Skip to main content
Top
Published in: Magnetic Resonance Materials in Physics, Biology and Medicine 6/2019

Open Access 01-12-2019 | Review Article

Measurement of T1 and T2 relaxation times of the pancreas at 7 T using a multi-transmit system

Authors: Mariska Damen, Maarten van Leeuwen, Andrew Webb, Dennis Klomp, Catalina Arteaga de Castro

Published in: Magnetic Resonance Materials in Physics, Biology and Medicine | Issue 6/2019

Login to get access

Abstract

Objective

To determine T1 and T2 relaxation times of healthy pancreas parenchyma at 7 T using a multi-transmit system.

Materials and methods

Twenty-six healthy subjects were scanned with a 7 T MR system using eight parallel transceiver antennas, each with two additional receive loops. A Look-Locker sequence was used to obtain images for T1 determination, while T2 was obtained from spin-echo images and magnetic resonance spectroscopy measurements with different echo times. T1 and T2 times were calculated using a mono-exponential fit of the average magnitude signal from a region of interest in the pancreas and were tested for correlation with age.

Results

The age range of the included subjects was 21–72 years. Average T1 and T2 relaxation times in healthy pancreas were 896 ± 149 ms, and 26.7 ± 5.3 ms, respectively. No correlation with age was found.

Conclusion

T1 and T2 relaxation times of the healthy pancreas were reported for 7 T, which can be used for image acquisition optimization. No significant correlations were found between age and T1 or T2 relaxation times of the pancreas. Considering their low standard deviation and no observable age dependence, these values may be used as a baseline to study potentially pancreatic tissue affected by disease.
Literature
1.
go back to reference Lee ES, Lee JM (2014) Imaging diagnosis of pancreatic cancer: A state-of-the-art review. World J Gastroenterol: WJG 20(24):7864–7877CrossRef Lee ES, Lee JM (2014) Imaging diagnosis of pancreatic cancer: A state-of-the-art review. World J Gastroenterol: WJG 20(24):7864–7877CrossRef
2.
go back to reference Raman SP, Horton KM, Fishman EK (2012) Multimodality imaging of pancreatic cancer—computed tomography, magnetic resonance imaging, and positron emission tomography. Cancer J 18(6):511–522CrossRef Raman SP, Horton KM, Fishman EK (2012) Multimodality imaging of pancreatic cancer—computed tomography, magnetic resonance imaging, and positron emission tomography. Cancer J 18(6):511–522CrossRef
3.
go back to reference Muller MF, Meyenberger C, Bertschinger P, Schaer R, Marincek B (1994) Pancreatic tumors: evaluation with endoscopic US, CT, and MR imaging. Radiology 190(3):745–751CrossRef Muller MF, Meyenberger C, Bertschinger P, Schaer R, Marincek B (1994) Pancreatic tumors: evaluation with endoscopic US, CT, and MR imaging. Radiology 190(3):745–751CrossRef
4.
go back to reference Bhutani MS, Koduru P, Joshi V, Saxena P, Suzuki R, Irisawa A, Yamao K (2016) The role of endoscopic ultrasound in pancreatic cancer screening. Endosc Ultrasound 5(1):8–16CrossRef Bhutani MS, Koduru P, Joshi V, Saxena P, Suzuki R, Irisawa A, Yamao K (2016) The role of endoscopic ultrasound in pancreatic cancer screening. Endosc Ultrasound 5(1):8–16CrossRef
5.
go back to reference Karlson B-M, Ekbom A, Lindgren PG, Källskog V, Rastad J (1999) Abdominal US for diagnosis of pancreatic tumor: prospective cohort analysis. Radiology 213(1):107–111CrossRef Karlson B-M, Ekbom A, Lindgren PG, Källskog V, Rastad J (1999) Abdominal US for diagnosis of pancreatic tumor: prospective cohort analysis. Radiology 213(1):107–111CrossRef
6.
go back to reference Miura F, Takada T, Amano H, Yoshida M, Furui S, Takeshita K (2006) Diagnosis of pancreatic cancer. HPB 8(5):337–342CrossRef Miura F, Takada T, Amano H, Yoshida M, Furui S, Takeshita K (2006) Diagnosis of pancreatic cancer. HPB 8(5):337–342CrossRef
7.
go back to reference Jenkins JP, Braganza JM, Hickey DS, Isherwood I, Machin M (1987) Quantitative tissue characterisation in pancreatic disease using magnetic resonance imaging. Br J Radiol 60(712):333–341CrossRef Jenkins JP, Braganza JM, Hickey DS, Isherwood I, Machin M (1987) Quantitative tissue characterisation in pancreatic disease using magnetic resonance imaging. Br J Radiol 60(712):333–341CrossRef
8.
go back to reference Johnson PT, Outwater EK (1999) Pancreatic carcinoma versus chronic pancreatitis: dynamic MR imaging. Radiology 212(1):213–218CrossRef Johnson PT, Outwater EK (1999) Pancreatic carcinoma versus chronic pancreatitis: dynamic MR imaging. Radiology 212(1):213–218CrossRef
9.
go back to reference Kraff O, Fischer A, Nagel AM, Mönninghoff C, Ladd ME (2015) MRI at 7 tesla and above: Demonstrated and potential capabilities. J Magn Reson Imaging 41(1):13–33CrossRef Kraff O, Fischer A, Nagel AM, Mönninghoff C, Ladd ME (2015) MRI at 7 tesla and above: Demonstrated and potential capabilities. J Magn Reson Imaging 41(1):13–33CrossRef
10.
go back to reference Metzger GJ, Snyder C, Akgun C, Vaughan T, Ugurbil K, Van de Moortele PF (2008) Local B1+ shimming for prostate imaging with transceiver arrays at 7T based on subject-dependent transmit phase measurements. Magn Reson Med 59(2):396–409CrossRef Metzger GJ, Snyder C, Akgun C, Vaughan T, Ugurbil K, Van de Moortele PF (2008) Local B1+ shimming for prostate imaging with transceiver arrays at 7T based on subject-dependent transmit phase measurements. Magn Reson Med 59(2):396–409CrossRef
11.
go back to reference Adriany G, Van de Moortele PF, Wiesinger F, Moeller S, Strupp JP, Andersen P, Snyder C, Zhang X, Chen W, Pruessmann KP, Boesiger P, Vaughan T, Uğurbil K (2005) Transmit and receive transmission line arrays for 7 Tesla parallel imaging. Magn Reson Med 53(2):434–445CrossRef Adriany G, Van de Moortele PF, Wiesinger F, Moeller S, Strupp JP, Andersen P, Snyder C, Zhang X, Chen W, Pruessmann KP, Boesiger P, Vaughan T, Uğurbil K (2005) Transmit and receive transmission line arrays for 7 Tesla parallel imaging. Magn Reson Med 53(2):434–445CrossRef
12.
go back to reference Collins CM, Wang Z (2011) Calculation of radiofrequency electromagnetic fields and their effects in MRI of human subjects. Magn Reson Med 65(5):1470–1482CrossRef Collins CM, Wang Z (2011) Calculation of radiofrequency electromagnetic fields and their effects in MRI of human subjects. Magn Reson Med 65(5):1470–1482CrossRef
13.
go back to reference de Bazelaire CMJ, Duhamel GD, Rofsky NM, Alsop DC (2004) MR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: preliminary results. Radiology 230(3):652–659CrossRef de Bazelaire CMJ, Duhamel GD, Rofsky NM, Alsop DC (2004) MR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: preliminary results. Radiology 230(3):652–659CrossRef
14.
go back to reference Bottomley PA, Foster TH, Argersinger RE, Pfeifer LM (1984) A review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1–100 MHz: dependence on tissue type, NMR frequency, temperature, species, excision, and age. Med Phys 11(4):425–448CrossRef Bottomley PA, Foster TH, Argersinger RE, Pfeifer LM (1984) A review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1–100 MHz: dependence on tissue type, NMR frequency, temperature, species, excision, and age. Med Phys 11(4):425–448CrossRef
15.
go back to reference Chhor C, Han E, Stainsby J, Wright G, Brittain J, Herfkens R Quantitative Measurements of T1 and T2 for the Abdomen in a 3 Tesla Whole-Body Imager. In: International Society for Magnetic Resonance in Medicine 11th, Toronto, 2003. Chhor C, Han E, Stainsby J, Wright G, Brittain J, Herfkens R Quantitative Measurements of T1 and T2 for the Abdomen in a 3 Tesla Whole-Body Imager. In: International Society for Magnetic Resonance in Medicine 11th, Toronto, 2003.
16.
go back to reference Sato T, Ito K, Tamada T, Sone T, Noda Y, Higaki A, Kanki A, Tanimoto D, Higashi H (2012) Age-related changes in normal adult pancreas: MR imaging evaluation. Eur J Radiol 81(9):2093–2098CrossRef Sato T, Ito K, Tamada T, Sone T, Noda Y, Higaki A, Kanki A, Tanimoto D, Higashi H (2012) Age-related changes in normal adult pancreas: MR imaging evaluation. Eur J Radiol 81(9):2093–2098CrossRef
17.
go back to reference Raaijmakers AJ, Italiaander M, Voogt IJ, Luijten PR, Hoogduin JM, Klomp DW, van den Berg CA (2016) The fractionated dipole antenna: a new antenna for body imaging at 7 Tesla. Magn Reson Med 75(3):1366–1374CrossRef Raaijmakers AJ, Italiaander M, Voogt IJ, Luijten PR, Hoogduin JM, Klomp DW, van den Berg CA (2016) The fractionated dipole antenna: a new antenna for body imaging at 7 Tesla. Magn Reson Med 75(3):1366–1374CrossRef
18.
go back to reference Poon CS, Henkelman RM (1992) Practical T2 quantitation for clinical applications. J Magn Reson Imaging 2(5):541–553CrossRef Poon CS, Henkelman RM (1992) Practical T2 quantitation for clinical applications. J Magn Reson Imaging 2(5):541–553CrossRef
19.
go back to reference Maier CF, Tan SG, Hariharan H, Potter HG (2003) T2 quantitation of articular cartilage at 1.5 T. J Magn Reson Imaging 17(3):358–364CrossRef Maier CF, Tan SG, Hariharan H, Potter HG (2003) T2 quantitation of articular cartilage at 1.5 T. J Magn Reson Imaging 17(3):358–364CrossRef
20.
go back to reference Majumdar S, Orphanoudakis SC, Gmitro A, O'Donnell M, Gore JC (1986) Errors in the measurements of T2 using multiple-echo MRI techniques. I. Effects of radiofrequency pulse imperfections. Magn Reson Med 3(3):397–417CrossRef Majumdar S, Orphanoudakis SC, Gmitro A, O'Donnell M, Gore JC (1986) Errors in the measurements of T2 using multiple-echo MRI techniques. I. Effects of radiofrequency pulse imperfections. Magn Reson Med 3(3):397–417CrossRef
21.
go back to reference MacFall JR, Riederer SJ, Wang HZ (1986) An analysis of noise propagation in computed T2, pseudodensity, and synthetic spin-echo images. Med Phys 13(3):285–292CrossRef MacFall JR, Riederer SJ, Wang HZ (1986) An analysis of noise propagation in computed T2, pseudodensity, and synthetic spin-echo images. Med Phys 13(3):285–292CrossRef
22.
go back to reference Busse RF, Hariharan H, Vu A, Brittain JH (2006) Fast spin echo sequences with very long echo trains: design of variable refocusing flip angle schedules and generation of clinical T2 contrast. 55 (5):1030–1037. Busse RF, Hariharan H, Vu A, Brittain JH (2006) Fast spin echo sequences with very long echo trains: design of variable refocusing flip angle schedules and generation of clinical T2 contrast. 55 (5):1030–1037.
23.
go back to reference Tirkes T, Lin C, Fogel EL, Sherman SS, Wang Q, Sandrasegaran K (2017) T1 mapping for diagnosis of mild chronic pancreatitis. J Magn Reson Imaging : JMRI 45(4):1171–1176CrossRef Tirkes T, Lin C, Fogel EL, Sherman SS, Wang Q, Sandrasegaran K (2017) T1 mapping for diagnosis of mild chronic pancreatitis. J Magn Reson Imaging : JMRI 45(4):1171–1176CrossRef
24.
go back to reference Stanisz GJ, Odrobina EE, Pun J, Escaravage M, Graham SJ, Bronskill MJ, Henkelman RM (2005) T1, T2 relaxation and magnetization transfer in tissue at 3T. Magn Reson Med 54(3):507–512CrossRef Stanisz GJ, Odrobina EE, Pun J, Escaravage M, Graham SJ, Bronskill MJ, Henkelman RM (2005) T1, T2 relaxation and magnetization transfer in tissue at 3T. Magn Reson Med 54(3):507–512CrossRef
25.
go back to reference Kraff O, Lazik-Palm A, Heule R, Theysohn JM, Bieri O, Quick HH (2016) 7 Tesla quantitative hip MRI: a comparison between TESS and CPMG for T2 mapping. Magn Reson Mater Phy, Biol Med 29(3):503–512CrossRef Kraff O, Lazik-Palm A, Heule R, Theysohn JM, Bieri O, Quick HH (2016) 7 Tesla quantitative hip MRI: a comparison between TESS and CPMG for T2 mapping. Magn Reson Mater Phy, Biol Med 29(3):503–512CrossRef
Metadata
Title
Measurement of T1 and T2 relaxation times of the pancreas at 7 T using a multi-transmit system
Authors
Mariska Damen
Maarten van Leeuwen
Andrew Webb
Dennis Klomp
Catalina Arteaga de Castro
Publication date
01-12-2019
Publisher
Springer International Publishing
Published in
Magnetic Resonance Materials in Physics, Biology and Medicine / Issue 6/2019
Print ISSN: 0968-5243
Electronic ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-019-00768-w

Other articles of this Issue 6/2019

Magnetic Resonance Materials in Physics, Biology and Medicine 6/2019 Go to the issue