Skip to main content
Top
Published in: Magnetic Resonance Materials in Physics, Biology and Medicine 1/2019

01-02-2019 | Research Article

Toward 19F magnetic resonance thermometry: spin–lattice and spin–spin-relaxation times and temperature dependence of fluorinated drugs at 9.4 T

Authors: Christian Prinz, Paula Ramos Delgado, Thomas Wilhelm Eigentler, Ludger Starke, Thoralf Niendorf, Sonia Waiczies

Published in: Magnetic Resonance Materials in Physics, Biology and Medicine | Issue 1/2019

Login to get access

Abstract

Objective

This study examines the influence of the environmental factor temperature on the 19F NMR characteristics of fluorinated compounds in phantom studies and in tissue.

Materials and methods

19F MR mapping and MR spectroscopy techniques were used to characterize the 19F NMR characteristics of perfluoro-crown ether (PFCE), isoflurane, teriflunomide, and flupentixol. T1 and T2 mapping were performed, while temperature in the samples was changed (T = 20–60 °C) and monitored using fiber optic measurements. In tissue, T1 of PFCE nanoparticles was determined at physiological temperatures and compared with the T1-measured at room temperature.

Results

Studies on PFCE, isoflurane, teriflunomide, and flupentixol showed a relationship between temperature and their physicochemical characteristics, namely, chemical shift, T1 and T2. T1 of PFCE nanoparticles was higher at physiological body temperatures compared to room temperature.

Discussion

The impact of temperature on the 19F NMR parameters of fluorinated compounds demonstrated in this study not only opens a trajectory toward 19F MR-based thermometry, but also indicates the need for adapting MR sequence parameters according to environmental changes such as temperature. This will be an absolute requirement for detecting fluorinated compounds by 19F MR techniques in vivo.
Literature
1.
go back to reference Schmieder AH, Caruthers SD, Keupp J, Wickline SA, Lanza GM (2015) Recent advances in 19Fluorine magnetic resonance imaging with perfluorocarbon emulsions. Engineering (Beijing, China) 1(4):475–489 Schmieder AH, Caruthers SD, Keupp J, Wickline SA, Lanza GM (2015) Recent advances in 19Fluorine magnetic resonance imaging with perfluorocarbon emulsions. Engineering (Beijing, China) 1(4):475–489
2.
go back to reference Ahrens ET, Flores R, Xu H, Morel PA (2005) In vivo imaging platform for tracking immunotherapeutic cells. Nat Biotechnol 23(8):983–987CrossRefPubMed Ahrens ET, Flores R, Xu H, Morel PA (2005) In vivo imaging platform for tracking immunotherapeutic cells. Nat Biotechnol 23(8):983–987CrossRefPubMed
3.
go back to reference Waiczies H, Lepore S, Drechsler S, Qadri F, Purfürst B, Sydow K, Dathe M, Kühne A, Lindel T, Hoffmann W, Pohlmann A, Niendorf T, Waiczies S (2013) Visualizing brain inflammation with a shingled-leg radio-frequency head probe for 19F/1H MRI. Sci Rep 3:1280CrossRefPubMedPubMedCentral Waiczies H, Lepore S, Drechsler S, Qadri F, Purfürst B, Sydow K, Dathe M, Kühne A, Lindel T, Hoffmann W, Pohlmann A, Niendorf T, Waiczies S (2013) Visualizing brain inflammation with a shingled-leg radio-frequency head probe for 19F/1H MRI. Sci Rep 3:1280CrossRefPubMedPubMedCentral
4.
go back to reference Ruiz-Cabello J, Barnett BP, Bottomley PA, Bulte JW (2011) Fluorine (19F) MRS and MRI in biomedicine. NMR Biomed 24(2):114–129CrossRefPubMed Ruiz-Cabello J, Barnett BP, Bottomley PA, Bulte JW (2011) Fluorine (19F) MRS and MRI in biomedicine. NMR Biomed 24(2):114–129CrossRefPubMed
5.
go back to reference Karson CN, Newton JE, Livingston R, Jolly JB, Cooper TB, Sprigg J, Komoroski RA (1993) Human brain fluoxetine concentrations. J Neuropsychiatry Clin Neurosci 5(3):322–329CrossRefPubMed Karson CN, Newton JE, Livingston R, Jolly JB, Cooper TB, Sprigg J, Komoroski RA (1993) Human brain fluoxetine concentrations. J Neuropsychiatry Clin Neurosci 5(3):322–329CrossRefPubMed
6.
go back to reference Karson CN, Newton JE, Mohanakrishnan P, Sprigg J, Komoroski RA (1992) Fluoxetine and trifluoperazine in human brain: a 19F-nuclear magnetic resonance spectroscopy study. Psychiatry Res 45(2):95–104CrossRefPubMed Karson CN, Newton JE, Mohanakrishnan P, Sprigg J, Komoroski RA (1992) Fluoxetine and trifluoperazine in human brain: a 19F-nuclear magnetic resonance spectroscopy study. Psychiatry Res 45(2):95–104CrossRefPubMed
7.
go back to reference Komoroski RA, Newton JE, Cardwell D, Sprigg J, Pearce J, Karson CN (1994) In vivo 19F spin relaxation and localized spectroscopy of fluoxetine in human brain. Magn Reson Med 31(2):204–211CrossRefPubMed Komoroski RA, Newton JE, Cardwell D, Sprigg J, Pearce J, Karson CN (1994) In vivo 19F spin relaxation and localized spectroscopy of fluoxetine in human brain. Magn Reson Med 31(2):204–211CrossRefPubMed
8.
go back to reference Bolo NR, Hode Y, Nedelec JF, Laine E, Wagner G, Macher JP (2000) Brain pharmacokinetics and tissue distribution in vivo of fluvoxamine and fluoxetine by fluorine magnetic resonance spectroscopy. Neuropsychopharmacology 23(4):428–438CrossRefPubMed Bolo NR, Hode Y, Nedelec JF, Laine E, Wagner G, Macher JP (2000) Brain pharmacokinetics and tissue distribution in vivo of fluvoxamine and fluoxetine by fluorine magnetic resonance spectroscopy. Neuropsychopharmacology 23(4):428–438CrossRefPubMed
9.
go back to reference Ji Y, Waiczies H, Winter L, Neumanova P, Hofmann D, Rieger J, Mekle R, Waiczies S, Niendorf T (2015) Eight-channel transceiver RF coil array tailored for (1)H/(1)(9)F MR of the human knee and fluorinated drugs at 7.0 T. NMR Biomed 28(6):726–737CrossRefPubMed Ji Y, Waiczies H, Winter L, Neumanova P, Hofmann D, Rieger J, Mekle R, Waiczies S, Niendorf T (2015) Eight-channel transceiver RF coil array tailored for (1)H/(1)(9)F MR of the human knee and fluorinated drugs at 7.0 T. NMR Biomed 28(6):726–737CrossRefPubMed
10.
go back to reference Desmoulin F, Gilard V, Malet-Martino M, Martino R (2002) Metabolism of capecitabine, an oral fluorouracil prodrug: (19)F NMR studies in animal models and human urine. Drug Metab Dispos 30(11):1221–1229CrossRefPubMed Desmoulin F, Gilard V, Malet-Martino M, Martino R (2002) Metabolism of capecitabine, an oral fluorouracil prodrug: (19)F NMR studies in animal models and human urine. Drug Metab Dispos 30(11):1221–1229CrossRefPubMed
11.
go back to reference Doi Y, Shimmura T, Kuribayashi H, Tanaka Y, Kanazawa Y (2009) Quantitative (19)F imaging of nmol-level F-nucleotides/-sides from 5-FU with T(2) mapping in mice at 9.4T. Magn Reson Med 62(5):1129–1139CrossRefPubMed Doi Y, Shimmura T, Kuribayashi H, Tanaka Y, Kanazawa Y (2009) Quantitative (19)F imaging of nmol-level F-nucleotides/-sides from 5-FU with T(2) mapping in mice at 9.4T. Magn Reson Med 62(5):1129–1139CrossRefPubMed
12.
go back to reference Cron GO, Beghein N, Ansiaux R, Martinive P, Feron O, Gallez B (2008) 19F NMR in vivo spectroscopy reflects the effectiveness of perfusion-enhancing vascular modifiers for improving gemcitabine chemotherapy. Magn Reson Med 59(1):19–27CrossRefPubMed Cron GO, Beghein N, Ansiaux R, Martinive P, Feron O, Gallez B (2008) 19F NMR in vivo spectroscopy reflects the effectiveness of perfusion-enhancing vascular modifiers for improving gemcitabine chemotherapy. Magn Reson Med 59(1):19–27CrossRefPubMed
13.
go back to reference Morikawa S, Inubushi T, Morita M, Murakami K, Masuda C, Maki J, Tooyama I (2007) Fluorine-19 fast recovery fast spin echo imaging for mapping 5-fluorouracil. Magn Reson Med Sci 6(4):235–240CrossRefPubMed Morikawa S, Inubushi T, Morita M, Murakami K, Masuda C, Maki J, Tooyama I (2007) Fluorine-19 fast recovery fast spin echo imaging for mapping 5-fluorouracil. Magn Reson Med Sci 6(4):235–240CrossRefPubMed
14.
go back to reference Reid DG, Murphy PS (2008) Fluorine magnetic resonance in vivo: a powerful tool in the study of drug distribution and metabolism. Drug Discov Today 13(11–12):473–480CrossRefPubMed Reid DG, Murphy PS (2008) Fluorine magnetic resonance in vivo: a powerful tool in the study of drug distribution and metabolism. Drug Discov Today 13(11–12):473–480CrossRefPubMed
15.
go back to reference Colotti R, Bastiaansen JAM, Wilson A, Flögel U, Gonzales C, Schwitter J, Stuber M, van Heeswijk RB (2017) Characterization of perfluorocarbon relaxation times and their influence on the optimization of fluorine-19 MRI at 3 tesla. Magn Reson Med 77(6):2263–2271CrossRefPubMed Colotti R, Bastiaansen JAM, Wilson A, Flögel U, Gonzales C, Schwitter J, Stuber M, van Heeswijk RB (2017) Characterization of perfluorocarbon relaxation times and their influence on the optimization of fluorine-19 MRI at 3 tesla. Magn Reson Med 77(6):2263–2271CrossRefPubMed
16.
go back to reference Berkowitz BA, Handa JT, Wilson CA (1992) Perfluorocarbon temperature measurements using 19F NMR. NMR Biomed 5(2):65–68CrossRefPubMed Berkowitz BA, Handa JT, Wilson CA (1992) Perfluorocarbon temperature measurements using 19F NMR. NMR Biomed 5(2):65–68CrossRefPubMed
17.
go back to reference Kadayakkara DK, Damodaran K, Hitchens TK, Bulte JW, Ahrens ET (2014) (19)F spin-lattice relaxation of perfluoropolyethers: dependence on temperature and magnetic field strength (7.0–14.1T). J Magn Reson 242:18–22CrossRefPubMed Kadayakkara DK, Damodaran K, Hitchens TK, Bulte JW, Ahrens ET (2014) (19)F spin-lattice relaxation of perfluoropolyethers: dependence on temperature and magnetic field strength (7.0–14.1T). J Magn Reson 242:18–22CrossRefPubMed
18.
go back to reference Dolbier WR (2016) Guide to fluorine NMR for organic chemists. Wiley, New YorkCrossRef Dolbier WR (2016) Guide to fluorine NMR for organic chemists. Wiley, New YorkCrossRef
19.
go back to reference Waiczies S, Lepore S, Sydow K, Drechsler S, Ku MC, Martin C, Lorenz D, Schutz I, Reimann HM, Purfurst B, Dieringer MA, Waiczies H, Dathe M, Pohlmann A, Niendorf T (2015) Anchoring dipalmitoyl phosphoethanolamine to nanoparticles boosts cellular uptake and fluorine-19 magnetic resonance signal. Sci Rep 5:8427CrossRefPubMedPubMedCentral Waiczies S, Lepore S, Sydow K, Drechsler S, Ku MC, Martin C, Lorenz D, Schutz I, Reimann HM, Purfurst B, Dieringer MA, Waiczies H, Dathe M, Pohlmann A, Niendorf T (2015) Anchoring dipalmitoyl phosphoethanolamine to nanoparticles boosts cellular uptake and fluorine-19 magnetic resonance signal. Sci Rep 5:8427CrossRefPubMedPubMedCentral
20.
go back to reference Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682CrossRef Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682CrossRef
21.
go back to reference Henkelman RM (1985) Measurement of signal intensities in the presence of noise in MR images. Med Phys 12(2):232–233CrossRefPubMed Henkelman RM (1985) Measurement of signal intensities in the presence of noise in MR images. Med Phys 12(2):232–233CrossRefPubMed
22.
go back to reference Haacke E (1999) Magnetic resonance imaging: physical principles and sequence design. Wiley-Liss, New York Haacke E (1999) Magnetic resonance imaging: physical principles and sequence design. Wiley-Liss, New York
23.
go back to reference Ben-Eliezer N, Sodickson DK, Block KT (2015) Rapid and accurate T 2 mapping from multi-spin-echo data using Bloch-simulation-based reconstruction. Magn Reson Med 73(2):809–817CrossRefPubMed Ben-Eliezer N, Sodickson DK, Block KT (2015) Rapid and accurate T 2 mapping from multi-spin-echo data using Bloch-simulation-based reconstruction. Magn Reson Med 73(2):809–817CrossRefPubMed
24.
go back to reference National Electrical Manufacturers A (2001) Determination of signal-to-noise ratio (SNR) in diagnostic magnetic resonance imaging. NEMA Standards Publication MS 1-2001 National Electrical Manufacturers A (2001) Determination of signal-to-noise ratio (SNR) in diagnostic magnetic resonance imaging. NEMA Standards Publication MS 1-2001
25.
go back to reference Niendorf T, Ji Y, Waiczies S (2016) Fluorinated natural compounds and synthetic drugs. In: Ahrens ET, Flögel U (eds) Fluorine magnetic resonance imaging. Pan Stanford Publishing, Singapore, pp 311–344CrossRef Niendorf T, Ji Y, Waiczies S (2016) Fluorinated natural compounds and synthetic drugs. In: Ahrens ET, Flögel U (eds) Fluorine magnetic resonance imaging. Pan Stanford Publishing, Singapore, pp 311–344CrossRef
27.
go back to reference Bushberg JT (2002) The essential physics of medical imaging. lippincott. Williams & Wilkins, Philadelphia Bushberg JT (2002) The essential physics of medical imaging. lippincott. Williams & Wilkins, Philadelphia
28.
go back to reference Sinnecker T, Kuchling J, Dusek P, Dörr J, Niendorf T, Paul F, Wuerfel J (2015) Ultrahigh field MRI in clinical neuroimmunology: a potential contribution to improved diagnostics and personalised disease management. EPMA J 6(1):16CrossRefPubMedPubMedCentral Sinnecker T, Kuchling J, Dusek P, Dörr J, Niendorf T, Paul F, Wuerfel J (2015) Ultrahigh field MRI in clinical neuroimmunology: a potential contribution to improved diagnostics and personalised disease management. EPMA J 6(1):16CrossRefPubMedPubMedCentral
29.
go back to reference Niendorf T, Schulz-Menger J, Paul K, Huelnhagen T, Ferrari VA, Hodge R (2017) High field cardiac magnetic resonance imaging: a case for ultrahigh field cardiac magnetic resonance. Circ Cardiovasc Imaging 10:(6)CrossRef Niendorf T, Schulz-Menger J, Paul K, Huelnhagen T, Ferrari VA, Hodge R (2017) High field cardiac magnetic resonance imaging: a case for ultrahigh field cardiac magnetic resonance. Circ Cardiovasc Imaging 10:(6)CrossRef
30.
go back to reference Niendorf T, Barth M, Kober F, Trattnig S (2016) From ultrahigh to extreme field magnetic resonance: where physics, biology and medicine meet. Magma (New York, NY) 29(3):309–311 Niendorf T, Barth M, Kober F, Trattnig S (2016) From ultrahigh to extreme field magnetic resonance: where physics, biology and medicine meet. Magma (New York, NY) 29(3):309–311
31.
go back to reference Waiczies S, Millward JM, Starke L, Delgado PR, Huelnhagen T, Prinz C, Marek D, Wecker D, Wissmann R, Koch SP, Boehm-Sturm P, Waiczies H, Niendorf T, Pohlmann A (2017) Enhanced fluorine-19 MRI sensitivity using a cryogenic radiofrequency probe: technical developments and ex vivo demonstration in a mouse model of neuroinflammation. Sci Rep 7(1):9808CrossRefPubMedPubMedCentral Waiczies S, Millward JM, Starke L, Delgado PR, Huelnhagen T, Prinz C, Marek D, Wecker D, Wissmann R, Koch SP, Boehm-Sturm P, Waiczies H, Niendorf T, Pohlmann A (2017) Enhanced fluorine-19 MRI sensitivity using a cryogenic radiofrequency probe: technical developments and ex vivo demonstration in a mouse model of neuroinflammation. Sci Rep 7(1):9808CrossRefPubMedPubMedCentral
32.
go back to reference Faber C, Schmid F (2016) Pulse sequence considerations and schemes. In: Ahrens ET, Flögel U (eds) Fluorine magnetic resonance imaging. Pan Stanford Publishing, Singapore, pp 3–27 Faber C, Schmid F (2016) Pulse sequence considerations and schemes. In: Ahrens ET, Flögel U (eds) Fluorine magnetic resonance imaging. Pan Stanford Publishing, Singapore, pp 3–27
33.
go back to reference Zhong J, Mills PH, Hitchens TK, Ahrens ET (2013) Accelerated fluorine-19 MRI cell tracking using compressed sensing. Magn Reson Med 69(6):1683–1690CrossRefPubMed Zhong J, Mills PH, Hitchens TK, Ahrens ET (2013) Accelerated fluorine-19 MRI cell tracking using compressed sensing. Magn Reson Med 69(6):1683–1690CrossRefPubMed
Metadata
Title
Toward 19F magnetic resonance thermometry: spin–lattice and spin–spin-relaxation times and temperature dependence of fluorinated drugs at 9.4 T
Authors
Christian Prinz
Paula Ramos Delgado
Thomas Wilhelm Eigentler
Ludger Starke
Thoralf Niendorf
Sonia Waiczies
Publication date
01-02-2019
Publisher
Springer International Publishing
Published in
Magnetic Resonance Materials in Physics, Biology and Medicine / Issue 1/2019
Print ISSN: 0968-5243
Electronic ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-018-0722-8

Other articles of this Issue 1/2019

Magnetic Resonance Materials in Physics, Biology and Medicine 1/2019 Go to the issue