMed
13.
go back to reference Lietzmann F, Zöllner FG, Attenberger UI, Haneder S, Michaely HJ, Schad LR (2012) DCE-MRI of the human kidney using BLADE: a feasibility study in healthy volunteers. J Magn Reson Imaging 35(4):868–874CrossRefPubMed Lietzmann F, Zöllner FG, Attenberger UI, Haneder S, Michaely HJ, Schad LR (2012) DCE-MRI of the human kidney using BLADE: a feasibility study in healthy volunteers. J Magn Reson Imaging 35(4):868–874CrossRefPubMed
14.
go back to reference Riffel P, Zöllner FG, Budjan J, Grimm R, Block TK, Schoenberg SO, Hausmann D (2016) “One-stop shop”: free-breathing dynamic contrast-enhanced magnetic resonance imaging of the kidney using iterative reconstruction and continuous golden-angle radial sampling. Invest Radiol 51(11):714–719CrossRefPubMed Riffel P, Zöllner FG, Budjan J, Grimm R, Block TK, Schoenberg SO, Hausmann D (2016) “One-stop shop”: free-breathing dynamic contrast-enhanced magnetic resonance imaging of the kidney using iterative reconstruction and continuous golden-angle radial sampling. Invest Radiol 51(11):714–719CrossRefPubMed
15.
go back to reference Kurugol S, Afacan O, Stemmer A, Lee RS, Chow JS, Warfield SK (2019) Glomerular filtration rate estimation by motion-robust high spatiotemporal resolution DCE-MRI with radial VIBE and comparison with plasma clearance of 99mTc-DTPA. In: The proceedings of the international society of magnetic resonance in medicine, Montreal, Canada, p 846 Kurugol S, Afacan O, Stemmer A, Lee RS, Chow JS, Warfield SK (2019) Glomerular filtration rate estimation by motion-robust high spatiotemporal resolution DCE-MRI with radial VIBE and comparison with plasma clearance of 99mTc-DTPA. In: The proceedings of the international society of magnetic resonance in medicine, Montreal, Canada, p 846
16.
go back to reference Taso M, Guidon A, Litwiller DV, Alsop DC (2019) Free-breathing renal perfusion measurement with volumetric ASL using variable-density FSE and 4D Compressed-Sensing. In: The proceedings of the international society of magnetic resonance in medicine, Montreal, Canada, p 702 Taso M, Guidon A, Litwiller DV, Alsop DC (2019) Free-breathing renal perfusion measurement with volumetric ASL using variable-density FSE and 4D Compressed-Sensing. In: The proceedings of the international society of magnetic resonance in medicine, Montreal, Canada, p 702
17.
go back to reference Uecker M, Lai P, Murphy MJ, Virtue P, Elad M, Pauly JM, Vasanawala SS, Lustig M (2014) ESPIRiT–an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA. Magn Reson Med 71(3):990–1001CrossRefPubMedPubMedCentral Uecker M, Lai P, Murphy MJ, Virtue P, Elad M, Pauly JM, Vasanawala SS, Lustig M (2014) ESPIRiT–an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA. Magn Reson Med 71(3):990–1001CrossRefPubMedPubMedCentral
18.
go back to reference Hodneland E, Hanson EA, Lundervold A, Modersitzki J, Eikefjord E, Munthe-Kaas AZ (2014) Segmentation-driven image registration-application to 4D DCE-MRI recordings of the moving kidneys. IEEE T Image Process 23(5):2392–2404CrossRef Hodneland E, Hanson EA, Lundervold A, Modersitzki J, Eikefjord E, Munthe-Kaas AZ (2014) Segmentation-driven image registration-application to 4D DCE-MRI recordings of the moving kidneys. IEEE T Image Process 23(5):2392–2404CrossRef
19.
go back to reference Hodneland E, Lundervold A, Rorvik J, Munthe-Kaas AZ (2014) Normalized gradient fields for nonlinear motion correction of DCE-MRI time series. Comput Med Imaging Graph 38(3):202–210CrossRefPubMed Hodneland E, Lundervold A, Rorvik J, Munthe-Kaas AZ (2014) Normalized gradient fields for nonlinear motion correction of DCE-MRI time series. Comput Med Imaging Graph 38(3):202–210CrossRefPubMed
20.
go back to reference Positano V, Bernardeschi I, Zampa V, Marinelli M, Landini L, Santarelli MF (2013) Automatic 2D registration of renal perfusion image sequences by mutual information and adaptive prediction. MAGMA 26(3):325–335CrossRefPubMed Positano V, Bernardeschi I, Zampa V, Marinelli M, Landini L, Santarelli MF (2013) Automatic 2D registration of renal perfusion image sequences by mutual information and adaptive prediction. MAGMA 26(3):325–335CrossRefPubMed
21.
go back to reference Zöllner FG, Sance R, Rogelj P, Ledesma-Carbayo MJ, Rorvik J, Santos A, Lundervold A (2009) Assessment of 3D DCE-MRI of the kidneys using non-rigid image registration and segmentation of voxel time courses. Comput Med Imaging Graph 33(3):171–181CrossRefPubMed Zöllner FG, Sance R, Rogelj P, Ledesma-Carbayo MJ, Rorvik J, Santos A, Lundervold A (2009) Assessment of 3D DCE-MRI of the kidneys using non-rigid image registration and segmentation of voxel time courses. Comput Med Imaging Graph 33(3):171–181CrossRefPubMed
22.
go back to reference Sance R, Ledesma-Carbayo MJ, Lundervold A, Santos A (2007) Alignment of 3D DCE-MRI abdominal series for optimal quantification of kidney function. In: Proceedings of the 5th international symposium on image and signal processing and analysis (ISPA), pp 413–417 Sance R, Ledesma-Carbayo MJ, Lundervold A, Santos A (2007) Alignment of 3D DCE-MRI abdominal series for optimal quantification of kidney function. In: Proceedings of the 5th international symposium on image and signal processing and analysis (ISPA), pp 413–417
23.
go back to reference Anderlik A, Munthe-Kaas AZ, Oye OK, Eikefjord E, Rorvik J, Ulvang DM, Zöllner FG, Lundervold A (2009) Quantitative assessment of kidney function using dynamic contrast enhanced MRI—steps towards an integrated software prototype. In: Proceedings of 6th international symposium on image and signal processing and analysis (ISPA), pp 575–581 Anderlik A, Munthe-Kaas AZ, Oye OK, Eikefjord E, Rorvik J, Ulvang DM, Zöllner FG, Lundervold A (2009) Quantitative assessment of kidney function using dynamic contrast enhanced MRI—steps towards an integrated software prototype. In: Proceedings of 6th international symposium on image and signal processing and analysis (ISPA), pp 575–581
24.
go back to reference Fei B, Flask C, Wang H, Pi A, Wilson D, Shillingford J, Murcia N, Weimbs T, Duerk J (2005) Image segmentation, registration and visualization of serial mr images for therapeutic assessment of polycystic kidney disease in transgenic mice. Conf Proc IEEE Eng Med Biol Soc 1:467–469 Fei B, Flask C, Wang H, Pi A, Wilson D, Shillingford J, Murcia N, Weimbs T, Duerk J (2005) Image segmentation, registration and visualization of serial mr images for therapeutic assessment of polycystic kidney disease in transgenic mice. Conf Proc IEEE Eng Med Biol Soc 1:467–469
25.
go back to reference Melbourne A, Hipwell J, Modat M, Mertzanidou T, Huisman H, Ourselin S, Hawkes DJ (2011) The effect of motion correction on pharmacokinetic parameter estimation in dynamic-contrast-enhanced MRI. Phys Med Biol 56(24):7693–7708CrossRefPubMed Melbourne A, Hipwell J, Modat M, Mertzanidou T, Huisman H, Ourselin S, Hawkes DJ (2011) The effect of motion correction on pharmacokinetic parameter estimation in dynamic-contrast-enhanced MRI. Phys Med Biol 56(24):7693–7708CrossRefPubMed
26.
go back to reference Rogelj P, Zöllner FG, Kovačič S, Lundervold A (2007) Motion correction of contrast-enhanced MRI time series of kidney. In: International Electrotechnical and Computer Science Conference, pp 191–194 Rogelj P, Zöllner FG, Kovačič S, Lundervold A (2007) Motion correction of contrast-enhanced MRI time series of kidney. In: International Electrotechnical and Computer Science Conference, pp 191–194
27.
go back to reference Roche A, Malandain G, Pennec X, Ayache N (1998) The correlation ratio as a new similarity measure for multimodal image registration. Medical Image Computing and Computer-Assisted Intervention—MICCAI’98. Springer, Berlin, pp 1115–1124 Roche A, Malandain G, Pennec X, Ayache N (1998) The correlation ratio as a new similarity measure for multimodal image registration. Medical Image Computing and Computer-Assisted Intervention—MICCAI’98. Springer, Berlin, pp 1115–1124
28.
go back to reference Merrem AD, Zöllner FG, Reich M, Lundervold A, Rorvik J, Schad LR (2013) A variational approach to image registration in dynamic contrast-enhanced MRI of the human kidney. Magn Reson Imaging 31(5):771–777CrossRefPubMed Merrem AD, Zöllner FG, Reich M, Lundervold A, Rorvik J, Schad LR (2013) A variational approach to image registration in dynamic contrast-enhanced MRI of the human kidney. Magn Reson Imaging 31(5):771–777CrossRefPubMed
29.
go back to reference Lausch A (2011) Nonrigid registration of dynamic contrast-enhanced mri data using motion informed intensity corrections. University of Toronto, Toronto Lausch A (2011) Nonrigid registration of dynamic contrast-enhanced mri data using motion informed intensity corrections. University of Toronto, Toronto
30.
go back to reference Zikic D, Sourbron S, Feng X, Michaely HJ, Khamene A, Navab N (2008) Automatic alignment of renal DCE-MRI image series for improvement of quantitative tracer kinetic studies. In: Proceedings of SPIE, p 691432 Zikic D, Sourbron S, Feng X, Michaely HJ, Khamene A, Navab N (2008) Automatic alignment of renal DCE-MRI image series for improvement of quantitative tracer kinetic studies. In: Proceedings of SPIE, p 691432
31.
go back to reference Sun Y, Jolly MP, Moura JMF (2004) Integrated registration of dynamic renal perfusion MR images. In: Proceedings international conference on image processing (ICIP) Sun Y, Jolly MP, Moura JMF (2004) Integrated registration of dynamic renal perfusion MR images. In: Proceedings international conference on image processing (ICIP)
32.
go back to reference Song T, Lee VS, Rusinek H, Sajous JB, Laine AF (2005) Registration and segmentation of dynamic three-dimensional MR renography based on Fourier representations and k-means clustering. In: The Proceedings of the International Society of Magnetic Resonance in Medicine, Miami, Florida, USA, p 18 Song T, Lee VS, Rusinek H, Sajous JB, Laine AF (2005) Registration and segmentation of dynamic three-dimensional MR renography based on Fourier representations and k-means clustering. In: The Proceedings of the International Society of Magnetic Resonance in Medicine, Miami, Florida, USA, p 18
33.
go back to reference Yim PJ, Marcos HB, McAuliffe M, McGarry D, Heaton I, Choyke PL (2001) Registration of time-series contrast enhanced magnetic resonance images for renography. In: Proceedings of the IEEE symposium on computer-based medical systems, pp 516–520 Yim PJ, Marcos HB, McAuliffe M, McGarry D, Heaton I, Choyke PL (2001) Registration of time-series contrast enhanced magnetic resonance images for renography. In: Proceedings of the IEEE symposium on computer-based medical systems, pp 516–520
34.
go back to reference Wright KL, Chen Y, Saybasili H, Griswold MA, Seiberlich N, Gulani V (2014) Quantitative high-resolution renal perfusion imaging using 3-dimensional through-time radial generalized autocalibrating partially parallel acquisition. Invest Radiol 49(10):666–674CrossRefPubMedPubMedCentral Wright KL, Chen Y, Saybasili H, Griswold MA, Seiberlich N, Gulani V (2014) Quantitative high-resolution renal perfusion imaging using 3-dimensional through-time radial generalized autocalibrating partially parallel acquisition. Invest Radiol 49(10):666–674CrossRefPubMedPubMedCentral
35.
go back to reference Buonaccorsi GA, O’Connor JP, Caunce A, Roberts C, Cheung S, Watson Y, Davies K, Hope L, Jackson A, Jayson GC, Parker GJ (2007) Tracer kinetic model-driven registration for dynamic contrast-enhanced MRI time-series data. Magn Reson Med 58(5):1010–1019CrossRefPubMed Buonaccorsi GA, O’Connor JP, Caunce A, Roberts C, Cheung S, Watson Y, Davies K, Hope L, Jackson A, Jayson GC, Parker GJ (2007) Tracer kinetic model-driven registration for dynamic contrast-enhanced MRI time-series data. Magn Reson Med 58(5):1010–1019CrossRefPubMed
36.
go back to reference Buonaccorsi GA, Roberts C, Cheung S, Watson Y, Davies K, Jackson A, Jayson GC, Parker GJ (2005) Tracer kinetic model-driven registration for dynamic contrast enhanced MRI time series. Med Image Comput Comput Assist Interv 8(Pt 1):91–98PubMed Buonaccorsi GA, Roberts C, Cheung S, Watson Y, Davies K, Jackson A, Jayson GC, Parker GJ (2005) Tracer kinetic model-driven registration for dynamic contrast enhanced MRI time series. Med Image Comput Comput Assist Interv 8(Pt 1):91–98PubMed
37.
go back to reference Buonaccorsi GA, Roberts C, Cheung S, Watson Y, O’Connor JP, Davies K, Jackson A, Jayson GC, Parker GJ (2006) Comparison of the performance of tracer kinetic model-driven registration for dynamic contrast enhanced MRI using different models of contrast enhancement. Acad Radiol 13(9):1112–1123CrossRefPubMed Buonaccorsi GA, Roberts C, Cheung S, Watson Y, O’Connor JP, Davies K, Jackson A, Jayson GC, Parker GJ (2006) Comparison of the performance of tracer kinetic model-driven registration for dynamic contrast enhanced MRI using different models of contrast enhancement. Acad Radiol 13(9):1112–1123CrossRefPubMed
38.
go back to reference Nery F, Gordon I, Thomas DL (2018) Non-invasive renal perfusion imaging using arterial spin labeling MRI: challenges and opportunities. Diagnostics 8(1):2CrossRefPubMedCentral Nery F, Gordon I, Thomas DL (2018) Non-invasive renal perfusion imaging using arterial spin labeling MRI: challenges and opportunities. Diagnostics 8(1):2CrossRefPubMedCentral
39.
go back to reference Giele ELW, de Priester JA, Blom JA, den Boer JA, van Engelshoven JMA, Hasman A, Geerlings M (2001) Movement correction of the kidney in dynamic MRI scans using FFT phase difference movement detection. J Magn Reson Imaging 14(6):741–749CrossRefPubMed Giele ELW, de Priester JA, Blom JA, den Boer JA, van Engelshoven JMA, Hasman A, Geerlings M (2001) Movement correction of the kidney in dynamic MRI scans using FFT phase difference movement detection. J Magn Reson Imaging 14(6):741–749CrossRefPubMed
40.
go back to reference de Senneville BD, Mendichovszky IA, Roujol S, Gordon I, Moonen C, Grenier N (2008) Improvement of MRI-functional measurement with automatic movement correction in native and transplanted kidneys. J Magn Reson Imaging 28(4):970–978CrossRefPubMed de Senneville BD, Mendichovszky IA, Roujol S, Gordon I, Moonen C, Grenier N (2008) Improvement of MRI-functional measurement with automatic movement correction in native and transplanted kidneys. J Magn Reson Imaging 28(4):970–978CrossRefPubMed
41.
go back to reference Gardener AG, Francis ST (2010) Multislice perfusion of the kidneys using parallel imaging: image acquisition and analysis strategies. Magn Reson Med 63(6):1627–1636CrossRefPubMed Gardener AG, Francis ST (2010) Multislice perfusion of the kidneys using parallel imaging: image acquisition and analysis strategies. Magn Reson Med 63(6):1627–1636CrossRefPubMed
42.
go back to reference Siva S, Pham D, Gill S, Bressel M, Dang K, Devereux T, Kron T, Foroudi F (2013) An analysis of respiratory induced kidney motion on four-dimensional computed tomography and its implications for stereotactic kidney radiotherapy. Radiat Oncol 8:248CrossRefPubMedPubMedCentral Siva S, Pham D, Gill S, Bressel M, Dang K, Devereux T, Kron T, Foroudi F (2013) An analysis of respiratory induced kidney motion on four-dimensional computed tomography and its implications for stereotactic kidney radiotherapy. Radiat Oncol 8:248CrossRefPubMedPubMedCentral
43.
go back to reference Hodneland E, Keilegavlen E, Hanson EA, Andersen E, Monssen JA, Rorvik J, Leh S, Marti HP, Lundervold A, Svarstad E, Nordbotten JM (2019) In vivo detection of chronic kidney disease using tissue deformation fields from dynamic MR imaging. IEEE T Bio-Med Eng 66(6):1779–1790CrossRef Hodneland E, Keilegavlen E, Hanson EA, Andersen E, Monssen JA, Rorvik J, Leh S, Marti HP, Lundervold A, Svarstad E, Nordbotten JM (2019) In vivo detection of chronic kidney disease using tissue deformation fields from dynamic MR imaging. IEEE T Bio-Med Eng 66(6):1779–1790CrossRef
44.
go back to reference Spiegel M, Hahn DA, Daum V, Wasza J, Hornegger J (2009) Segmentation of kidneys using a new active shape model generation technique based on non-rigid image registration. Comput Med Imaging Graph 33(1):29–39CrossRefPubMed Spiegel M, Hahn DA, Daum V, Wasza J, Hornegger J (2009) Segmentation of kidneys using a new active shape model generation technique based on non-rigid image registration. Comput Med Imaging Graph 33(1):29–39CrossRefPubMed
45.
go back to reference Ruthotto L, Hodneland E, Modersitzki J (2012) Registration of dynamic contrast enhanced MRI with local rigidity constraint. In: Dawant BM, Fitzpatrick JM, Rueckert D (eds) Biomedical image registration. WBIR 2012. Lecture notes in computer science. Springer, Berlin, pp 190–198 Ruthotto L, Hodneland E, Modersitzki J (2012) Registration of dynamic contrast enhanced MRI with local rigidity constraint. In: Dawant BM, Fitzpatrick JM, Rueckert D (eds) Biomedical image registration. WBIR 2012. Lecture notes in computer science. Springer, Berlin, pp 190–198
46.
go back to reference Schewzow K, Zöllner F, Oesingmann N, Schad L (2010) Image registration in ASL-perfusion imaging of kidney - impact on image quality. In: The Proceedings of the international society of magnetic resonance in medicine, Stockhom, Sweden, p 1780 Schewzow K, Zöllner F, Oesingmann N, Schad L (2010) Image registration in ASL-perfusion imaging of kidney - impact on image quality. In: The Proceedings of the international society of magnetic resonance in medicine, Stockhom, Sweden, p 1780
47.
go back to reference Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak J, van Ginneken B, Sanchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88CrossRefPubMed Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak J, van Ginneken B, Sanchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88CrossRefPubMed
48.
go back to reference Lundervold AS, Lundervold A (2019) An overview of deep learning in medical imaging focusing on MRI. Z Med Phys 29(2):102–127CrossRef Lundervold AS, Lundervold A (2019) An overview of deep learning in medical imaging focusing on MRI. Z Med Phys 29(2):102–127CrossRef
49.
go back to reference Mazurowski MA, Buda M, Saha A, Bashir MR (2019) Deep learning in radiology: an overview of the concepts and a survey of the state of the art with focus on MRI. J Magn Reson Imaging 49(4):939–954CrossRefPubMed Mazurowski MA, Buda M, Saha A, Bashir MR (2019) Deep learning in radiology: an overview of the concepts and a survey of the state of the art with focus on MRI. J Magn Reson Imaging 49(4):939–954CrossRefPubMed
50.
go back to reference Kim J, Hong J, Park H (2018) Prospects of deep learning for medical imaging. Precis Future Med 2(2):37–52CrossRef Kim J, Hong J, Park H (2018) Prospects of deep learning for medical imaging. Precis Future Med 2(2):37–52CrossRef
51.
go back to reference Haskins G, Kruecker J, Kruger U, Xu S, Pinto PA, Wood BJ, Yan P (2019) Learning deep similarity metric for 3D MR-TRUS image registration. Int J Comput Assist Radiol Surg 14(3):417–425CrossRefPubMed Haskins G, Kruecker J, Kruger U, Xu S, Pinto PA, Wood BJ, Yan P (2019) Learning deep similarity metric for 3D MR-TRUS image registration. Int J Comput Assist Radiol Surg 14(3):417–425CrossRefPubMed
52.
go back to reference Ker J, Wang L, Rao J, Lim T (2018) Deep learning applications in medical image analysis. IEEE Access 6:9375–9389CrossRef Ker J, Wang L, Rao J, Lim T (2018) Deep learning applications in medical image analysis. IEEE Access 6:9375–9389CrossRef
53.
go back to reference Lv J, Yang M, Zhang J, Wang X (2018) Respiratory motion correction for free-breathing 3D abdominal MRI using CNN-based image registration: a feasibility study. Br J Radiol 91(1083):20170788CrossRefPubMedPubMedCentral Lv J, Yang M, Zhang J, Wang X (2018) Respiratory motion correction for free-breathing 3D abdominal MRI using CNN-based image registration: a feasibility study. Br J Radiol 91(1083):20170788CrossRefPubMedPubMedCentral
54.
go back to reference Buerger C, Clough RE, King AP, Schaeffter T, Prieto C (2012) Nonrigid motion modeling of the liver from 3-D undersampled self-gated golden-radial phase encoded MRI. IEEE Trans Med Imaging 31(3):805–815CrossRefPubMed Buerger C, Clough RE, King AP, Schaeffter T, Prieto C (2012) Nonrigid motion modeling of the liver from 3-D undersampled self-gated golden-radial phase encoded MRI. IEEE Trans Med Imaging 31(3):805–815CrossRefPubMed
56.
go back to reference Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, Kudlur M, Levenberg J, Monga R, Moore S, Murray DG, Steiner B, Tucker P, Vasudevan V, Warden P, Wicke M, Yu Y, Zheng X (2016) TensorFlow: a system for large-scale machine learning. In: Proceedings of the 12th USENIX conference on operating systems design and implementation (OSDI’16). USENIX association, Berkeley, CA, USA, pp 265–283 Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, Kudlur M, Levenberg J, Monga R, Moore S, Murray DG, Steiner B, Tucker P, Vasudevan V, Warden P, Wicke M, Yu Y, Zheng X (2016) TensorFlow: a system for large-scale machine learning. In: Proceedings of the 12th USENIX conference on operating systems design and implementation (OSDI’16). USENIX association, Berkeley, CA, USA, pp 265–283
57.
go back to reference Simonovsky M, Gutiérrez-Becker B, Mateus D, Navab N, Komodakis N (2016) A deep metric for multimodal registration. In, Cham, 2016. Medical image computing and computer-assisted intervention – MICCAI. Springer International Publishing, pp 10–18 Simonovsky M, Gutiérrez-Becker B, Mateus D, Navab N, Komodakis N (2016) A deep metric for multimodal registration. In, Cham, 2016. Medical image computing and computer-assisted intervention – MICCAI. Springer International Publishing, pp 10–18
58.
go back to reference Wu G, Kim M, Wang Q, Gao Y, Liao S, Shen D (2013) Unsupervised deep feature learning for deformable registration of MR brain images. Med Image Comput Comput Assist Interv 16(Pt 2):649–656PubMedPubMedCentral Wu G, Kim M, Wang Q, Gao Y, Liao S, Shen D (2013) Unsupervised deep feature learning for deformable registration of MR brain images. Med Image Comput Comput Assist Interv 16(Pt 2):649–656PubMedPubMedCentral
59.
go back to reference Cheng X, Zhang L, Zheng Y (2018) Deep similarity learning for multimodal medical images. Comput Methods Biomech Biomed Eng: Imaging Vis 6(3):248–252 Cheng X, Zhang L, Zheng Y (2018) Deep similarity learning for multimodal medical images. Comput Methods Biomech Biomed Eng: Imaging Vis 6(3):248–252
60.
go back to reference Miao S, Wang ZJ, Liao R (2016) A CNN regression approach for real-time 2D/3D registration. IEEE Transa Med Imaging 35(5):1352–1363CrossRef Miao S, Wang ZJ, Liao R (2016) A CNN regression approach for real-time 2D/3D registration. IEEE Transa Med Imaging 35(5):1352–1363CrossRef
61.
go back to reference Yang X, Kwitt R, Styner M, Niethammer M (2017) Quicksilver: fast predictive image registration—a deep learning approach. Neuroimage 158:378–396CrossRefPubMed Yang X, Kwitt R, Styner M, Niethammer M (2017) Quicksilver: fast predictive image registration—a deep learning approach. Neuroimage 158:378–396CrossRefPubMed
62.
go back to reference Cao X, Yang J, Zhang J, Wang Q, Yap PT, Shen D (2018) deformable image registration using a cue-aware deep regression network. IEEE Trans Biomed Eng 65(9):1900–1911CrossRefPubMedPubMedCentral Cao X, Yang J, Zhang J, Wang Q, Yap PT, Shen D (2018) deformable image registration using a cue-aware deep regression network. IEEE Trans Biomed Eng 65(9):1900–1911CrossRefPubMedPubMedCentral
64.
go back to reference Heinrich MP, Jenkinson M, Bhushan M, Matin T, Gleeson FV, Brady SM, Schnabel JA (2012) MIND: modality independent neighbourhood descriptor for multi-modal deformable registration. Med Image Anal 16(7):1423–1435CrossRefPubMed Heinrich MP, Jenkinson M, Bhushan M, Matin T, Gleeson FV, Brady SM, Schnabel JA (2012) MIND: modality independent neighbourhood descriptor for multi-modal deformable registration. Med Image Anal 16(7):1423–1435CrossRefPubMed
65.
go back to reference Lundervold AS, Roervik J, Lundervold A (2017) Fast semi-supervised segmentation of the kidneys in DCE-MRI using convolutional neural networks and transfer learning”. In: 2nd International Scientific Symposium, Functional Renal Imaging: Where Physiology, Nephrology, Radiology and Physics Meet, Berlin, Germany Lundervold AS, Roervik J, Lundervold A (2017) Fast semi-supervised segmentation of the kidneys in DCE-MRI using convolutional neural networks and transfer learning”. In: 2nd International Scientific Symposium, Functional Renal Imaging: Where Physiology, Nephrology, Radiology and Physics Meet, Berlin, Germany
66.
go back to reference Tajbakhsh N, Shin JY, Gurudu SR, Hurst RT, Kendall CB, Gotway MB, Jianming L (2016) Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans Med Imaging 35(5):1299–1312CrossRefPubMed Tajbakhsh N, Shin JY, Gurudu SR, Hurst RT, Kendall CB, Gotway MB, Jianming L (2016) Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans Med Imaging 35(5):1299–1312CrossRefPubMed
67.
go back to reference Wang Z, Yang J, Jin H, Shechtman E, Agarwala A, Brandt J, Huang TS (2015) DeepFont: identify your font from an image. Paper presented at the Proceedings of the 23rd ACM international conference on Multimedia, Brisbane, Australia Wang Z, Yang J, Jin H, Shechtman E, Agarwala A, Brandt J, Huang TS (2015) DeepFont: identify your font from an image. Paper presented at the Proceedings of the 23rd ACM international conference on Multimedia, Brisbane, Australia
68.
go back to reference Wood E, Baltruaitis T, Morency L-P, Robinson P, Bulling A (2016) Learning an appearance-based gaze estimator from one million synthesised images. Paper presented at the Proceedings of the Ninth Biennial ACM Symposium on Eye Tracking Research & Applications, Charleston, South Carolina Wood E, Baltruaitis T, Morency L-P, Robinson P, Bulling A (2016) Learning an appearance-based gaze estimator from one million synthesised images. Paper presented at the Proceedings of the Ninth Biennial ACM Symposium on Eye Tracking Research & Applications, Charleston, South Carolina
69.
go back to reference Maier J, Sawall S, Knaup M, Kachelrieß M (2018) Deep scatter estimation (DSE): accurate real-time scatter estimation for X-ray CT using a deep convolutional neural network. J Nondestr Eval 37(3):57CrossRef Maier J, Sawall S, Knaup M, Kachelrieß M (2018) Deep scatter estimation (DSE): accurate real-time scatter estimation for X-ray CT using a deep convolutional neural network. J Nondestr Eval 37(3):57CrossRef
70.
go back to reference Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. Paper presented at the Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2, Montreal, Canada Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. Paper presented at the Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2, Montreal, Canada
71.
go back to reference Guibas JT, Virdi TS, Li PS (2017) Synthetic medical images from dual generative adversarial networks. arXiv e-prints Guibas JT, Virdi TS, Li PS (2017) Synthetic medical images from dual generative adversarial networks. arXiv e-prints
72.
go back to reference Zhu J, Park T, Isola P, Efros A (2017) A unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp 2242–2251 Zhu J, Park T, Isola P, Efros A (2017) A unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp 2242–2251
74.
go back to reference Tanner C, Ozdemir F, Profanter R, Vishnevsky V, Konukoglu E, Goksel O (2018) Generative adversarial networks for MR-CT deformable image registration. arXiv:1807.07349 Tanner C, Ozdemir F, Profanter R, Vishnevsky V, Konukoglu E, Goksel O (2018) Generative adversarial networks for MR-CT deformable image registration. arXiv:​1807.​07349
76.
77.
go back to reference de Vos BD, Berendsen FF, Viergever MA, Sokooti H, Staring M, Isgum I (2019) A deep learning framework for unsupervised affine and deformable image registration. Med Image Anal 52:128–143CrossRefPubMed de Vos BD, Berendsen FF, Viergever MA, Sokooti H, Staring M, Isgum I (2019) A deep learning framework for unsupervised affine and deformable image registration. Med Image Anal 52:128–143CrossRefPubMed
78.
go back to reference Hu Y, Modat M, Gibson E, Li W, Ghavami N, Bonmati E, Wang G, Bandula S, Moore CM, Emberton M, Ourselin S, Noble JA, Barratt DC, Vercauteren T (2018) Weakly-supervised convolutional neural networks for multimodal image registration. Med Image Anal 49:1–13CrossRefPubMedPubMedCentral Hu Y, Modat M, Gibson E, Li W, Ghavami N, Bonmati E, Wang G, Bandula S, Moore CM, Emberton M, Ourselin S, Noble JA, Barratt DC, Vercauteren T (2018) Weakly-supervised convolutional neural networks for multimodal image registration. Med Image Anal 49:1–13CrossRefPubMedPubMedCentral
79.
go back to reference Tokuda J, Mamata H, Gill RR, Hata N, Kikinis R, Padera RF Jr, Lenkinski RE, Sugarbaker DJ, Hatabu H (2011) Impact of nonrigid motion correction technique on pixel-wise pharmacokinetic analysis of free-breathing pulmonary dynamic contrast-enhanced MR imaging. J Magn Reson Imaging 33(4):968–973CrossRefPubMedPubMedCentral Tokuda J, Mamata H, Gill RR, Hata N, Kikinis R, Padera RF Jr, Lenkinski RE, Sugarbaker DJ, Hatabu H (2011) Impact of nonrigid motion correction technique on pixel-wise pharmacokinetic analysis of free-breathing pulmonary dynamic contrast-enhanced MR imaging. J Magn Reson Imaging 33(4):968–973CrossRefPubMedPubMedCentral
80.
go back to reference de Boer A, Leiner T, Vink EE, Blankestijn PJ, van den Berg CAT (2018) Modified dixon-based renal dynamic contrast-enhanced MRI facilitates automated registration and perfusion analysis. Magn Reson Med 80(1):66–76CrossRefPubMed de Boer A, Leiner T, Vink EE, Blankestijn PJ, van den Berg CAT (2018) Modified dixon-based renal dynamic contrast-enhanced MRI facilitates automated registration and perfusion analysis. Magn Reson Med 80(1):66–76CrossRefPubMed
81.
go back to reference Conlin CC, Zhang JL, Rousset F, Vachet C, Zhao Y, Morton KA, Carlston K, Gerig G, Lee VS (2016) Performance of an efficient image-registration algorithm in processing MR renography data. J Magn Reson Imaging 43(2):391–397CrossRefPubMed Conlin CC, Zhang JL, Rousset F, Vachet C, Zhao Y, Morton KA, Carlston K, Gerig G, Lee VS (2016) Performance of an efficient image-registration algorithm in processing MR renography data. J Magn Reson Imaging 43(2):391–397CrossRefPubMed
82.
go back to reference Li XL, Chen XJ, Yao JH, Zhang X, Yang F, Tian J (2012) Automatic renal cortex segmentation using implicit shape registration and novel multiple surfaces graph search. IEEE Trans Med Imaging 31(10):1849–1860CrossRefPubMed Li XL, Chen XJ, Yao JH, Zhang X, Yang F, Tian J (2012) Automatic renal cortex segmentation using implicit shape registration and novel multiple surfaces graph search. IEEE Trans Med Imaging 31(10):1849–1860CrossRefPubMed
84.
go back to reference Fitzpatrick JM, West JB (2001) The distribution of target registration error in rigid-body point-based registration. IEEE Trans Med Imaging 20(9):917–927CrossRefPubMed Fitzpatrick JM, West JB (2001) The distribution of target registration error in rigid-body point-based registration. IEEE Trans Med Imaging 20(9):917–927CrossRefPubMed
85.
go back to reference Gupta SN, Solaiyappan M, Beache GM, Arai AE, Foo TKF (2003) Fast method for correcting image misregistration due to organ motion in time-series MRI data. Magn Reson Med 49(3):506–514CrossRefPubMed Gupta SN, Solaiyappan M, Beache GM, Arai AE, Foo TKF (2003) Fast method for correcting image misregistration due to organ motion in time-series MRI data. Magn Reson Med 49(3):506–514CrossRefPubMed
86.
go back to reference Cutajar M, Thomas DL, Banks T, Clark CA, Golay X, Gordon I (2012) Repeatability of renal arterial spin labelling MRI in healthy subjects. MAGMA 25(2):145–153CrossRefPubMed Cutajar M, Thomas DL, Banks T, Clark CA, Golay X, Gordon I (2012) Repeatability of renal arterial spin labelling MRI in healthy subjects. MAGMA 25(2):145–153CrossRefPubMed
87.
go back to reference Golay X, Hendrikse J, Lim TCC (2004) Perfusion imaging using arterial spin labeling. Topics Magn Reson Image 15(1):10–27CrossRef Golay X, Hendrikse J, Lim TCC (2004) Perfusion imaging using arterial spin labeling. Topics Magn Reson Image 15(1):10–27CrossRef
88.
go back to reference Zimmer F, Zollner FG, Hoeger S, Klotz S, Tsagogiorgas C, Kramer BK, Schad LR (2013) Quantitative renal perfusion measurements in a rat model of acute kidney injury at 3T: testing inter- and intramethodical significance of ASL and DCE-MRI. PLoS One 8(1):e53849CrossRefPubMedPubMedCentral Zimmer F, Zollner FG, Hoeger S, Klotz S, Tsagogiorgas C, Kramer BK, Schad LR (2013) Quantitative renal perfusion measurements in a rat model of acute kidney injury at 3T: testing inter- and intramethodical significance of ASL and DCE-MRI. PLoS One 8(1):e53849CrossRefPubMedPubMedCentral
89.
go back to reference Hernandez-Garcia L, Nielsen JF, Noll DC (2019) Improved sensitivity and temporal resolution in perfusion FMRI using velocity selective inversion ASL. Magn Reson Med 81(2):1004–1015CrossRefPubMed Hernandez-Garcia L, Nielsen JF, Noll DC (2019) Improved sensitivity and temporal resolution in perfusion FMRI using velocity selective inversion ASL. Magn Reson Med 81(2):1004–1015CrossRefPubMed
90.
go back to reference Alsop DC, Detre JA, Golay X, Gunther M, Hendrikse J, Hernandez-Garcia L, Lu H, MacIntosh BJ, Parkes LM, Smits M, van Osch MJ, Wang DJ, Wong EC, Zaharchuk G (2015) Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med 73(1):102–116CrossRefPubMed Alsop DC, Detre JA, Golay X, Gunther M, Hendrikse J, Hernandez-Garcia L, Lu H, MacIntosh BJ, Parkes LM, Smits M, van Osch MJ, Wang DJ, Wong EC, Zaharchuk G (2015) Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med 73(1):102–116CrossRefPubMed
91.
go back to reference Bones IK, Harteveld AA, Franklin SL, van Osch MJP, Hendrikse J, Moonen CTW, Bos C, van Stralen M (2019) Enabling free-breathing background suppressed renal pCASL using fat imaging and retrospective motion correction. Magn Reson Med 82(1):276–288CrossRefPubMedPubMedCentral Bones IK, Harteveld AA, Franklin SL, van Osch MJP, Hendrikse J, Moonen CTW, Bos C, van Stralen M (2019) Enabling free-breathing background suppressed renal pCASL using fat imaging and retrospective motion correction. Magn Reson Med 82(1):276–288CrossRefPubMedPubMedCentral
92.
go back to reference Cutajar M, Thomas DL, Hales PW, Banks T, Clark CA, Gordon I (2014) Comparison of ASL and DCE MRI for the non-invasive measurement of renal blood flow: quantification and reproducibility. Eur Radiol 24(6):1300–1308CrossRefPubMed Cutajar M, Thomas DL, Hales PW, Banks T, Clark CA, Gordon I (2014) Comparison of ASL and DCE MRI for the non-invasive measurement of renal blood flow: quantification and reproducibility. Eur Radiol 24(6):1300–1308CrossRefPubMed
93.
go back to reference Klein S, Staring M, Murphy K, Viergever MA, Pluim JP (2010) elastix: a toolbox for intensity-based medical image registration. IEEE Trans Med Imaging 29(1):196–205CrossRefPubMed Klein S, Staring M, Murphy K, Viergever MA, Pluim JP (2010) elastix: a toolbox for intensity-based medical image registration. IEEE Trans Med Imaging 29(1):196–205CrossRefPubMed
94.
go back to reference Shirvani S, Tokarczuk P, Statton B, Quinlan M, Berry A, Tomlinson J, Weale P, Kuhn B, O’Regan DP (2019) Motion-corrected multiparametric renal arterial spin labelling at 3 T: reproducibility and effect of vasodilator challenge. Eur Radiol 29(1):232–240CrossRefPubMed Shirvani S, Tokarczuk P, Statton B, Quinlan M, Berry A, Tomlinson J, Weale P, Kuhn B, O’Regan DP (2019) Motion-corrected multiparametric renal arterial spin labelling at 3 T: reproducibility and effect of vasodilator challenge. Eur Radiol 29(1):232–240CrossRefPubMed
95.
go back to reference Wu WC, Su MY, Chang CC, Tseng WY, Liu KL (2011) Renal perfusion 3-T MR imaging: a comparative study of arterial spin labeling and dynamic contrast-enhanced techniques. Radiology 261(3):845–853CrossRefPubMed Wu WC, Su MY, Chang CC, Tseng WY, Liu KL (2011) Renal perfusion 3-T MR imaging: a comparative study of arterial spin labeling and dynamic contrast-enhanced techniques. Radiology 261(3):845–853CrossRefPubMed
96.
go back to reference Avants BB, Epstein CL, Grossman M, Gee JC (2008) Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal 12(1):26–41CrossRefPubMed Avants BB, Epstein CL, Grossman M, Gee JC (2008) Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal 12(1):26–41CrossRefPubMed
97.
go back to reference Mora-Gutierrez JM, Garcia-Fernandez N, Slon Roblero MF, Paramo JA, Escalada FJ, Wang DJ, Benito A, Fernandez-Seara MA (2017) Arterial spin labeling MRI is able to detect early hemodynamic changes in diabetic nephropathy. J Magn Reson Imaging 46(6):1810–1817CrossRefPubMed Mora-Gutierrez JM, Garcia-Fernandez N, Slon Roblero MF, Paramo JA, Escalada FJ, Wang DJ, Benito A, Fernandez-Seara MA (2017) Arterial spin labeling MRI is able to detect early hemodynamic changes in diabetic nephropathy. J Magn Reson Imaging 46(6):1810–1817CrossRefPubMed
98.
go back to reference Hammon M, Janka R, Siegl C, Seuss H, Grosso R, Martirosian P, Schmieder RE, Uder M, Kistner I (2016) Reproducibility of kidney perfusion measurements with arterial spin labeling at 1.5 tesla MRI combined with semiautomatic segmentation for differential cortical and medullary assessment. Medicine (Baltimore) 95(11):e3083CrossRef Hammon M, Janka R, Siegl C, Seuss H, Grosso R, Martirosian P, Schmieder RE, Uder M, Kistner I (2016) Reproducibility of kidney perfusion measurements with arterial spin labeling at 1.5 tesla MRI combined with semiautomatic segmentation for differential cortical and medullary assessment. Medicine (Baltimore) 95(11):e3083CrossRef
99.
go back to reference Dong J, Yang L, Su T, Yang X, Chen B, Zhang J, Wang X, Jiang X (2013) Quantitative assessment of acute kidney injury by noninvasive arterial spin labeling perfusion MRI: a pilot study. Sci China Life Sci 56(8):745–750CrossRefPubMed Dong J, Yang L, Su T, Yang X, Chen B, Zhang J, Wang X, Jiang X (2013) Quantitative assessment of acute kidney injury by noninvasive arterial spin labeling perfusion MRI: a pilot study. Sci China Life Sci 56(8):745–750CrossRefPubMed
100.
go back to reference Wang J, Zhang Y, Yang X, Wang X, Zhang J, Fang J, Jiang X (2012) Hemodynamic effects of furosemide on renal perfusion as evaluated by ASL-MRI. Acad Radiol 19(10):1194–1200CrossRefPubMed Wang J, Zhang Y, Yang X, Wang X, Zhang J, Fang J, Jiang X (2012) Hemodynamic effects of furosemide on renal perfusion as evaluated by ASL-MRI. Acad Radiol 19(10):1194–1200CrossRefPubMed
101.
go back to reference Artz NS, Sadowski EA, Wentland AL, Djamali A, Grist TM, Seo S, Fain SB (2011) Reproducibility of renal perfusion MR imaging in native and transplanted kidneys using non-contrast arterial spin labeling. J Magn Reson Imaging 33(6):1414–1421CrossRefPubMedPubMedCentral Artz NS, Sadowski EA, Wentland AL, Djamali A, Grist TM, Seo S, Fain SB (2011) Reproducibility of renal perfusion MR imaging in native and transplanted kidneys using non-contrast arterial spin labeling. J Magn Reson Imaging 33(6):1414–1421CrossRefPubMedPubMedCentral
102.
go back to reference Hanson E, Eikefjord E, Rorvik J, Andersen E, Lundervold A, Hodneland E (2017) Workflow sensitivity of post-processing methods in renal DCE-MRI. Magn Reson Imaging 42:60–68CrossRefPubMed Hanson E, Eikefjord E, Rorvik J, Andersen E, Lundervold A, Hodneland E (2017) Workflow sensitivity of post-processing methods in renal DCE-MRI. Magn Reson Imaging 42:60–68CrossRefPubMed
103.
go back to reference Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM (2012) Fsl. Neuroimage 62(2):782–790CrossRef Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM (2012) Fsl. Neuroimage 62(2):782–790CrossRef
105.
go back to reference Luypaert R, Ingrisch M, Sourbron S, de Mey J (2012) The Akaike information criterion in DCE-MRI: does it improve the haemodynamic parameter estimates? Phys Med Biol 57(11):3609–3628CrossRefPubMed Luypaert R, Ingrisch M, Sourbron S, de Mey J (2012) The Akaike information criterion in DCE-MRI: does it improve the haemodynamic parameter estimates? Phys Med Biol 57(11):3609–3628CrossRefPubMed
106.
go back to reference Basak S, Buckley DL, Chrysochou C, Banerji A, Vassallo D, Odudu A, Kalra PA, Sourbron SP (2019) Analytical validation of single-kidney glomerular filtration rate and split renal function as measured with magnetic resonance renography. Magn Reson Imaging 59:53–60CrossRefPubMed Basak S, Buckley DL, Chrysochou C, Banerji A, Vassallo D, Odudu A, Kalra PA, Sourbron SP (2019) Analytical validation of single-kidney glomerular filtration rate and split renal function as measured with magnetic resonance renography. Magn Reson Imaging 59:53–60CrossRefPubMed
107.
go back to reference Haber E, Modersitzki J (2006) Intensity gradient based registration and fusion of multi-modal images. Medical image computing and computer-assisted intervention—MICCAI 2006. Springer, Berlin, pp 726–733 Haber E, Modersitzki J (2006) Intensity gradient based registration and fusion of multi-modal images. Medical image computing and computer-assisted intervention—MICCAI 2006. Springer, Berlin, pp 726–733
Metadata
Title
Image registration in dynamic renal MRI—current status and prospects
Authors
Frank G. Zöllner
Amira Šerifović-Trbalić
Gordian Kabelitz
Marek Kociński
Andrzej Materka
Peter Rogelj
Publication date
01-02-2020
Publisher
Springer International Publishing
Published in
Magnetic Resonance Materials in Physics, Biology and Medicine / Issue 1/2020
Print ISSN: 0968-5243
Electronic ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-019-00782-y

Other articles of this Issue 1/2020

Magnetic Resonance Materials in Physics, Biology and Medicine 1/2020 Go to the issue