Skip to main content
Top
Published in: Magnetic Resonance Materials in Physics, Biology and Medicine 1/2019

01-02-2019 | Research Article

Dissociation of 19F and fluorescence signal upon cellular uptake of dual-contrast perfluorocarbon nanoemulsions

Authors: Pascal Bouvain, Vera Flocke, Wolfgang Krämer, Rolf Schubert, Jürgen Schrader, Ulrich Flögel, Sebastian Temme

Published in: Magnetic Resonance Materials in Physics, Biology and Medicine | Issue 1/2019

Login to get access

Abstract

Objective

Perfluorocarbon nanoemulsions (PFCs) tagged with fluorescence dyes have been intensively used to confirm the in vivo 19F magnetic resonance imaging (MRI) localization of PFCs by post mortem histology or flow cytometry. However, only limited data are available on tagged PFCs and the potential dissociation of fluorescence and 19F label after cellular uptake over time.

Materials and methods

PFCs were coupled to rhodamine (Rho) or carboxyfluorescein (Cfl) and their fate was analyzed after in vitro uptake by J774, RAW and CHO cells by flow cytometry and 19F MRI. In separate in vivo experiments, the dual-labelled emulsions were intravenously applied into mice and their distribution was monitored in spleen and liver over 24 h. In a final step, time course of fluorescence and 19F signals from injected emulsions were tracked in a local inflammation model making use of a subcutaneous matrigel depot doped with LPS (lipopolysaccharide).

Results

Internalization of fluorescence-labelled PFCs was associated with a substantial whitening over 24 h in all macrophage cell lines while the 19F signal remained stable over time. In all experiments, CflPFCs were more susceptible to bleaching than RhoPFCs. After intravenous injection of RhoPFCs, the fluorescence signal in spleen and liver peaked after 30 min and 2 h, respectively, followed by a successive decrease over 24 h, whereas the 19F signal continuously increased during this observation period. Similar results were found in the matrigel/LPS model, where we observed increasing 19F signals in the inflammatory hot spot over time while the fluorescence signal of immune cells isolated from the matrigel depot 24 h after its implantation was only marginally elevated over background levels. This resulted in a massive underestimation of the true PFC deposition in the reticuloendothelial system and at inflammatory hot spots.

Conclusion

Cellular uptake of fluorescently tagged PFCs leads to a dissociation of the fluorescence and the 19F label signal over time, which critically impacts on interpretation of long-term experiments validated by histology or flow cytometry.
Appendix
Available only for authorised users
Literature
2.
go back to reference Riess JG (2005) Understanding the fundamentals of Perfluorocarbons and perfluorocarbon emulsions relevant to in vivo oxygen delivery. Artif Cells Blood Substit Biotechnol 33:47–63CrossRef Riess JG (2005) Understanding the fundamentals of Perfluorocarbons and perfluorocarbon emulsions relevant to in vivo oxygen delivery. Artif Cells Blood Substit Biotechnol 33:47–63CrossRef
3.
go back to reference O’Hagan D (2008) Understanding organofluorine chemistry. An introduction to the C–F bond. Chem Soc Rev 37:308–319CrossRefPubMed O’Hagan D (2008) Understanding organofluorine chemistry. An introduction to the C–F bond. Chem Soc Rev 37:308–319CrossRefPubMed
4.
go back to reference Grapentin C, Mayenfels F, Barnert S, Süss R, Schubert R, Temme S, Jacoby C, Schrader J, Flögel U (2014) Optimization of perfluorocarbon nanoemulsions for molecular imaging by 19F MRI. Nanomed One Central Press, Machester, pp 268–286 Grapentin C, Mayenfels F, Barnert S, Süss R, Schubert R, Temme S, Jacoby C, Schrader J, Flögel U (2014) Optimization of perfluorocarbon nanoemulsions for molecular imaging by 19F MRI. Nanomed One Central Press, Machester, pp 268–286
5.
go back to reference Srinivas M, Boehm-Sturm P, Figdor CG, de Vries IJ, Hoehn M (2012) Labeling cells for in vivo tracking using 19F MRI. Biomaterials 33:8830–8840CrossRefPubMed Srinivas M, Boehm-Sturm P, Figdor CG, de Vries IJ, Hoehn M (2012) Labeling cells for in vivo tracking using 19F MRI. Biomaterials 33:8830–8840CrossRefPubMed
6.
go back to reference Temme S, Grapentin C, Güden-Silber T, Flögel U (2016) Active targeting of perfluorocarbon nanoemulsions. Fluorine magnetic resonance imaging. CRC Press, Boca Raton, pp 97–133 Temme S, Grapentin C, Güden-Silber T, Flögel U (2016) Active targeting of perfluorocarbon nanoemulsions. Fluorine magnetic resonance imaging. CRC Press, Boca Raton, pp 97–133
7.
go back to reference Ebner B, Behm P, Jacoby C, Burghoff S, French BA, Schrader J, Flögel U (2010) Early assessment of pulmonary inflammation by 19F MRI in vivo. Circ Cardiovasc Imaging 3:202–210CrossRefPubMedPubMedCentral Ebner B, Behm P, Jacoby C, Burghoff S, French BA, Schrader J, Flögel U (2010) Early assessment of pulmonary inflammation by 19F MRI in vivo. Circ Cardiovasc Imaging 3:202–210CrossRefPubMedPubMedCentral
8.
go back to reference Flögel U, Ding Z, Hardung H, Jander S, Reichmann G, Jacoby C, Schubert R, Schrader J (2008) In vivo monitoring of inflammation after cardiac and cerebral ischemia by fluorine magnetic resonance imaging. Circulation 118:140–148CrossRefPubMedPubMedCentral Flögel U, Ding Z, Hardung H, Jander S, Reichmann G, Jacoby C, Schubert R, Schrader J (2008) In vivo monitoring of inflammation after cardiac and cerebral ischemia by fluorine magnetic resonance imaging. Circulation 118:140–148CrossRefPubMedPubMedCentral
9.
go back to reference Flögel U, Burghoff S, van Lent PLEM, Temme S, Galbarz L, Ding Z, El-Tayeb A, Huels S, Bönner F, Borg N, Jacoby C, Muller CE, van den Berg WB, Schrader J (2012) Selective activation of adenosine A2A receptors on immune cells by a CD73-dependent prodrug suppresses joint inflammation in experimental rheumatoid arthritis. Sci Transl Med 4:146ra108CrossRefPubMed Flögel U, Burghoff S, van Lent PLEM, Temme S, Galbarz L, Ding Z, El-Tayeb A, Huels S, Bönner F, Borg N, Jacoby C, Muller CE, van den Berg WB, Schrader J (2012) Selective activation of adenosine A2A receptors on immune cells by a CD73-dependent prodrug suppresses joint inflammation in experimental rheumatoid arthritis. Sci Transl Med 4:146ra108CrossRefPubMed
10.
go back to reference van Heeswijk RB, Pellegrin M, Flögel U, Gonzales C, Aubert J-F, Mazzolai L, Schwitter J, Stuber M (2015) Fluorine MR imaging of inflammation in atherosclerotic plaque in vivo. Radiology 275:421–429CrossRefPubMed van Heeswijk RB, Pellegrin M, Flögel U, Gonzales C, Aubert J-F, Mazzolai L, Schwitter J, Stuber M (2015) Fluorine MR imaging of inflammation in atherosclerotic plaque in vivo. Radiology 275:421–429CrossRefPubMed
11.
go back to reference Boehm-Sturm P, Mengler L, Wecker S, Hoehn M, Kallur T (2011) In vivo tracking of human neural stem cells with 19F magnetic resonance imaging. PLoS One 6:e29040CrossRefPubMedPubMedCentral Boehm-Sturm P, Mengler L, Wecker S, Hoehn M, Kallur T (2011) In vivo tracking of human neural stem cells with 19F magnetic resonance imaging. PLoS One 6:e29040CrossRefPubMedPubMedCentral
12.
go back to reference Helfer BM, Balducci A, Sadeghi Z, Ohanlon C, Hijaz A, Flask CA, Wesa A (2013) 19F MRI tracer preserves in vitro and in vivo properties of hematopoietic stem cells. Cell Transplant 22:87–97CrossRefPubMed Helfer BM, Balducci A, Sadeghi Z, Ohanlon C, Hijaz A, Flask CA, Wesa A (2013) 19F MRI tracer preserves in vitro and in vivo properties of hematopoietic stem cells. Cell Transplant 22:87–97CrossRefPubMed
13.
go back to reference Ding Z, Temme S, Quast C, Friebe D, Jacoby C, Zanger K, Bidmon H-J, Grapentin C, Schubert R, Flogel U, Schrader J (2016) Epicardium-derived cells formed after myocardial injury display phagocytic activity permitting in vivo labeling and tracking. Stem Cells Transl Med 5:639–650CrossRefPubMedPubMedCentral Ding Z, Temme S, Quast C, Friebe D, Jacoby C, Zanger K, Bidmon H-J, Grapentin C, Schubert R, Flogel U, Schrader J (2016) Epicardium-derived cells formed after myocardial injury display phagocytic activity permitting in vivo labeling and tracking. Stem Cells Transl Med 5:639–650CrossRefPubMedPubMedCentral
14.
go back to reference Solomon M, Muro S (2017) Lysosomal enzyme replacement therapies: historical development, clinical outcomes, and future perspectives. Adv Drug Deliv Rev 118:109–134CrossRefPubMedPubMedCentral Solomon M, Muro S (2017) Lysosomal enzyme replacement therapies: historical development, clinical outcomes, and future perspectives. Adv Drug Deliv Rev 118:109–134CrossRefPubMedPubMedCentral
15.
go back to reference Dupré-Crochet S, Erard M, Nüße O (2013) ROS production in phagocytes: why, when, and where? J Leukoc Biol 94:657–670CrossRefPubMed Dupré-Crochet S, Erard M, Nüße O (2013) ROS production in phagocytes: why, when, and where? J Leukoc Biol 94:657–670CrossRefPubMed
16.
go back to reference Temme S, Jacoby C, Ding Z, Bönner F, Borg N, Schrader J, Flögel U (2014) Technical advance: monitoring the trafficking of neutrophil granulocytes and monocytes during the course of tissue inflammation by noninvasive 19F MRI. J Leukoc Biol 95:689–697CrossRefPubMed Temme S, Jacoby C, Ding Z, Bönner F, Borg N, Schrader J, Flögel U (2014) Technical advance: monitoring the trafficking of neutrophil granulocytes and monocytes during the course of tissue inflammation by noninvasive 19F MRI. J Leukoc Biol 95:689–697CrossRefPubMed
17.
go back to reference Temme S, Grapentin C, Quast C, Jacoby C, Grandoch M, Ding Z, Owenier C, Mayenfels F, Fischer JW, Schubert R, Schrader J, Flögel U (2015) Noninvasive imaging of early venous thrombosis by 19F magnetic resonance imaging with targeted perfluorocarbon nanoemulsions. Circulation 131:1405–1414CrossRefPubMed Temme S, Grapentin C, Quast C, Jacoby C, Grandoch M, Ding Z, Owenier C, Mayenfels F, Fischer JW, Schubert R, Schrader J, Flögel U (2015) Noninvasive imaging of early venous thrombosis by 19F magnetic resonance imaging with targeted perfluorocarbon nanoemulsions. Circulation 131:1405–1414CrossRefPubMed
19.
go back to reference Skotland T, Sontum PC, Oulie I (2002) In vitro stability analyses as a model for metabolism of ferromagnetic particles (Clariscan™), a contrast agent for magnetic resonance imaging. J Pharm Biomed Anal 28:323–329CrossRefPubMed Skotland T, Sontum PC, Oulie I (2002) In vitro stability analyses as a model for metabolism of ferromagnetic particles (Clariscan™), a contrast agent for magnetic resonance imaging. J Pharm Biomed Anal 28:323–329CrossRefPubMed
20.
go back to reference Seleverstov O, Zabirnyk O, Zscharnack M, Bulavina L, Nowicki M, Heinrich J-M, Yezhelyev M, Emmrich F, O’Regan R, Bader A (2006) Quantum dots for human mesenchymal stem cells labeling. A size-dependent autophagy activation. Nano Lett 6:2826–2832CrossRefPubMed Seleverstov O, Zabirnyk O, Zscharnack M, Bulavina L, Nowicki M, Heinrich J-M, Yezhelyev M, Emmrich F, O’Regan R, Bader A (2006) Quantum dots for human mesenchymal stem cells labeling. A size-dependent autophagy activation. Nano Lett 6:2826–2832CrossRefPubMed
21.
go back to reference Fitzpatrick JAJ, Andreko SK, Ernst LA, Waggoner AS, Ballou B, Bruchez MP (2009) Long-term persistence and spectral blue shifting of quantum dots in vivo. Nano Lett 9:2736–2741CrossRefPubMedPubMedCentral Fitzpatrick JAJ, Andreko SK, Ernst LA, Waggoner AS, Ballou B, Bruchez MP (2009) Long-term persistence and spectral blue shifting of quantum dots in vivo. Nano Lett 9:2736–2741CrossRefPubMedPubMedCentral
22.
go back to reference Ratner AV, Hurd R, Muller HH, Bradley-Simpson B, Pitts W, Shibata D, Sotak C, Young SW (1987) 19F magnetic resonance imaging of the reticuloendothelial system. Magn Reson Med 5:548–554CrossRefPubMed Ratner AV, Hurd R, Muller HH, Bradley-Simpson B, Pitts W, Shibata D, Sotak C, Young SW (1987) 19F magnetic resonance imaging of the reticuloendothelial system. Magn Reson Med 5:548–554CrossRefPubMed
23.
go back to reference Long DM, Multer FK, Greenburg AG, Peskin GW, Lasser EC, Wickham WG, Sharts CM (1978) Tumor imaging with X-rays using macrophage uptake of radiopaque fluorocarbon emulsions. Surgery 84:104–112PubMed Long DM, Multer FK, Greenburg AG, Peskin GW, Lasser EC, Wickham WG, Sharts CM (1978) Tumor imaging with X-rays using macrophage uptake of radiopaque fluorocarbon emulsions. Surgery 84:104–112PubMed
24.
go back to reference Jacoby C, Temme S, Mayenfels F, Benoit N, Krafft MP, Schubert R, Schrader J, Flögel U (2014) Probing different perfluorocarbons for in vivo inflammation imaging by 19F MRI: image reconstruction, biological half-lives and sensitivity. NMR Biomed 27:261–271CrossRefPubMed Jacoby C, Temme S, Mayenfels F, Benoit N, Krafft MP, Schubert R, Schrader J, Flögel U (2014) Probing different perfluorocarbons for in vivo inflammation imaging by 19F MRI: image reconstruction, biological half-lives and sensitivity. NMR Biomed 27:261–271CrossRefPubMed
25.
go back to reference Flaim SF (1994) Pharmacokinetics and side effects of perfluorocarbon-based blood substitutes. Artif Cells Blood Substit Immobil Biotechnol 22:1043–1054CrossRefPubMed Flaim SF (1994) Pharmacokinetics and side effects of perfluorocarbon-based blood substitutes. Artif Cells Blood Substit Immobil Biotechnol 22:1043–1054CrossRefPubMed
26.
go back to reference Krafft MP, Riess JG, Weers JG (1998) The design and engineering of oxygen-delivering fluorocarbonemulsions. In: Benita S (ed) Submicron emulsions in drug targeting and delivery. Harwood, Amsterdam, pp 235–333 Krafft MP, Riess JG, Weers JG (1998) The design and engineering of oxygen-delivering fluorocarbonemulsions. In: Benita S (ed) Submicron emulsions in drug targeting and delivery. Harwood, Amsterdam, pp 235–333
27.
go back to reference Riess JG (2001) Oxygen carriers (“blood substitutes”)–raison d’etre, chemistry, and some physiology. Chem Rev 101:2797–2920CrossRefPubMed Riess JG (2001) Oxygen carriers (“blood substitutes”)–raison d’etre, chemistry, and some physiology. Chem Rev 101:2797–2920CrossRefPubMed
28.
go back to reference Tsuda Y, Yamanouchi K, Yokoyama K, Suyama T, Watanabe M, Ohyanagi H, Saitoh Y (1988) Discussion and considerations for the excretion mechanism of perfluorochemical emulsion. Biomater Artif Cells Artif Organs 16:473–483CrossRefPubMed Tsuda Y, Yamanouchi K, Yokoyama K, Suyama T, Watanabe M, Ohyanagi H, Saitoh Y (1988) Discussion and considerations for the excretion mechanism of perfluorochemical emulsion. Biomater Artif Cells Artif Organs 16:473–483CrossRefPubMed
29.
go back to reference Yokoyama K, Yamanouchi K, Murashima R (1975) Excretion of Perfluorochemicals after intravenous injection of their emulsion. Chem Pharm Bull (Tokyo) 23:1368–1373CrossRef Yokoyama K, Yamanouchi K, Murashima R (1975) Excretion of Perfluorochemicals after intravenous injection of their emulsion. Chem Pharm Bull (Tokyo) 23:1368–1373CrossRef
30.
go back to reference Riess JG (1992) Overview of progress in the fluorocarbon approach to in vivo oxygen delivery. Biomater Artif Cells Immobil Biotechnol 20:183–202 Riess JG (1992) Overview of progress in the fluorocarbon approach to in vivo oxygen delivery. Biomater Artif Cells Immobil Biotechnol 20:183–202
31.
go back to reference Bönner F, Jacoby C, Temme S, Borg N, Ding Z, Schrader J, Flögel U (2014) Multifunctional MR monitoring of the healing process after myocardial infarction. Basic Res Cardiol 109:430CrossRefPubMed Bönner F, Jacoby C, Temme S, Borg N, Ding Z, Schrader J, Flögel U (2014) Multifunctional MR monitoring of the healing process after myocardial infarction. Basic Res Cardiol 109:430CrossRefPubMed
32.
go back to reference Skajaa T, Zhao Y, van den Heuvel DJ, Gerritsen HC, Cormode DP, Koole R, van Schooneveld MM, Post JA, Fisher EA, Fayad ZA, de Mello Donega C, Meijerink A, Mulder WJM (2010) Quantum dot and Cy5.5 labeled nanoparticles to investigate lipoprotein biointeractions via Förster resonance energy transfer. Nano Lett 10:5131–5138CrossRefPubMedPubMedCentral Skajaa T, Zhao Y, van den Heuvel DJ, Gerritsen HC, Cormode DP, Koole R, van Schooneveld MM, Post JA, Fisher EA, Fayad ZA, de Mello Donega C, Meijerink A, Mulder WJM (2010) Quantum dot and Cy5.5 labeled nanoparticles to investigate lipoprotein biointeractions via Förster resonance energy transfer. Nano Lett 10:5131–5138CrossRefPubMedPubMedCentral
33.
go back to reference Lunov O, Syrovets T, Röcker C, Tron K, Ulrich Nienhaus G, Rasche V, Mailänder V, Landfester K, Simmet T (2010) Lysosomal degradation of the carboxydextran shell of coated superparamagnetic iron oxide nanoparticles and the fate of professional phagocytes. Biomaterials 31:9015–9022CrossRefPubMed Lunov O, Syrovets T, Röcker C, Tron K, Ulrich Nienhaus G, Rasche V, Mailänder V, Landfester K, Simmet T (2010) Lysosomal degradation of the carboxydextran shell of coated superparamagnetic iron oxide nanoparticles and the fate of professional phagocytes. Biomaterials 31:9015–9022CrossRefPubMed
35.
go back to reference Janjic JM, Srinivas M, Kadayakkara DKK, Ahrens ET (2008) Self-delivering nanoemulsions for dual fluorine-19 MRI and fluorescence detection. J Am Chem Soc 130:2832–2841CrossRefPubMed Janjic JM, Srinivas M, Kadayakkara DKK, Ahrens ET (2008) Self-delivering nanoemulsions for dual fluorine-19 MRI and fluorescence detection. J Am Chem Soc 130:2832–2841CrossRefPubMed
Metadata
Title
Dissociation of 19F and fluorescence signal upon cellular uptake of dual-contrast perfluorocarbon nanoemulsions
Authors
Pascal Bouvain
Vera Flocke
Wolfgang Krämer
Rolf Schubert
Jürgen Schrader
Ulrich Flögel
Sebastian Temme
Publication date
01-02-2019
Publisher
Springer International Publishing
Published in
Magnetic Resonance Materials in Physics, Biology and Medicine / Issue 1/2019
Print ISSN: 0968-5243
Electronic ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-018-0723-7

Other articles of this Issue 1/2019

Magnetic Resonance Materials in Physics, Biology and Medicine 1/2019 Go to the issue